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ABSTRACT: 

 

The United States National Hydrography Dataset (NHD) is a database of vector features representing the surface water features for 

the country. The NHD was originally compiled from hydrographic content on U.S. Geological Survey topographic maps but is being 

updated with higher quality feature representations through flow-routing techniques that derive hydrography from high-resolution 

elevation data. However, deriving hydrography through flow-routing methods is a complex process that needs to be tailored to 

different geographic conditions, which can lead to varying solutions. To address this problem, this paper evaluates automated deep 

learning and its transferability to extract hydrography from interferometric synthetic aperture radar (IfSAR) elevation data spanning a 

range of geographic conditions in Alaska.  

 

 

1. INTRODUCTION 

The U.S Geological Survey (USGS) has been providing 

topographic maps and geospatial data for the United States for 

over 125 years (USGS, National Geospatial Program, 2022). 

Serving as a primary access point for freely available geospatial 

data and topographic maps, The National Map is a suite of 

products and services for viewing and downloading base 

topographic information to support science investigations, 

emergency operations, and numerous other activities. In a new 

initiative to deliver higher-quality data and support improved 

geospatial analysis, the USGS is upgrading the elevation and 

hydrography datasets into the 3D National Topography Model 

(3DNTM), which will include fully integrated hydrography and 

elevation. The USGS 3D Elevation Program (3DEP) recently 

completed acquisition of interferometric synthetic aperture radar 

(IfSAR) elevation data at 5-meter spatial resolution for Alaska 

(USGS, 2022). Other parts of the United States are being 

mapped at higher resolution with lidar-derived elevation data. 

This paper describes a research effort by the USGS that applies 

machine learning methods to extract hydrographic features from 

IfSAR data in Alaska to improve the National Map 

hydrographic database. 

 

Under the 3DNTM, new hydrography data are acquired through 

methods that derive or extract the features directly from high-

resolution 3DEP elevation data to ensure proper integration of 

the hydrography and elevation layers. By applying 

specifications for deriving 1:24,000 or larger scale hydrography 

from high resolution elevation data (Archuleta and Terziotti, 

2020; Terziotti and Archuleta, 2020), a tenfold increase in the 

number of features in the National Hydrography Dataset (NHD) 

is expected (Anderson, Rea, Lucas, 2021). Consequently, highly 

automated machine learning methods to extract and validate the 

hydrography data collection are being investigated to meet this 

production challenge. 

 

Deep learning methods to extract hydrography from light 

detection and ranging (lidar) and other remotely sensed data 

have shown promising results in recent years (Bernhardt et al., 

2020; Chen et al., 2018; Chen et al., 2020; Wang et al., 2020; 

Xu et al., 2019; Xu et al., 2021). Xu et al. (2021) demonstrated 

that the U-net (Ronneberger, Fischer, and Brox, 2015) fully 

convolutional neural network (CNN) is capable of extracting 

hydrography from lidar elevation data with 80 to 90 percent 

accuracy. Stanislawski et al. (2021) applied a U-net model using 

several IfSAR and IfSAR-derived input layers to predict 

hydrography for a 50-watershed study area in north-central 

Alaska, where average F1-score accuracies of 68 percent were 

achieved on test watersheds. Subsequently, the U-net model for 

predicting hydrography from IfSAR in Alaska was improved by 

enhancing the reference training data and the input data layers, 

which yielded average F1-scores of better than 80 percent for 

the test watersheds (Stanislawski et al., 2022).  

 

Transfer learning approaches are being tested through this 

research to expand or scale-up implementation of the U-net 

model to extract hydrography for other areas of Alaska. 

Transfer learning methods apply feature relations (in the form 

of weights from a trained model) learned from one domain and 

apply them to another domain, which can greatly reduce 

training requirements for the new domain (Kimura et al., 2020). 

For example, a transfer learning process achieved 94 percent 

accuracy in predicting the quality of roads in Nigeria based on a 

model originally trained to predict road quality in the United 

States (Brewer et al., 2021). In our application, a base model 
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trained in one geographic area is transferred to another 

geographic target area to reduce training requirements for the 

target area. Preliminary research by Jaroenchai and Wang 

(2022) demonstrated transfer learning to predict stream 

hydrography features from lidar-derived input layers. The base 

CNN models achieved F1-scores of about 82 percent for a 

watershed in North Carolina and the transfer-learned model 

achieved F1-scores of about 70 percent for a target watershed in 

Virginia, which was 5 to 6 percent better and required much less 

training than the trained-from-scratch models for the target area. 

Research presented in this paper builds upon that work by 

testing transfer learning methods to scale-up hydrography 

predictions from IfSAR in Alaska. The base model for this 

study is an improved version of the U-net model developed by 

Stanislawski et al. (2021). 

 

The following sections describe methods and preliminary 

results on development of a U-net model to predict hydrography 

from IfSAR data in a 50-watershed study area in Alaska, which 

serves as a base model. In addition, transfer learning methods 

are described to apply the base model to an adjacent 74-

watershed target area. The effect of distance from training data 

on the quality of transfer learning solutions is measured to help 

quantify training data requirements. 

 

2. METHODS 

2.1 Study Area and Data 

The study area and geographic domain for the base CNN model 

covers more than 4600 square kilometers (km2) in north-central 

Alaska and includes fifty 12-digit Hydrologic Unit (HU12) 

watersheds (west study area in Figures 1 and 2). In the 

geographic domain of the base model, elevation ranges from 32 

m to 1911 m above sea level (Figure 2, west area). The southern 

half of the base model domain includes a section of the Kobuk 

River valley with a broad low relief flood plain area with 

wetlands, meandering channels, and many ponds. Relief rises 

abruptly north of the Kobuk River valley into the Endicott 

Mountains where elevation rises above 1900 m. The larger lakes 

in this study area, Avaraart and Kollioksak Lakes, are each less 

than 3 km2.  

 

 
 

Figure 1. Location of areas in Alaska for base neural network 

model and target transfer learning model. 

 

The target study area, where transfer learning methods are 

tested, covers more than 7400 km2 and includes 74 HU12 

watersheds that are just east of the base study area (Figures 1 

and 2). Elevation ranges from 64 to 2460 m above sea level in 

the target study area. The geographic domain covers the eastern 

part of the Kobuk River watershed from the headwaters in the 

Endicott Mountains in the northern half of the study area to the 

lower relief Kobuk River valley in the middle to southern 

portions of the area, which also includes the Pah River valley. 

The six larger lakes in the target study area range in size from 

about 3 km2 for Lake Minakokosa up to about 38 km2 for 

Walker Lake. Additional larger lakes listed in increasing size 

include Narvak Lake, Lake Selby, Walker Lake, and Norutak 

Lake. Thus, a notable difference between the base and target 

study areas is that the target study area includes several lakes 

that are much larger than the largest lakes in the study area used 

to train the base model. 

 

 

 
 

Figure 2. Elevation and 12-digit hydrologic unit (HU12) 

boundaries for base and target model areas.  

 

2.1.1 IfSAR Data: IfSAR-derived digital terrain model (DTM), 

digital surface model (DSM), and orthorectified radar intensity 

(ORI) datasets that are freely downloadable from the USGS are 

used in this study (USGS, 2017a, 2017b, and 2017c). The 

IfSAR data were collected between August 2012 and August 

2013 using P- and X-band radar frequencies optimized for 

terrain conditions ranging from glacial surfaces, bare or 

vegetated surfaces, to dense tree canopies (Kampes et al., 2011). 

The DTM provides a 5-m resolution model estimated from the 

bare earth elevation radar returns. In contrast, the DSM provides 

a 5-m resolution surface model determined from radar elevation 

returns from all features, including vegetation and buildings. A 

root mean square error of elevation returns estimated for the 

radar data collected in this project ranges from about 0.55 m to 

1.54 m (Stanislawski et al., 2021). USGS contractors are 

required to hydro-flatten large waterbody features greater than 

8000 square meters in the IfSAR elevation products. These 

large waterbodies, which are identified through radar response 

characteristics and visual inspection, are flattened to the 

elevation of the lowest bounding cell. The ORI for the study 

areas are 0.625-m resolution radar backscatter intensity images. 

 

2.1.2 Reference Hydrography: The reference hydrography 

(Figure 3) is vector-based NHD features that were originally 

compiled by USGS contractors to 1:24,000-scale (24k) 

specifications (Archuleta and Terziotti, 2020; Terziotti and 

Archuleta, 2020). The 24k hydrography was derived from the 

IfSAR DTM and ORI data using proprietary workflows of 

contractors that vertically and horizontally align the features 
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with the channels in the DTM and hydrographic breaklines (i.e., 

hydro-flattened waterbodies) in the ORI data. Panchromatic and 

color-infrared Statewide Ortho Image satellite data at 1.5-m and 

2.5-m resolution were provided by Alaska GeoNorth 

Information Systems to guide visual editing and validation of 

the reference features. The vector reference features are 

vertically and horizontally aligned with the elevation data and 

form a complementary dataset to the elevation for testing 

hydrography feature extraction from the IfSAR data. Reference 

data are used to train CNN models and test the accuracy of the 

model predictions for both the base and target study areas.  

 

 

 
 

Figure 3. Reference 1:24,000-scale hydrographic features 

derived from IfSAR data through contracted work for the U.S. 

Geological Survey. 

 

 

2.2 Base Model 

The U-net model is applied in this study for both base and target 

area models. U-net is a fully CNN that uses an encoder-decoder 

architecture with a contractive and expanding path 

(Ronneberger, Fischer, and Brox, 2015). U-net applies multiple 

convolutional and max pooling layers in the contractive path to 

extract global general feature information. In the expanding 

path, U-net applies several convolutional layers to extract 

detailed localized information, which is concatenated with the 

global information to generate pixel-wise feature predictions 

through a sigmoid activation function. Each convolution is 

batch normalized (Ioffe and Szegedy, 2015) with a batch size of 

16 and applies a rectified linear unit (Relu) activation function 

to identify and preserve important characteristics and reduce 

redundancy and noise. Additional details of the model 

architecture are described in Stanislawski et al. (2021). Figure 4 

displays the reference features and HU12 boundaries for the 

training and test watersheds within the base model domain. For 

training, 4000 56x56-pixel window patches are used from each 

of the 10 training watersheds, which includes 1600 selected 

patches and 2400 patches derived from augmentation per 

watershed. For each training watershed, the 1600 selected 

sample patches are distributed over 160 square grids (10 patches 

per grid) that subdivide the watershed, with 800 patches 

centered on water features and 800 centered on non-water 

features. Then 400 patches of the 1600 samples (i.e., 1/4th) are 

randomly selected for six augmentation operations, which 

include two rotations, two scalings, one shear, and one mirror. 

Thus, 40,000 56x56 patches are used for training the base model 

with one-third of the sample patches used for training and two 

thirds used for testing. Training minimizes the loss function, 

which is the negative Dice coefficient (Dice, 1945), and 

continues for a maximum of 50 epochs with a learning rate of 

0.0001.  

 

 

 
 

Figure 4. Reference 1:24,000-scale hydrographic features with 

training and testing watersheds for the base model study area. 

 

 

2.2.1 Input Layers: Overall, 16 data layers related to surface 

hydrology are generated, coordinated with identical raster 

projection systems, and used as input for the U-net models. All 

layers are resampled to 5-m resolution and co-registered in the 

Albers Equal Area projection for Alaska using the North 

American Datum of 1983. Layers include DEM, DSM, ORI, 

non-linear filtered DTM (Perona and Malik, 1990), curvature 

(Sangireddy et al., 2016), geomorphons (Jasiewicz and 

Stepinski, 2013), a 2-D shallow-water channel depth (SWCD) 

model with a highly diffusive surface (Mitasova, et al., 2004), 

topographic wetness index (Moore, Grayson, and Ladson, 

1991), negative openness (Doneus, 2013), positive openness 

(Doneus, 2013),  sky view factor (Zakšek, Oštir, and Kokalj,  

2011), sky illumination (Kennelly and Stewart, 2014), 

topographic position index based on a 3x3-pixel window  

(Deumlich, Schmidt, and Sommer, 2010), topographic position 

index based on an 11x11-pixel window, 2-D SWCD with 

default diffusion, and a one-hot 2-D SWCD default diffusion 

layer. The one-hot raster includes only ones (true) and zeros 

(false). 

 

The first 14 of these layers are the same layers included in 

models tested by Stanislawski et al. (2021), which provided 

average F1-scores of 68 percent for test watersheds. The last 

two layers are associated with the default diffusion SWCD 

model and are included in these new models because it was 

determined that the SWCD is substantially more influential to 

model predictions than the next most important layer 

(Stanislawski et al., 2021). Therefore, we refined the SWCD 

model parameters to apply the default diffusion and roughness 

values. A threshold value that identifies likely inundated pixels 

in channels and waterbodies is determined for each watershed, 

and pixels with SWCD value greater than the threshold are 

included in the binary one-hot 2-D SWCD layer. 

 

The threshold SWCD value is determined from the histogram of 

the SWCD values for a watershed as the first value after the  
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Figure 5. Histogram of 2-D shallow water channel depth values 

for a watershed with mode threshold of likely land (non-water) 

and second derivative threshold for likely water. 

 

 

mode where the second derivative of the histogram is nearly 

zero (i.e., less than 0.01). An example histogram of SWCD 

values with the mode and second derivative threshold is shown 

in Figure 5.  

 

A workflow was developed to automate downloads and 

processing of IfSAR-derived tiles of DTM, DSM, and ORI data 

for user-selected watersheds from the 3DEP database 

(https://code.usgs.gov/cegis-hydronet/upscale-ak-hydronet). The 

workflow mosaics common tiles and derives the raster data 

layers from the DTM that are related to surface hydrology and 

used as input layers for the U-net models. The data processing 

workflows are implemented with Python, Linux shell scripts, 

and opensource software libraries such as the Geospatial Data 

Abstraction Library (GDAL). 

 

2.2.2 Raster Reference Layers: A separate 5-m resolution 

reference raster dataset representing water and non-water pixels 

is generated for each HU12 watershed from the vector 

hydrography reference data. The reference raster is co-

registered with all input layers. Elevation-derived hydrography 

specifications indicate that single-line streams can range up to 

30 m in width (Terziotti and Archuleta, 2020). Therefore, the 

SWCD model is used to estimate channel width of the reference 

flow network line features. The reference network lines are 

rasterized with a variable-sized buffer by excluding pixels from 

a 20-m buffer around the line features that are not within the 

associated one-hot SWCD layer. Any pixels within a 2.5-m 

buffer around the network features that were excluded through 

the variable-buffer process are re-added into the reference raster 

dataset to retain connectivity as represented in the vector 

version of the reference flow network. Subsequently, pixels 

within a raster version of the reference hydrography polygons 

are included in the rasterized reference network pixels to form 

the Boolean reference raster dataset for a watershed. 

 

The traditional flow-routing and other geomorphometric 

techniques used to collect the vector reference hydrography 

from the IfSAR are sensitive to terrain and vegetation 

conditions and workflow parameterizations, which may produce 

variable results. In fact, the reference hydrography for this study 

represents initial efforts to derive hydrography from IfSAR 

data, and therefore the quality of the reference data is likely 

inadequate in places. Consequently, a masked reference layer is 

generated to filter likely errors in the reference data, and it is 

 

 
Figure 6. (a) Section of a masked reference dataset with nulled 

water values that are excluded from accuracy assessment, and  

(b) Maxar 0.5-m resolution satellite image data of the same 

area. 

 

used to form a supplementary, more optimistic estimate for 

model prediction accuracy. This masked reference dataset 

consists of the reference raster dataset excluding land (non-

water) pixels that are likely water and water pixels that are 

likely land (Figure 6). Land pixels that are likely water are 

found in slope-derived depression areas and/or areas with pixels 

having SWCD values that are larger than the second derivative 

threshold (Figure 5). Water pixels that are likely land are pixels 

with SWCD values that are smaller than the mode threshold 

(Figure 5). Excluded pixels are not counted in the masked 

accuracy tests. 

 

 

2.3 Transfer Learning 

Knowledge from the base U-net model that was trained on the 

base model study area is transferred to a U-net model for the 

target 74-HU12 study area. Deep neural network models 

applied to natural image datasets tend to learn standard or 

general features in the first layer for different datasets, training 

objectives and cost functions, and features learned in the last 

layer are specific to the dataset and task (Shirokikh et al., 2020; 

Yosinski et al., 2014).  For this study, we transfer the base 

model to the target area by first importing the base models’ 

weights and freezing the last two layers (classifier part) while 

training the model with the training samples from the target area 

using a standard 0.0001 learning rate. The general knowledge in 

the weights should enable the model to train quickly with less 

training data. After the general feature training, all layers are 

unfrozen and retrained with a substantially reduced learning rate 

(0.000001) to refine the model to the target domain.  

 

Training levels for the transfer learning models are chosen to 

assess whether model prediction accuracy decreases with 

distance from training areas. Eight levels of training are tested 

for the transfer learning models: four use 1000 56x56-pixel 

sample patches per watershed, and the second four use 4000 

56x56-pixel patches per watershed. Model 1 uses only one 

watershed for training, which is labelled number 1 in Figure 7. 

Model 2 uses the two watersheds for training that are labelled 1 

and 2 in Figure 7. Likewise, models 3 and 4 respectively use the 
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Figure 7. Vector reference hydrography with the four training 

watersheds numbered for the target study area domain. 

 

 

first three and four labelled watersheds in Figure 7 for training. 

Thus, two versions of the four models are trained: one version 

using 1000 patches per watershed, and the second version with 

4000 patches per watershed. The 56x56-pixel sample patches 

are selected, distributed, augmented, and implemented with the 

same proportions as applied for the base model sample design. 

 

2.4 Training from Scratch 

In training from scratch, the U-net model is trained using the 

same reference and input data layers as used for the transfer 

learning models. However, no weights are transferred from the 

base model, and no layers are frozen. Each model is trained 

from scratch using the same sample window patches and 

augmentations that were used for the transfer learning tests. All 

eight levels of training that were used for transfer learning tests 

are also used for the training from scratch tests to provide direct 

comparisons with the transfer learning results.  

 

 

 
 

Figure 8. Distribution of 11 training watersheds in the target 

study area that are used for a best training from scratch model. 

 

 

 

In addition, a U-net model is trained on the target study area 

with the same level of training that was used for the base model. 

Eleven of the 74 watersheds in the study area are used for 

training this model (Figure 8), each with 4000 56x56-pixel 

sample patches of which 1600 are evenly distributed over water 

and non-water areas and the remaining 2400 patches are 

generated from augmentations as was done for the base model. 

The eleven training watersheds represent about 15 percent of 

the target study area and are distributed over the study area as 

was done for the base model (Figure 8). This model should 

provide a reasonable estimate of a best possible training from 

scratch model with prediction results that are similar to the base 

model. 

 

2.5 Model Accuracy Tests 

For each model, test watersheds are the non-trained watersheds. 

Precision, recall, and F1-scores are averaged for all training 

watersheds and for all test watersheds for each level of training. 

To determine if the distance from training data affects transfer 

learning accuracy, the distance between the centroid of each test 

watershed and the centroid of the training watershed is 

determined, and the F1-scores of test watersheds are plotted 

against distance from training centroid. 

 

Neural network modelling is implemented through TensorFlow 

and Keras (https://code.usgs.gov/aduffy/geoflow/-

/tree/singleres), and data processing is completed on a 12-node 

Linux cluster or through GPU nodes on the USGS Tallgrass 

computing facilities (https://hpcportal.cr.usgs.gov/hpc-user-

docs/Tallgrass/Overview.html). 

 

 

3. PRELIMINARY RESULTS AND DISCUSSION 

F1-scores shown in Figure 9 summarize accuracy results for the 

base model. F1-scores for the training watersheds range from 64 

to 89 percent and average 77 percent. F1-scores for training 

watersheds determined from the filtered (masked) reference 

data range from 68 to 95 percent and average 83 percent. For 

the test watersheds, unfiltered F1-scores range from 52 to 90 

percent and average 72 percent, and masked F1-scores range 

from 57 to 95 percent and average 78 percent.  Accuracy only 

diminishes about 5 percent on average between the training and 

test watersheds, indicating that the model is well trained and 

provides stable results for the base model study area.  

 

 
 

Figure 9. F1-scores for the base model study area summarized 

for training and test watersheds based on unfiltered and filtered 

(masked) reference data. 
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 a 

b 

 

Figure 10. Example of typical hydrography predictions from the 

base model (a), and the reference vector hydrography (b). 

 

An example of typical raster-based hydrography predicted for a 

section of the base model study area is shown in Figure 10, 

along with the associated reference hydrography. Model 

predictions are quite accurate for large waterbodies and wider 

stream features. The predictions show many small waterbodies 

or depressions in the flood plain area. Specifications for the 

collected reference data (Archuleta and Terziotti, 2020) 

prohibits collection of lake/pond features that are less than 30 m 

along the shortest axis or less than 0.4 hectare (about 160 5-m 

pixels). The precision, or level of detail of the reference 

waterbody features limits both the ability to assess the quality of 

predictions and to train models to find small waterbody features. 

Filtering small clumps of predicted water pixels can eliminate 

much of these over-extracted features, but it can also eliminate 

sections of thin drainage channels that are not well connected. It 

is also noted from Figure 10 that some network features are not 

predicted or are not well connected, particularly in the low relief 

flood plain area with many small pond-like depressions. Low 

relief areas with many depressions, wetlands and small drainage 

channels are typical conditions where the U-net models fail to 

provide adequate predictions. Further research would be useful 

to address these problem areas. 

  

Transfer learning accuracy results will be summarized at the 

conference, along with a comparative assessment with the base 

model and training from scratch predictions. The level at which 

transfer learning prediction accuracy deteriorates with distance 

from training data will be a key characteristic limiting the 

usability of this approach. The further transfer learning 

solutions can be accurately implemented without additional 

training data the more cost effective the solutions will be. 

 

 

4. CONCLUDING REMARKS 

Mapping hydrography for the state of Alaska is a daunting task, 

given its vast area and terrain that is difficult to navigate. Big 

challenges with large high-quality datasets are well suited to 

take advantage of recent advancements in neural networks 

(Usery et al., 2021). This research demonstrates the tremendous 

potential to improve and speed up mapping of surface water 

features in Alaska, and elsewhere in the world having 

challenging terrain and limited resources.  

 

Reported accuracy scores measure how well a machine can 

reproduce hydrography generated with meticulous editing by 

numerous subject matter experts. It is not a score of how well 

the surface water features are mapped by the model. The human 

factor in contemporary broad scale mapping efforts cannot be 

ignored and warrants consideration as a source of uncertainty in 

the related accuracy metrics. How well the maps fit what is on 

the ground can only be definitively confirmed by being on the 

ground at any given point in time, as hydrologic conditions are 

constantly in flux. Thus, the work here could be used as an aid 

to human cartographers in their efforts to interpret what is 

important to the map user.  

 

This work could also benefit change detection efforts. As new 

and better elevation data are collected, automated strategies 

such as the model presented here could be used to identify 

regions with significant changes in surface water distribution. 

This type of automation would be valuable to maintain an 

accurate national map over time and help address the numerous 

challenges that society faces related to hydrology. 

 

 

DISCLAIMER 

Any use of trade, firm, or product names is for descriptive 

purposes only and does not imply endorsement by the U.S. 

Government. 
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