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ABSTRACT:  

 

American Viticultural Areas are wine appellation areas in the United States formally and legally defined by the US Alcohol and 

Tobacco Tax and Trade Bureau (TTB) through a petition process and are used in marketing wine. The TTB’s petition process is 

intended to define areas containing unique environmental conditions. In this paper, I investigate how similar AVA boundaries are in 

their environmental characteristics though a hierarchical cluster analysis, using the environmental variables required to be described 

in the petition process. The AVAs fell into six groups, driven largely by their physical features such as topography, elevation, or 

location on a coastline, rather than into geographic clusters. 

 

 

1. INTRODUCTION 

 

Legally defined appellation areas are used by governments 

throughout the world to demarcate geographic areas that produce 

agricultural products, such as wine, cheese, or preserved meats, 

with a specific quality or set of characteristics. In the United 

States, the American Viticultural Areas (AVAs) define wine 

growing areas that are distinctly different from others. These 

boundaries are created by the US Alcohol and Tobacco Tax and 

Trade Bureau (TTB) through a legal process and the definitions 

are published in the United States Federal Register, in narrative 

form, defined using United States Geological Survey (USGS) 

topographic maps for their landmarks. TTB requires all petitions 

to include evidence the climate, geology, soils, physical features 

(such as topography and water bodies), and elevation within the 

proposed boundary are distinct from the area around the 

proposed AVA (United States Bureau of Alcohol, Tobacco & 

Firearms, 1980).  

 

AVA boundary definitions can impact the marketability of the 

wine produced there. AVA boundaries designed with a distinct 

set of environmental factors, has more appeal for use in 

marketing. For example, creating smaller and more distinct 

AVAs in Oregon’s Willamette Valley presents an advantage in 

pricing over more general AVAs (Gokcekus and Finnegan, 

2017), as do the smaller AVAs contained within the larger Napa 

Valley AVA (Keating, 2020). Tobias and Myles (2022) found 

that the large area and varied environmental conditions present 

inside the Sierra Foothills AVA made the boundary less 

culturally significant and less useful for marketing than some of 

the nearby, more specific AVAs. While classifications of wine 

and wine-growing areas are a social construct, they, nonetheless, 

confer and define power and are a tool to differentiate social 

standing amongst competing wine regions (Zhao, 2005). AVAs 

may, however, have limited use in regions where the market and 

tourist traffic do not coincide with preferred growing regions 

(Myles, Tobias, and McKinnon, 2021).  

 

Exploring the environmental conditions inside of an appellation 

area with a hierarchical cluster analysis is a useful way to better 

understand the similarities between different boundaries. This 

exercise has not been published for the US’ AVAs, nor does it 

seem to have been performed for appellation areas of any 

product, perhaps because of a lack of openly available spatial 

boundary data. However, hierarchical clustering has been used 

to differentiate appellation areas of olive oil (Rial and Falqué, 

2003) and cheese (Solís-Méndez, Estrada-Flores, and Castelán-

Ortega, 2013) based on characteristics of the products made 

inside a given boundary. 

 

The TTB’s process of proposing and accepting AVA boundary 

definitions is intended to ensure the creation of boundaries with 

a unique set of environmental conditions. Using datasets 

defining environmental characteristics defined by the TTB as a 

necessary part of the petition text, such as soils, climate, and 

elevation, this investigation seeks to understand how the 

characteristics present within the AVA boundaries are similar to 

one another. The goal of this analysis is to explore the similarities 

between environments contained in AVAs based on the 

definition of an AVA as stated by the TTB and determine if this 

definition produces areas of unique characteristics. 

 

 

2. METHODS 

 

2.1 Data  

 

For the AVA boundaries, I used the AVA Digitizing Project 

dataset coordinated by UC Davis which was created by digitizing 

each AVA’s boundary narrative onto the USGS topographic 

maps described in the legal documents. At the time of analysis, 

the dataset contained 261 boundaries. The data is open, and the 

methods are well documented and repeatable. For each 

boundary, the dataset includes attributes including an identifier, 

the official name of the AVA, any synonyms for the name, the 

dates the AVA officially was recognized, the start and end date 

for the given polygon, who petitioned to define the AVA, which 

TTB staff member wrote the official documents, the list of 

approved maps, the list of maps used to digitize the boundary (to 

record any necessary substitutions), and the official boundary 
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description (American Viticultural Areas Digitizing Project 

Team, 2022), however, for this analysis, I only used the 

geometry (spatial boundary) data. The dataset is stored in 

geojson format in a publically available GitHub repository and 

updated as AVAs are created or amended. In addition to the 

AVA boundaries, this analysis used data from the PRISM 

Gridded Climate Data (PRISM) and POLARIS datasets. PRISM 

is a collection of spatial climate data for the continental United 

States (PRISM Climate Group, Oregon State University, 2022). 

From the PRISM dataset, this analysis used 30-year climate 

normal for precipitation and temperature as well as PRISM’s 

elevation dataset. POLARIS is a probabilistic soil series spatial 

dataset for the contiguous United States containing many soil 

variables (Chaney et al., 2016; 2019). From this dataset, I used 

the percent sand, silt, and clay at 0-5, 5-15, and 15-30 cm depth, 

downloaded at 30-meter resolution, using the XPolaris R 

package (Moro Rosso, de Borja Reis, and Correndo, 2021). 

 

2.2 Analysis 

 

The analysis was caried out using R (R Core Team, 2022). For 

this analysis, I excluded the single AVA from Hawaii because it 

is outside the geographic extent of the PRISM and POLARIS 

datasets. Presumably, this AVA would have significantly 

different environmental characteristics, given the tropical 

climate of Hawaii, and should be considered in its own cluster.  

 

The POLARIS data was resampled to 800-meter cells to match 

the resolution of the PRISM data. For each AVA, I summarized 

each environmental datasets from PRIMS and POLARIS over 

the area of the polygon, calculating the mean and the range of the 

measurements in R, to create an estimate of the central tendency 

as well as the spread of the measurements.  

 

For each attribute, the value at each AVA was assigned a z-score, 

calculated as the mean of the attribute field subtracted from the 

value and divided by the standard deviation of the field. This was 

done to normalize the data and reduce the effect of differing 

scales of measurements (for example, depth of precipitation 

compared with temperature in degrees Celsius).  

 

To assess how similar any given AVA is to other AVAs, I 

performed a hierarchical clustering analysis using R’s hclust() 

hierarchical clustering function. This tool uses a dissimilarity 

matrix to assign each polygon to a hierarchical series of groups 

based on how similar (or dissimilar) each polygon is to each 

other. The advantage of hierarchical clustering is the output that 

allows investigators to see the structure of the data (Abdolreza 

Eshghi et al., 2011). The results can be displayed in a 

dendrogram to visualize the structure of the classes produced by 

the hierarchical cluster analysis. The classes can also be used to 

create a map of the AVAs to help interpret the groups. The full 

code for this analysis is available in the author’s GitHub 

repository (Tobias, 2022). 

 

To ease interpretability, I chose to cut the dendrogram into a 

relatively small number of groups, but because of the visible 

structure of the dendrogram, it is still possible to understand 

relationships among the leaves at other levels of similarity. The 

goal was to strike a balance between specificity and regionality. 

Making many groups creates fewer sites in each group, and 

perhaps it would be easier to find commonalities this way, but 

having many small groups reduces the potential to identify 

regional patterns. Ultimately, the dendrogram allows us to see 

the relationships between sites at multiple scales. 

 

 

 
Figure 1. Dendrogram 
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Figure 2. Maps of AVAs in each group  

3. RESULTS 

 

The analysis produced a hierarchical set of clusters that can be 

visualized as a dendrogram to show how similar each AVA to 

the others (Figure 1). Cutting the dendrogram at a height of about 

11 produces six clusters, a good number of groups to understand 

in a geographical representation (Figure 2). The membership of 

each group is listed in Table 1. A heatmap illustrates the 

relationship between the sites and the environmental 

measurements (Figure 3). 

 

In the first group (Figure 1), the range for soil variables is high, 

meaning the measurements for soil variables has a fair degree of 

variation within the boundary. They generally have a low mean 

sand content and are higher in silt. Given the large area of these 

boundaries, the temperature ranges of this group is surprisingly 

low as larger areas have a greater potential for variability. The 

mean temperature is also consistently low across the group. The 

mean precipitation for this group is also low – these are fairly dry 

AVAs – but the range of the precipitation measurements is 

somewhat high meaning there is variation in the precipitation 

levels within the polygons. The mean elevation of these AVAs 

is low, but the range is variable across the group meaning some 

AVAs have larger differences in elevation but others are flat. The 

second group (Figure 1) has high temperature ranges and 

moderate mean temperature. The members of this group are 

moderate to high range in precipitation, but a mix of low and 

high mean precipitation. Both the elevation range and mean is 

highly variable in this group, which is consistent with their 

geographic location in and on the edge of mountainous areas. 

This group can be subdivided based on soil characteristics. 

Group 1A has larger ranges of soil characteristics, and lower 

mean silt. Group 1B generally has fairly balanced soils, if not 

slightly higher in clay, but ranges of soil factors are moderate. 

Group 3 (Figure 1) has a large number of AVAs, and, like Group 

2, can also be split by soil variables. Group 3A has higher mean 

silt, and group 3B has higher mean clay, but the group as a whole 

has low mean silt. The range of the soil variables is inconsistent 

across the whole group. Group 3A has a higher range in silt while 

3B has higher range in clay. Group 3A has low temperature 

means and ranges, while 3B has high temperature means and 

ranges. For the group as a whole, the precipitation range is 

moderate to high and the mean is variable across the group. Mean 

elevation is low to moderate and the ranges in elevation are also 

moderate. The fourth group (Figure 1) has high mean sand, and 

a moderate range for soil characteristics in general. The group 

has a low range in temperature with low to moderate mean 

temperatures, as well as higher mean precipitation and moderate 

range in precipitation. This group has low mean elevations and 

low range in elevations. The fifth group (Figure 1) has low range 

in soil variables, probably because these are rather small areas. 

These soils are a balanced mix of sand, silt, and clay. The group 

has moderate to high mean temperatures with variation in the 

temperature ranges as well as high mean precipitation and the 

range in precipitation is moderate. This group is at mid-level 

mean elevations with some higher elevations and moderate 

ranges in elevation. The sixth group (Figure 1) has the highest 

mean sand content and fairly low mean clay content. The range 

of the soil variables is low to moderate, and is particularly low 

for the clay measures. There are moderate range in temperature 

and variability in mean temperature as well as low mean 

precipitation, moderate range in precipitation and consistent
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Group 1 
   

Arkansas Mountain Mississippi Delta Rogue Valley Wisconsin Ledge 

Central Coast North Coast San Francisco Bay Yakima Valley 

Columbia Valley Ohio River Valley Snake River Valley 
 

Indiana Uplands Ozark Mountain Southern Oregon 
 

Loess Hills District Puget Sound Upper Mississippi River Valley 
 

Group 2 
   

Subgroup 2A 
   

Antelope Valley of the 

California High Desert 

Mesilla Valley Santa Clara Valley Texas High Plains 

Champlain Valley of New York Middle Rio Grande Valley Santa Cruz Mountains Texas Hill Country 

Eagle Foothills Mimbres Valley Santa Maria Valley Texoma 

Fredericksburg in the Texas 

Hill Country 

Mokelumne River Santa Ynez Valley Upper Hudson 

Grand Valley Monterey Sonoma Coast Verde Valley 

Lodi Paso Robles South Coast Willcox 

Madera Petaluma Gap Tehachapi Mountains 
 

    

Subgroup 2B 
   

Adelaida District Dry Creek Valley Pacheco Pass San Miguel District 

Alexander Valley Edna Valley Paicines Santa Lucia Highlands 

Alisos Canyon El Dorado Paso Robles Estrella District Santa Margarita Ranch 

Alta Mesa El Pomar District Paso Robles Geneseo District Sierra Foothills 

Appalachian High Country Escondido Valley Paso Robles Highlands District Sloughhouse 

Applegate Valley Fountaingrove District Paso Robles Willow Creek 

District 

Sonoita 

Arroyo Grande Valley Hames Valley Potter Valley Sonoma Valley 

Arroyo Seco Inwood Valley Red Hills Lake County St. Helena 

Ballard Canyon Kelsey Bench-Lake County River Junction Sta. Rita Hills 

Bennett Valley Knights Valley Russian River Valley Stags Leap District 

Calistoga Malibu Coast San Antonio Valley Templeton Gap District 

Capay Valley Mendocino San Benito Texas Davis Mountains 

Chalk Hill Monticello San Bernabe Trinity Lakes 

Clear Lake Mt. Veeder San Juan Creek West Elks 

Covelo Napa Valley San Lucas 
 

Creston District Northern Sonoma San Luis Obispo Coast 
 

    

Group 3 
   

Subgroup 3A 
   

Altus Finger Lakes Laurelwood District Shawnee Hills 

Augusta Grand River Valley Lehigh Valley Shenandoah Valley 

Catoctin Hermann Linganore The Burn of Columbia Valley 

Cayuga Lake Hudson River Region Middleburg Virginia Umpqua Valley 

Central Delaware Valley Kanawha River Valley Niagara Escarpment Walla Walla Valley 

Chehalem Mountains Lake Erie North Fork of Roanoke Warren Hills 

Cumberland Valley Lake Wisconsin Ozark Highlands Willamette Valley 

Elkton Oregon Lancaster Valley Seneca Lake 
 

    

Subgroup 3B 
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Big Valley District-Lake 

County 

Lamorinda Oak Knoll District of Napa 

Valley 

Solano County Green Valley 

Clarksburg Lewis-Clark Valley Oakville Suisun Valley 

Coombsville Livermore Valley Red Hill Douglas County, 

Oregon 

Tracy Hills 

Cosumnes River Los Carneros Ribbon Ridge Tualatin Hills 

Dundee Hills Lower Long Tom Rutherford Van Duzer Corridor 

Dunnigan Hills McMinnville Salado Creek Yamhill-Carlton 

Eola-Amity Hills Merritt Island San Ysidro District Yountville 
    

Group 4 
   

Cape May Peninsula Leelanau Peninsula Outer Coastal Plain Virginia’s Eastern Shore 

Eastern Connecticut Highlands Long Island Southeastern New England Western Connecticut Highlands 

Fennville North Fork of Long Island Tip of the Mitt 
 

Lake Michigan Shore Northern Neck George 

Washington Birthplace 

Virginia Peninsula 
 

    

Group 5 
   

Anderson Valley Eagle Peak Mendocino County Manton Valley Sonoma Mountain 

Atlas Peak Fair Play McDowell Valley Spring Mountain District 

Ben Lomond Mountain Fiddletown Mendocino Ridge Swan Creek 

Benmore Valley Fort Ross-Seaview Moon Mountain District 

Sonoma County 

Upper Hiwassee Highlands 

California Shenandoah Valley Green Valley of Russian River 

Valley 

North Yuba Wild Horse Valley 

Chiles Valley Guenoc Valley Palos Verdes Peninsula Willow Creek 

Cole Ranch Haw River Valley Pine Mountain-Cloverdale Peak Yadkin Valley 

Crest of the Blue Ridge 

Henderson County 

High Valley Redwood Valley York Mountain 

Dahlonega Plateau Howell Mountain Rockpile Yorkville Highlands 

Diablo Grande Isle St. George Rocky Knob 
 

Diamond Mountain District Loramie Creek Saddle Rock-Malibu 
 

Dos Rios Malibu-Newton Canyon Seiad Valley 
 

    

Group 6 
   

Alexandria Lakes Columbia Gorge Los Olivos District San Pasqual Valley 

Ancient Lakes of Columbia 

Valley 

Cucamonga Valley Martha's Vineyard Sierra Pelona Valley 

Bell Mountain Goose Gap Mt. Harlan Snipes Mountain 

Borden Ranch Happy Canyon of Santa 

Barbara 

Naches Heights Squaw Valley-Miramonte 

Candy Mountain Horse Heaven Hills Old Mission Peninsula Temecula Valley 

Carmel Valley Jahant Ramona Valley The Hamptons Long Island 

Chalone Lake Chelan Rattlesnake Hills The Rocks District of Milton-

Freewater 

Cienega Valley Leona Valley Red Mountain Wahluke Slope 

Clements Hills Lime Kiln Valley Royal Slope White Bluffs 

 

Table 1. AVAs in each group 
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Figure 3. Heatmap illustrating the relationship between the sites and the environmental measurements. 

 

 

across the group. These AVAs generally have a moderate range 

and mean elevation. 

 

4. DISCUSSION 

 

No single environmental measure (or related group of measures) 

seems to be driving the six groups defined in this analysis. In 

some cases, groups can be explained by their geographic 

distribution, but more often, the AVAs in a particular group may 

contain similar features such as rivers or mountains but are not 

necessarily related geographically. Some of the groups have a 

regional distribution, but region or location does not seem to be 

a major driver of the groups; neighboring AVAs can end up in 

different groups. The heatmap (Figure 3) indicates that no two 

AVAs are identical in their environmental conditions and these 

measures vary quite a bit between boundaries. Group 1 contains 

large boundaries but comprises a small number of AVAs. Their 

position on rivers or lakeshores explains their low elevation with 

silty soils. The AVAs in Group 2 are mostly situated west of the 

Mississippi River, with the exception of four AVAs. Generally, 

these are higher elevation AVAs. They correspond with 

mountainous or hilly areas. Group 3 is a mix of large and small 

AVAs distributed in the northern half of the country in valleys 

or other low elevation areas. Group 4 is the most specific groups 

of AVAs formed in this analysis. These are coastal (ocean and 

great lakes) AVAs in the northeast. Their locations on the coast 

explains their environmental measures. Group 5 has a split 

geographic distribution. These are small AVAs in foothill areas 

in California and the southern Appalachian Mountains. Group 6 

is small AVAs in lower elevation areas. These are mainly in the 

west coast states, California, Oregon, and Washington, but also 

contains members scattered across other states. 

 

It is clear to anyone who is familiar with the official AVA 

boundary descriptions that other factors aside from the 

environmental conditions can be and are used to define the 
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boundaries of AVAs. Tobias & Myles (2022) explore this 

concept in California’s Sierra Nevada region. It is evident from 

the boundary descriptions of individual AVAs that use human-

created features such as roads, buildings, or property lines in 

their descriptions rather than natural features such as rivers and 

lines of topography that not all AVAs are defined with a focus 

purely on environmental conditions (Approved American 

Viticultural Areas, 2022). In spite of this, the boundaries do 

create a unique set of environmental conditions, if not truly 

meaningful with respect to environmental conditions. How to 

test for that will have to be left to future work. 

 

This analysis represents a complex set of environmental 

conditions with a discrete set of variables, which cannot 

completely describe all of the factors and interactions between 

those factors. For example, a low mean or range of precipitation 

does not necessarily mean low soil moisture availability. Clay 

soils hold moisture better than sandy soils and water may be 

available from other sources like surface water, groundwater, or 

irrigation. This analysis also does not account for every possible 

variable. For example, it does not account for soil characteristics 

such as rocky soil or soil chemistry, nor does it account for 

variables that might help explain plant vigor such as degree days 

or solar radiation. These were excluded because they do not 

address the TTB’s suggested variables for consideration in 

forming an AVA. Tonietto and Carbonneau (2004) use more 

sophisticated environmental measures more closely related to 

growing conditions to describe the climate of vineyards. Using 

measures like these in a hierarchical classification could produce 

a more robust set of groupings aligned more closely with the 

growing conditions experienced by the grapes and those that are 

important factors for quality fruit production. This analysis could 

also be useful at different geographic scales. For some markets, 

AVAs may not matter as much as other geographic description. 

In some places, the region or county of origin for the wine is 

more important (Atkin and Johnson, 2010) so repeating this 

analysis at the regional or county level could be useful. Clearly 

there is room for future work in this vein of research. 

 

 

5. CONCLUSIONS 

 

Investigating the relationship between the AVA boundaries is an 

important exercise. With the availability of the AVA boundaries 

as a geographic dataset, we are now able to combine this data 

with other existing open datasets to better understand the 

relationship and differences between these areas. All of the 

datasets used in this analysis are freely available and 

demonstrates not only the usefulness of the AVA Digitizing 

Project dataset but also the depth of the work possible with open 

data.  

 

The TTB’s AVA designation process does create boundaries 

containing a unique profile of environmental conditions, as 

called for in their published legal process. The AVAs can be 

grouped into clusters of similar boundaries, most of which 

exhibit a low degree of similarity. In this investigation, I have 

not addressed the concept of terroir, as this pertains to the 

environmental conditions experienced by the grape vines (van 

Leeuwen, 2022), of which there are better measures and indexes 

to quantify these, but rather, I have addressed the measures 

mandated by the TTB. The importance of this assessment with 

respect to the product created and the concept of terroir remains 

to be established. 

 

Ultimately, this research could be the start of a larger body of 

work enabling researchers to interrogate the underlying concept 

of terroir and the usefulness of AVAs as a marketing tool. 

Additional work could include quantifying the use of AVA 

designations on wine labels as a measure of perceived 

importance of each AVA boundary. Additionally, it would be 

interesting to consult an expert in the characteristics of wine from 

the United States to ascertain if the groups defined in this 

research corresponded with similar characteristics in the wines 

produced in these AVAs. 
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