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ABSTRACT:

TU Wien’s flood mapping algorithm, used for global operations, utilizes harmonic functions to model the seasonal behavior of
backscatter to improve flood classification. In earth observation (EO), temporal harmonic models have been used in various scen-
arios for vegetation and water mapping in the optical and, recently, synthetic aperture radar (SAR) domains. These models condense
EO time series stacks to a few Fourier coefficient images that capture seasonal variability, allowing for variable estimation for each
day of the year. TU Wien’s harmonic parameters consist of these coefficients plus the regression standard deviation and number of
observations. However, generating harmonic models at large scales and high resolution presents significant logistical and technical
challenges. Particularly for SAR, which requires special handling due to acquisition geometry considerations, implementation on a
datacube infrastructure is necessary for agile filtering in metadata, temporal and spatial dimensions. In this work, we highlight our
harmonic parameter dataset and our software stack of loosely coupled Python packages, which were deployed in a high-performance
computing environment to generate these parameters globally.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) backscatter is adept in differ-
entiating standing water due to its low signal compared to most
non-water surface cover types. However, the temporal trans-
ition from non-water to water is critical to identifying floods.
Hence objects with permanent or seasonally low backscatter
become ambiguous and difficult to classify. TU Wien’s flood
mapping algorithm utilizes a pixel-wise harmonic model de-
rived from a Sentinel-1 SAR backscatter datacube [2] at 20 m
spatial sampling to account for these patterns. Designed to be
applied globally in near-real-time (NRT) [10], the method ap-
plies Bayesian inference on Sentinel-1 SAR backscatter data in
VV polarization. In this method, the harmonic model generates
a non-flooded reference distribution, which is then compared
against a flooded distribution to identify flooded pixels within
incoming Sentinel-1 scenes.

It is critical for flood mapping workflows, regardless of methods
used, to identify reasonable non-flooded backscatter references
to distinguish floods from seasonal or permanent inundation.
Selecting a previous non-flooded image is an option but is prob-
lematic in some cases e.g., long term floods. Another option is
to leverage time-series stacks to generate a proxy. Measures of
central value such as mean or median are reasonable for areas
with slight seasonal variance. However, the majority of the
globe show pronounced seasons. Alternatively, moving win-
dow versions of such metrics, e.g., rolling three-months-mean,
while simple in theory, execution, and seasonally adept, can
be resource-intensive, both in recurrent processing and storage.
This concern is exacerbated in a global context and when deal-
ing with SAR geometry effects. With this in mind, harmonic
(least squares) regression modelling of backscatter time series
∗ Corresponding author.

was considered for our TU Wien flood mapping algorithm. Har-
monic models act as a smoothened proxy for the measurements
in the time series, thus allowing for a seasonally varying backs-
catter reference to be estimated for any given day-of-year using
a few pre-computed coefficients.

1.1 Harmonic models in earth observation

In earth observation (EO), harmonic models were mainly rel-
evant for vegetation applications in the optical domain so far,
e.g., NDVI time series fitting. Harmonic regression models
have been shown to effectively capture time-dependent signal
patterns from satellite data. This approach assumes seasonality
in signal patterns that could be broken down to sinusoidal com-
ponents attributed to annual, bi-annual, and minor time scale
phenomena. One of the most demonstrated use cases of this
approach for optical imagery is change detection in vegeta-
tion dynamics [? 5]. Others have explored the direct use of
harmonic coefficients as parameters to explain and correlate to
time-dependent phenomena [8]. Moreover, newer studies show
a combination of optical time-series indices and SAR backs-
catter harmonic parameters improving on this method [14, 9].
The use of SAR data here builds upon the concept that seasonal
variations are mainly attributed, but not limited to soil mois-
ture and vegetation dynamics [13], that can be captured by the
backscatter time series.

On its own, SAR harmonic models have been used in mapping
inundation, and water bodies using Envisat ASAR [13, 12, 11].
These serve as the foundation to our adapted Sentinel-1 flood
mapping workflow [1]. It should be noted that investigations in
the SAR field are somewhat lacking. Possible hindrances in-
clude the unique characteristics of SAR data, such as speckle
and acquisition geometry dependence leading to higher com-
plexity in handling its time-series stacks. Hence it is critical
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to have the agility afforded by datacube structures to efficiently
perform image stack manipulations such as spatial, temporal,
and metadata filtering.

1.2 Global coverage

Generating harmonic models at large scales and high resolution
presents significant logistical and technical challenges. There-
fore, harmonic modelling of remotely sensed time series is of-
ten performed on specialized infrastructures [9], such as Google
Earth Engine (GEE) [7] or other highly customized setups [17],
where the pixel-wise analysis of multi-year data requires well-
defined I/O, data chunking, and parallelization strategies to gen-
erate harmonic coefficients in reasonable time and cost. While
harmonic analysis is not new, to our knowledge, production and
application at a global scale using dense SAR time series have
yet to be implemented, let alone operationally utilized.

To prepare for a global near real-time flood mapping effort,
harmonic coefficients were systematically computed using a
global datacube organizing Sentinel-1 SAR backscatter. In the
datacube structure, individual images are stacked, allowing for
data abstraction in the spatial and temporal dimensions, making
it ideal for agile time-series analysis. Noentheless, for this ab-
straction to be realized, a rich set of software solutions is needed
to implement the 3-dimensional data model.

1.3 Objectives

In the following, we present our SAR datacube software stack
Figure 1 and its utilization to compute the aforementioned
global harmonic parameters. We use a set of portable and
loosely coupled Python packages developed by the Research
Unit Remote Sensing at the Department of Geodesy and Geoin-
formation (GEO) at TU Wien, capable of forming a global
datacube with minimal overhead from individual satellite im-
ages. The stack includes, among others, open-source packages
for:

• yeoda - for high-level data cube abstraction:
https://github.com/TUW-GEO/yeoda,

• Equi7grid - spatial reference and hierarchical tiling sys-
tem: https://github.com/TUW-GEO/Equi7Grid,

• veranda - lower-level data access and I/O:
https://github.com/TUW-GEO/veranda,

• geopathfinder - for spatial file- and folder-based
naming and handling: https://github.com/TUW-
GEO/geopathfinder, and

• medali - product tagging and metadata management:
https://github.com/TUW-GEO/medali.

2. HARMONIC PARAMETERS

Before delving into the software and workflow, we describe the
product we have produced globally and its formulation. Har-
monic models in EO literature are derived from some form of
regression of the time series measurements to that of a series
of harmonics or sinusoidal components, e.g., Fourier series de-
composition. Harmonics could be expressed either as two amp-
litudes of both sine and cosine components or one amplitude
and a phase. Apart from this, differences in their model for-
mulation are the inclusion [15] or non-inclusion [13] of a linear
trend component, and the degree of harmonics or the number of
iterations the sinusoidal components are repeated in the series,

often referred to as the k parameter. k values are usually 2 or 3;
higher k values are avoided to prevent capturing short time scale
phenomena attributed to temporary signal changes and effects
such as flooding.

In our flood mapping method, a seven coefficient formulation
was adopted [13] and is from here on referred to as our har-
monic parameters (HPARs). Our HPARs include the backscat-
ter mean and three iterations of two sinusoidal coefficients. The
trend component is neglected, and degree of (k = 3), where ci
and si represent the harmonic coefficients, σ0 is the effective
mean radar backscatter and σ̂0(t) is the estimated radar backs-
catter at time t.

σ̂0(t) = σ0 +

k∑
i=1

{
ci cos

2πit

n
+ si sin

2πit

n

}
(1)

As described in detail in [2], a non-flooded reference probab-
ility distribution function (PDF) is generated for our Bayesian
inference, where the estimated backscatter for the day-of-year
is used as the mean of the distribution. To build this PDF an as-
sumption of normality and homoscedasticity was imposed to be
able to infer the standard deviation from the time-independent
sum of square errors (SSE) of the residuals between the pixel’s
actual time-series and the estimated values (from the harmonic
model), divided by the model’s degrees of freedom (ref. Eq. 2).

std(σ0
ρ) =

√
SSE

n− (2k + 1)
(2)

Thus σ0
ρ is included along with the regression coefficients. For

quality assurance purposes, n or the number of observations is
also stored to complete our parameter set.

2.1 Product description

For the NRT flood mapping operations, these parameter sets are
stored as individual GeoTIFF files. The HPARs files are named
in consistency with our datacube’s file naming convention sim-
ilar to [1]. In the case of our HPAR processing, we utilize
the yeoda file naming convention, defined in the geopathfinder
package, which allows for files to be read and abstracted, sim-
ilar to the pre-processed datacube containing backscatter data.
For brevity, the readers are directed to the source code 1 for the
individual meta information contained in the yeoda file nam-
ing scheme. This naming scheme includes placeholders for the
product name (HPARs) and parameter name encoded as fol-
lows:

• M0 - effective mean of the time series stacks, equivalent
to σ0 in Eq. 1, also called the harmonic residual in other
literature [8]

• Cn - cosine component coefficients, equivalent to ci in Eq.
1

• Sn - sine component coefficients, equivalent to si in Eq. 1

• STD - standard deviation of residual computed by Eq. 2,
a proxy for goodness of fit

• NOBS - number of observations used for the least squares
regression, also an indicator solution quality.
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Figure 1. Overview of TU Wien datacube software stack for HPAR computations.

Sample HPAR subsets for two selected regions are shown in
Figure 2 covering areas within Mexico and the United King-
dom. The M0 parameters have value ranges similar to that of
the observed backscatter scenes, while all subsequent harmon-
ics have a range of not more than -2.5 dB to 2.5 dB. In the same
figure, it can be observed that some land cover types e.g., veget-
ation and water, have distinct responses to specific parameters
where Cn parameters seem to be positively related to vegeta-
tion. In contrast, for the selected areas seasonal water changes
are related to Sn parameters. The generated four day-of-year
(DoY) expected values for the two sites also show consistency
with the documented climate for these areas, as referenced from
the work of [4]. The region of interest in Mexico in row three
shows greater variation in water as expected of a tile with a
predominantly tropical climate with a monsoon. On the other
hand, the UK tile in the temperate climate, with no dry season
and warm summer, shows larger seasonal vegetation variance.
Consistent with [8], the parameters show decreasing informa-
tion contribution as k gets larger. Thus increasing k value fur-
ther has a diminishing value, validating our k = 3 selection.

3. PRODUCT GENERATION

As previously described, generating the parameters was a signi-
ficant endeavour, requiring an extensive processing infrastruc-
ture and the software to support it. Processing of the HPAR
products was executed on the Vienna Scientific Cluster (VSC)2.
The detailed description of the pre-processing and storage infra-
structure used for the global datacube is outlined by [16]. Here,

1 https://github.com/TUW-GEO/geopathfinder/blob/master/src/
geopathfinder/naming conventions/yeoda naming.py

2 https://vsc.ac.at

we focus on the processing workflow and software interfaces.

Computing the large-scale product from the ground up required
experimentation with viable HPAR formulations, time-series
pre-processing steps, and chunking and tasking strategies.
However, direct development in an HPC environment is cum-
bersome, if not wasteful of resources. It was thus critical to be
able to perform time-series experiments across different plat-
forms while working on the same level of abstraction regard-
less of the scale in the temporal and spatial dimensions. The
initial experiments were done at small scale, both spatially
and temporally, on off-the-shelf machines being suitable for
this purpose. Once the desired formulation and strategy were
agreed upon, the development of HPC scripts was undertaken.
In this step, it was critical to simulate the expected environ-
ment of an HPC. Thus, this was performed on a cloud platform
(OpenStack3 environment) that shares the whole pre-processed
datacube storage with the HPC, minimizing issues when de-
ploying the HPC processing tasks. Through out this process,
it was crucial that our datacube access and processing meth-
ods remained consistent regardless of the platform. Hence the
need for software that can abstract datacubes from a collection
of files regardless of their location. For this purpose, we present
our software stack.

3.1 SAR datacube software stack

Interfaces of the packages and the software objects contained
are shown in Figure 3. The red classes in the diagram show
the HPC scripts driving the tasking and operation, the yellow
classes are the NumPy arrays used for the computations (xarray

3 https://www.openstack.org/
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Figure 2. Sample HPARs and day-of-year (DoY) estimates
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Figure 3. SAR datacube software stack and HPAR class diagram

classes can also replace these), while the green classes are those
from the collection of packages described herein.

Working from the pre-processed SAR backscatter datacube,
the logical entry point is through yeoda, which stands for
’your Earth Observation Data Access’. yeoda abstracts well-
structured EO data collections as a datacube, making high-level
operations such as filtering and data loading possible. This level
of abstraction is supported by the other components of the soft-
ware stack, which address the organization and lower-level ac-
cess to individual files. This structure is shown in Figure 3,
where an EODataCube — our basic datacube class — plays
a central role in the software ecosystem where it requires a
defined projected grid system (e.g., Equi7Grid), low-level data
readers and writers (e.g., GeoTiffFile), file naming (e.g., Yeoda-
FileName) and file path/folder tree definitions (e.g., SmartFile-
path/SmartTree). In the context of the HPAR processing, the
GeoTIFF file format was selected for input and output. How-
ever, yeoda is also capable of reading and writing NetCDF data.

From a data storage perspective, our SAR backscatter datacube
is simply a collection of raster datasets in GeoTIFF file format
co-registered in the same reference grid. To deploy for large-
scale operations, a well-defined grid system must deal with
high-resolution raster data. A tiling system fulfilling this re-
quirement is the Equi7grid, based on seven equidistant contin-
ental projections found to minimize raster image oversampling
[3]. Equi7grid hierarchy is composed of continental grids and
subsequent tiles contained therein. Here several tile definitions
are possible. In the case of the NRT flood mapping, ’T3’ tiles
composed of 15000 x 15000 pixels with 20 m pixel spacing are
used. Interacting with this tiling system on an abstract level is
possible via our in-house developed Equi7Grid package.

The tiling system follows a hierarchy of directories to man-
age the datasets on disk. Moreover, for individual files, a pre-
defined naming convention is applied to indicate spatial, tem-
poral, and ancillary information from product metadata that be-
comes transparent to yeoda. This setup of customizable file
naming schemes is easily managed through the geopathfinder
package. We utilize the so called YeodaFileName class, which
pre-defines a set of file name entries and their respective en-
coders and decoders, as described in the product definition for
this endeavour. However, other file naming schemes previously
utilized for other projects are also available as subclasses of the
SmartFilename class being extensible to match processing and
naming requirements.

In the context of the HPAR computations, easy filtering and
subsetting of the SAR datacube was an integral functionality
provided by yeoda. The actual HPARs processing task was
subdivided into multiple HPC jobs on the VSC based on the
presented tiling and folder hierarchy given by the Equi7Grid.
For the temporal domain modelling to work, data is further split
into manageable chunks. Thus only one tile per HPC node was
allocated. yeoda was then used to filter the datacube by vari-
ous spatiotemporal dimensions, and also dimensions including
metadata information on the SAR viewing geometry, i.e. the
relative orbit.

On the lower level, a three-dimensional NumPy array of de-
coded backscatter measurements was generated by veranda
from the image stack on disk. veranda, which stands for ’vec-
tor and raster data access’, is a package that wraps input and
output functionality. Veranda aims to provide the core interface
between higher level datacubes and the data on disk. This is
intended to give performant data access for yeoda which would
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later on include parallelism in write and read access. In the
current use case, access to stacks of GeoTIFF files is currently
done via GDAL4 in the background.

Due to the depth of the datacube, further manually initiated seg-
mentation and parallelization were required at this level. Thus,
pixel-based parallelization was done using Numba5 to handle
the core least squares estimation of the measurements versus
a day-of-year array derived from image timestamps. veranda
is again used for the output operation to encode and write the
HPARs to individual files. After data quality checks, which are
done using an external package, the metadata encoding is per-
formed via medali and caps the processing. The output files
were also named and stored using the YeodaFileName conven-
tion. In this manner, the HPAR product themselves can be
abstracted as a multi-dimensional datacube and simplify sub-
sequent flood mapping computations.

3.2 HPC processing

Unlike ENVISAT ASAR data used in the case of Schlaffer’s
work [13], where acquisitions at multiple incidence angles at
a broad range allow for backscatter normalization, Sentinel-1
data is being acquired at a narrow range of incidence angles.
However, Sentinel-1 has a more systematic acquisition plan
with two satellites orbiting at regular intervals resulting in re-
turn cycles of six days in higher latitudes and 12 days near the
equator. Albeit done per orbit direction and relative orbit num-
ber, this still provides a large set of samples to which the least-
squares regression could be applied, except for a few tiles where
artefacts are observed due to the low number of samples.

The harmonic model was generated globally for each T3
Equi7grid tile as represented by its regression parameters sets.
To account for incidence angle dependence, computations were
done per relative orbit. Thus the seven parameter set, plus
standard deviation and number of observations, are stored op-
erationally per pixel per relative orbit.

A description of the HPARs generation steps that were per-
formed on the VSC, using custom Python scripts optimized
for parallelization at both tile level (inter node) and pixel-
based computation (intra node), metadata generation, and qual-
ity checking, is enumerated here:

1. tasks are distributed to multiple nodes based on predefined
jobs. In this case, jobs were started per sub-grid, where
each task can be a single tile or smaller depending on the
depth of the stack at that location

2. for each task, a datacube subset is instantiated using the
Equi7grid sub-grid (continent) and its tile name.

3. the datacube is then filtered to include only the date range
specified and VV polarized backscatter data

4. individual processes are started from subsequently filtered
datacubes per relative orbit number

5. parallel computation of harmonic regression for each tem-
poral pixel stack in the tile

6. after disregarding no data records at each pixel stack, each
backscatter measurement and corresponding timestamp
converted to a day-of-year are included in the samples

4 https://gdal.org/
5 https://numba.pydata.org/

7. least squares regression is performed at each stack, where
the number of observations is noted per pixel, and the sum
of square errors (SSE) is used to compute the standard de-
viation

8. parameters with number of observations and standard
deviations are encoded and compressed to individual
GeoTIFF files

9. quality checking is performed per file to check for I/O er-
rors or data range issues

10. metadata and log files are generated in a final step

All log files and random GeoTIFF file samples were parsed and
rechecked for consistency. Failed parameter sets were rerun
until all issues have been resolved. In all, 110,115 files for the
12,235 tile-orbit sets with a total size of 9.9 TB were generated
using data from 2019 and 2020. The spatial distribution of the
generated HPARs is shown in Figure 4 as represented by the
M0 parameter. The coverage map was cross-checked against
Sentinel-1 Global Backscatter Model (S1GBM) data that cov-
ers 96.5% of land surface outside of Antarctica [1]. It was noted
that a few tiles show artefacts indicating ill-fitting regression in
small regions in Asia, Africa, and North America, correspond-
ing areas with low Sentinel-1 data availability.

4. SUMMARY AND CONCLUSIONS

In this contribution, we described a global Sentinel-1 harmonic
parameter dataset and its computation on the VSC, using an
open-source software stack that takes hierarchically structured
tiles and provides reading, writing, and processing abstraction
as a functional datacube. With the HPAR dataset, the Sentinel-1
time series was seasonally modelled from 2019 to 2020 and
condensed to a fraction of the size of the original global backs-
catter datacube. While, for now, it is exclusively used to allow
our flood monitoring workflow to work globally in near-real-
time, other potential applications include seasonal water and
vegetation analysis.

4.1 Possible use cases

Inundation mapping is expected to be the primary use case of
the above-described dataset with the data generated in the VV
polarization. In this regard, seasonal water body mapping is an
obvious use case shown in the Mexico study site above. Aside
from the flood mapping and water body mapping potential de-
scribed, the global parameter set could have potential use for
vegetation such as forestry or change detection. However, con-
version to amplitude and phase formulation might be needed [8]
as most derived harmonic parameters use composite amplitude
or phase values. These use cases could similarly be extended in
tandem with optical images for vegetation and change detection
analysis [9, 14].

On the other hand, seasonality parameters similar to [6] derived
from time series which indicates the start of season, end of sea-
son, length of season, and amplitude could potentially be dir-
ectly extracted from the harmonic model rather than iterating
through a full time series. The harmonic model would serve
as a temporally smoothened value from observed values, thus
potentially being being easier to ue in phenological studies.
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Figure 4. Global coverage map of HPARS - M0

4.2 Software stack outlook

As described in Figure 3, the generated HPARs use the same
storage scheme and thus can also be accessed as a datacube.
The same approach was used in the ongoing NRT flood pro-
cessing, where the presented software stack is operationally ap-
plied in dedicated cloud-based platforms -—- demonstrating the
portability of the loosely coupled packages. This shows that our
software stack can be deployed on different platforms with little
to no overhead, underlining the tremendous potential of repro-
ducible datacube analysis at small or large scales. From our
experience, the stack provides the essential tools for analyz-
ing high resolution datacubes for experimental analysis to large
scale time sensitive operations. The opensource license of the
software components allows for reproduction in environments
with different filenaming, storage, and processing requirements.

As of this writing, the packages are in active development,
where improved parallelism in reading and writing of datacubes
is in the pipeline.
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