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ABSTRACT:

Earth observation (EO) data cubes have revolutionized the way large volumes of EO data can be stored, accessed, and processed.
However, users coming from application domains outside of traditional EO research still face some significant technical barriers
when querying an EO data cube with the aim to infer knew knowledge about real world entities and events. They have to interpret
EO data in order to give them meaning, which is an ill-posed problem that requires advanced expertise in the field of EO analytics.
We propose a semantic querying framework in which users query the EO data cube through an ontology, rather than accessing the
data values themselves. The ontology formalizes symbolic representations of real-world entities and events, which are mapped to
data values in the EO data cube through a mapping component formulated by an EO expert. This takes away the need for users to
be aware of the EO data and how to interpret them, and therefore lowers the technical barriers to extract valuable information from
EO data. We implemented a proof-of-concept of our approach as an open-source Python package.

1. INTRODUCTION

Data produced by remotely sensed Earth observation (EO) im-
agery are an important source of information to monitor and
understand Earth processes, and have the potential to play a key
role in achieving the Sustainable Development Goals (Kavvada
et al., 2020). In the past years we have seen a large increase
in the amount of satellites orbiting the Earth, as well as in their
technical capabilities. This has lead to a constantly growing
pool of EO data at higher temporal, spatial and spectral resol-
utions than before (Giuliani et al., 2017). Moreover, many of
them are freely and openly available to everyone.

To manage the large supply of EO data in an efficient and or-
ganized way, recent technological developments have emerged
around a central paradigm called the EO data cube (Giuliani
et al., 2019). In this approach, the EO data are assigned to a
common grid spanning the full spatio-temporal extent of the
observations, and allowing efficient coordinate-based access
(Lewis et al., 2016). EO data cubes form the backbone of
many cloud-based analysis platforms on which users can pro-
cess large amounts of EO data without having to worry about its
size and heterogeneity. This is in contradiction to traditional ap-
proaches that include downloading the imagery to ones personal
computer and processing it locally (Sudmanns et al., 2020).

Despite its success in abstracting much of the complexity re-
garding storage, management and access of EO data, users still
face some significant barriers when querying an EO data cube.
Firstly, they have to be aware of the structure of the EO data
cube in order to query it. They have to know what data layers it
contains (e.g. the different spectral bands of a satellite image),
what they are called, and where to find them.

Secondly, and most importantly, the data that they query are
not equal to information. Optical EO data are sampled reflect-
ance values from the land cover material. These values do not
∗ Corresponding author

have inherent meaning by themselves, i.e. they lack semantics.
Translating these values into information about the real world
therefore requires interpretation, bridging the so-called sensory
and semantic gaps (Arvor et al., 2019). This is not a trivial task,
because it involves reconstructing the four-dimensional phys-
ical world from two-dimensional imagery containing data that
can only describe a limited set of properties of a real-world en-
tity or event, such as its color (Sudmanns et al., 2021a).

Dodging these barriers requires advanced technical expertise in
the field of EO analytics. This is a problem especially now that
EO data has a growing pool of users that come from applica-
tion domains outside of traditional EO research (Sudmanns et
al., 2020; Wagemann et al., 2021). On top of that there may
exist an even bigger pool of potential users that could benefit
from using EO data in their application domain, but are pre-
vented from doing so because of technical barriers such as the
ones described above. They are generally experts in their ap-
plication domain, but not experts in the EO data itself. Most
of them are used to work with symbolic representations of real-
world entities and events, rather than numeric representations
of a measured property of them (Arvor et al., 2019).

Hence, we acknowledge the need for an approach that allows
to extract information from an EO data cube using symbolic
terminology. In this paper, we will propose such an approach, in
which users query an EO data cube through an ontology, rather
than directly accessing the data values themselves. We term our
approach “semantic querying of EO data cubes”, referring to
approaches with similar goals that exist in the field of relational
database management (Chokri, 2007), and building upon earlier
work by Tiede et al. (2017).

The paper is structured as follows. In Section 2, we describe
the different components of the approach and how they interact
with each other, as well as clarify the core concepts. In Section
3, we present the implementation of our approach as an open-
source Python package, accompanied with a practical example.
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In Section 4, we discuss the benefits and limitations of our ap-
proach, and give directions for future work. Finally, in Section
5 we conclude our findings.

2. CONCEPTUAL FRAMEWORK

The framework that structures our proposed semantic query-
ing approach consists of multiple components that interact with
each other. The overall idea is as follows. A user writes a re-
cipe for inference of new knowledge about the real word, in
which they refer to real-world entities and events directly by
their name. These entities and events are formally conceptual-
ized in an ontology. A mapping defines how these formalized
concepts are represented by the EO data. The EO data them-
selves are stored inside an EO data cube.

As an overarching structure, we define two conceptual domains
that span the extent of the framework. The first one is the se-
mantic domain. This is the domain of symbolic representations
abstracting the real world. The second one is the image domain.
This is the domain of numeric measurements captured from the
real world.

We also define three different roles for actors in the framework.
Each of these roles require a different type of expertise. The ap-
plication expert has expert knowledge about a specific field of
study (e.g. forestry, agriculture, urban planning) in which EO
data can be applied to gain new knowledge about the real world.
The EO expert has expert knowledge about EO data and how
to interpret them. The software expert has expert knowledge
about the design and deployment of data storage and manage-
ment systems. The roles don’t overlap, and hence, each role
can be taken on by a different person without the need for them
to also have the expertise of one of the other roles. However, it
may be that a single person takes on more than one role. For
example, an application expert may also be an EO expert at the
same time.

In the following sub-sections we describe each of the compon-
ents of the framework in more detail, define which of the con-
ceptual domains they fall into, and state which of the roles are
acting in it. In the last sub-section, we will shortly discuss how
semantically enriching the EO data cube can benefit the struc-
ture and efficiency of the framework. The full framework is
summarized graphically in Figure 1.

2.1 Ontology

An ontology is an “explicit specification of a conceptualization”
(Gruber, 1993). In practice, this means that the ontology form-
alizes semantic concepts and the relationships between them.
Semantic concepts are abstractions of entities and events that
exist in the real-world. The ontology should be agreed upon by
a community, which may contain both application experts and
EO experts.

Semantic concepts can be formalized by specifying their prop-
erties. For example: “a mountain lake (concept) has a blue color
(property) and a flat topography (property) and a high elevation
(property)”. Such a formalization can be improved by including
relationships between different concepts, in a hierarchical struc-
ture that supports the inheritance of properties. For example,
the same formalization as above can be achieved by separating
three different semantic concepts: “water (concept) has a blue
color (property)”, “a lake (concept) is water (inherited proper-
ties) and has a flat topography (additional property)”, and “a

mountain lake (concept) is a lake (inherited properties) and has
a high elevation (additional property)”.

It goes beyond the scope of this paper to provide a detailed ex-
planation of all the different forms of ontologies that exist, and
how they can be tailored to usage within the field of EO analyt-
ics. For that, we refer to the work of Arvor et al. (2019). The
gist is that the role of the ontology in our framework is to spe-
cify what the real-world entities and events of interest are and
how they are conceptualized, such that they can be queried.

It should be emphasized that in our framework the ontology op-
erates exclusively in the semantic domain. Hence, it does not
contain any terms or data belonging to the image domain. That
is, an ontology may state that “vegetation has high photosyn-
thetic activity”, but not “vegetation has NDVI larger than 0.6”.

2.2 EO data cube

The EO data cube is the component of the framework that stores
and organizes the EO data. Hence, it falls within the image do-
main of the framework. Besides the EO data themselves, the
data cube may also contain additional data layers that describe
certain properties of real-world entities or events. For example,
a digital surface model. This is the component where the soft-
ware experts act. It is their task to construct and manage the
infrastructure, or to connect to existing deployments.

There is not a single standard on how an EO data cube should
be implemented in practice. Many approaches exist, which we
refer to as different configurations of an EO data cube. Our
semantic querying framework does not put any limitations on
what the configuration of an EO data cube should be. To ensure
interoperability, it requires two standard elements to be attached
to an EO data cube of any configuration.

The first one is the layout. The layout is a repository containing
a description of the content of the EO data cube (Sudmanns et
al., 2021b). Each distinct data layer in the cube (e.g. the differ-
ent spectral bands) should be described by a dedicated metadata
object in the layout that can be indexed by a unique name as-
signed to that layer. This metadata object provides information
about the values in the layer, but also about where it can be
found inside the structure of the cube. The layout may have a
nested structure that formalizes a categorization of the data lay-
ers. For example, a category “reflectance” could group together
different spectral bands of a satellite image.

The second one is the retriever. The retriever is an interface that
exposes the content of the EO data cube to the other compon-
ents in the querying framework. Given a textual reference to
a data layer, it is able to retrieve the corresponding data values
from the cube, and return them in a three-dimensional, spatio-
temporal array. The exact implementation of the retriever de-
pends on the configuration of the EO data cube, but the inputs it
accepts and the output it returns does not. Hence, the retriever
serves as a standardized API that allows other components of
the framework to access the content of the EO data cube inde-
pendent from its configuration.

2.3 Mapping

The mapping component of the framework forms the connec-
tion between the semantic domain and the image domain. This
is where the EO experts act. They bring in their knowledge by
formulating rules that map semantic concepts formalized in the
ontology to data values stored in the EO data cube.
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The rules in the mapping should support computational infer-
ence on the pixel level. That is, for each spatio-temporal loc-
ation contained in the EO data cube, they should be able to
quantify a relation to the semantic concept. Such a relation
may be binary, stating if the concept was observed at the loc-
ation (“true”) or not (“false”). However, relations may also be
numeric (e.g. a probability that the concept was observed) or
ordinal (e.g. “likely” or “very likely” that the concept was ob-
served).

When formulating the rules of a mapping the EO expert can
specify the required data inputs through calls to the retriever of
the EO data cube, and thus, does not have to be aware of the
configuration of the cube. It is important to emphasize here that
there is no limitation to formulate rules as a function of only
the data values of the pixel to which they are applied. In order
to quantify the relations more accurately, the EO expert may
exploit all the values in the EO data cube. For example, they
may analyze spatial or temporal patterns around the location of
the pixel.

How the rules are formulated in practice depends largely on
the approach that the EO expert decides to take. This can be
entirely knowledge driven, but also hybrid approaches combin-
ing knowledge-driven and data-driven components are possible.
For example, a rule may interpret the prediction of a machine
learning classifier. Approaches can also differ in how they en-
code the formulated rules. We refer to all these different ap-
proaches as different configurations of a mapping.

Our semantic querying framework is flexible, and does not put
any limitations on what the configuration of a mapping should
be. Instead, it requires a mapping of any configuration to be
paired with a translator. The translator is an interface that ex-
poses the rules in the mapping to the other components of the
querying framework. Given a textual reference to a semantic
concept, it is able to apply the corresponding rules to the data
values in the EO data cube, and return for each pixel the quan-
tified relation with the semantic concept. We call the array it
returns a semantic array, since it contains pixel values that re-
late directly to semantic concepts. For example, if the rules that
map the semantic concept “water” formulate a binary relation,
the translation of that concept will be a semantic array contain-
ing a “true” value for each pixel at which water was observed,
and a “false” value otherwise. The exact implementation of the
translator depends on the configuration of the mapping, but the
inputs it accepts and the output it returns does not. Hence, the
translator serves as a standardized API that allows other com-
ponents of the framework to evaluate the rules in the mapping
independent from its configuration.

2.4 Query recipe

A query recipe is written by an application expert and specifies
their instructions for the inference of new knowledge about the
real world. In this recipe they reference semantic concepts, as
formalized in the ontology, directly by their name. That means
that query recipes fall entirely into the semantic domain, and
don’t contain any image domain terminology.

After referencing a semantic concept, the application expert can
specify one or more analytical processes that should be applied
to the translation of the concept (i.e. to its semantic array, see
section 2.3), in order to obtain their desired result. For example,
the application expert may be interested in counting how often a
semantic concept was observed at each location in space, during

a specified time interval. Or alternatively, obtain a time series
that shows for each time an observation was made at how many
spatial locations a semantic concept was observed.

In its essence, the query recipe allows the application expert to
query the EO data cube through the ontology, without directly
accessing the data. That means they don’t need to be aware of
the structure and content of the EO data cube, nor do they need
to have the expert knowledge to interpret the EO data. However,
they should be familiar with the content of the ontology.

2.5 Semantically enriching the EO data cube

In our framework, mappings have to span a large gap between
the symbolic representations in the ontology and the numeric
data in the EO data cube. This gap can be reduced by semantic-
ally enriching the EO data cube, meaning that one or more cat-
egorical layers are produced that offer at least a first degree of
interpretation for each observation in the cube. Such layers can
be seen as “semi-symbolic”, since they are a first step to con-
necting EO data with symbolic, semantic classes (Augustin et
al., 2019).

Essentially, this enriched structure splits the original role of the
mapping into separate phases. In the first phase, the data are
mapped to the semi-symbolic variables, which are then stored
as additional layer in the EO data cube. In the second phase,
the semantic concepts formalized in the ontology are mapped to
these semi-symbolic variables. A semi-symbolic layer could be
produced by the Satellite Image Automated Mapper (SIAM),
which implements a decision tree that assigns each observa-
tion a multi-spectral color index (Baraldi et al., 2006), or by the
automated deep learning approach of Dynamic World, which
produces descriptive land cover and land use labels for each
observation (Brown et al., 2022). The EO expert can then refer
to these indices and labels in the remaining rules of the map-
ping, and further customize them to best represent (properties
of) semantic concepts. Approaches based on other algorithms
are possible as well.

A benefit of the semantic enrichment of the EO data cube is
that it increases computational efficiency. Parts of mapping
rules that can be easily automated don’t have to be evaluated
on the fly when executing a query recipe. The benefits are
also reflected in the conceptual structure of the framework it-
self. It is particularly suitable to combine knowledge-driven
with data-driven approaches. Furthermore, the remaining rules
in the mapping component become simpler, easier to explain,
and more stable, especially when the same categorical layers
can be calculated for multiple data sources (e.g. both Landsat
and Sentinel data, as is the case for SIAM).

3. TECHNICAL IMPLEMENTATION

A proof-of-concept of our semantic querying approach is
implemented as an open-source Python package named se-
mantique. It contains functions and classes that allow applic-
ation experts to formulate their query recipes and execute them
within the bounds of a finite spatio-temporal extent, given an
instance of an EO data cube and a mapping. It also allows soft-
ware experts to create Python objects that represent an EO data
cube, and EO experts to formulate mappings. In the follow-
ing sub-sections we describe these different use-cases in more
detail. Throughout these sections we regularly refer to a prac-
tical example in which we consider an application expert in the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-503-2022 | © Author(s) 2022. CC BY 4.0 License.

 
505



Figure 1. Graphical summary of the conceptual framework and its technical implementation.

field of urban planning who wants to use EO data to monitor
urban green and blue spaces in Vienna during the summer of
2021. The example is intentionally oversimplified, in order to
keep the focus on clarifying the ideas, and not get lost in the
complexity of EO data interpretation.

The source code of semantique is released under the
Apache license and available at https://github.com/ZGIS/
semantique. The code is accompanied by extensive document-
ation including an API reference and several Jupyter notebooks,
to which we refer for more detailed examples and visualiza-
tions. The implementation is summarized in Figure 1.

3.1 Writing a query recipe

A query recipe in semantique is represented by an instance of
the QueryRecipe class. Such an object has the same structure
as a Python dictionary, with each element containing the in-
structions for a single result, indexed by the name of that result.
The starting point for the application expert using semantique is
to initialize an empty instance of a recipe. The instructions for
each desired result can then be added one by one as elements to
this object.

The instructions can be intuitively formulated by chaining to-
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gether basic building blocks in a with-do structure. The with
part of the chain is the textual reference to a semantic concept.
Such a reference can be formulated by providing the name of
the concept to the entity() or event() function, depending
on what the concept represents (i.e. a real-world entity or event,
respectively). The do part specifies one or more analytical pro-
cesses that should be applied to the array that results from the
translation of the referenced concept (i.e. its semantic array, see
section 2.3). Each of these processes is a well-defined array op-
eration that performs a single task. It is labeled by an action
word that should intuitively describe the operation it performs.
Therefore we also call these type of building blocks verbs. The
currently implemented verbs are listed in Table 1. We emphas-
ize that this is not pretending to be an exhaustive list of all use-
ful array operations, and hence, it might be extended or adapted
depending on user feedback. The verbs can be called as meth-
ods of the reference, thus forming a chain of processes. Query
recipes can be made increasingly complex by nesting multiple
processing chains into each other.

Name Description

Evaluates an expression for each pixel, e.g. an
arithmetic operation (add, multiply, ..) or a

Evaluate condition (equals, greater, ..). The operands
may include a constant (e.g. multiply by 2) or a
second array (e.g. add the pixels of two arrays).

Extract Extracts the dimension coordinates of a given
dimension as a new one-dimensional array.

Filters values based on a condition. The
condition can be evaluated by the Evaluate

verb and provided as a binary array. Only the
Filter pixels evaluated as “true” are preserved, the

others are assigned a nodata value. Besides
regular value filters the verb can also be used

for spatial filters and temporal filters.

Splits the array into distinct subsets that each
Groupby comprise a group of pixels sharing similar

coordinates of a particular dimension, e.g. each
group may correspond to a year.

Reduces dimensionality by applying a function
Reduce that returns a single value for each column

along a given dimension, e.g. a summary
statistic or a boolean.

Shift Shifts the pixel values along a given dimension
with a given offset.

Smooth Smoothes the pixel values by applying a moving
window function along a given dimension.

Table 1. Verbs for semantic arrays.

Instead of a reference to a single semantic concept, a chain
may also start with a reference to a collection of multiple se-
mantic concepts. Such collections have dedicated verbs that all
in some way combine their semantic arrays back into a single
one (see Table 2). Furthermore, verbs dedicated to single arrays

(see Table 1) may be called on a collection as well. They will
then be applied separately to each member of the collection. In
combination with the groupby verb, this allows to model split-
apply-combine structures.

Name Description

Concatenates a collection along a given
Concatenate dimension. This may either be an existing

or a new dimension.

Creates a categorical composition of a
collection. This means that a pixel being

Compose “true” in the first array of the collection
gets a value of 1 in the output, a pixel
being “true” in the second array of the
collection gets a value of 2, et cetera.

Merge Merges corresponding pixels in a collection
by applying a reducer function.

Table 2. Verbs for collections of semantic arrays.

In our example, we say that the urban planner wants to obtain
two different maps: one showing for each location in space how
much percent of the time green space was observed, and the
other showing that for blue space. However, when calculating
these percentages, they don’t want to include pixels that where
covered by clouds. A code snippet creating the query recipe
for these results is shown in Figure 2. The output is an entirely
textual object, not containing any data nor any Python code.
This makes it easily shareable and storable as a JSON file.

Figure 2. Code snippet for writing a query recipe.

3.2 Representing an EO data cube

An EO data cube in semantique is always represented by an in-
stance of a sub-class that inherits from the abstract base class
Datacube. Such an object always has a retrieve() method
that implements the retriever of the EO data cube. This flexible
structure allows software experts to write their own sub-classes
tailored to a specific EO data cube configuration they use, with
their own implementation of the retrieve() method. Any ob-
ject representing a EO data cube in semantique is initialized by
its layout, which is expected to be written by a software expert,
distributed with the EO data cube, and formatted as a JSON
file. This makes them easily shareable and storable, and easy
to load into a Python session as a dictionary. An EO data cube
representation in semantique never contains the data values of
the cube themselves. Instead, it will have some property that
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allows the retriever to access the actual storage location. How
this property looks like will depend on the configuration of the
EO data cube.

Through the Opendatacube sub-class semantique has built-in
support for EO data cubes that are deployed using the Open
Data Cube software (Open Data Cube, 2022). It contains a re-
triever that knows how to interact with the Python API of Open
Data Cube.

3.3 Constructing a mapping

A mapping in semantique is always represented by an instance
of a sub-class that inherits from the abstract base class Mapping.
Such an object always has a translate() method that imple-
ments the translator of the mapping. This flexible structure
allows EO experts to write their own sub-classes tailored to a
specific mapping configuration they use, with their own imple-
mentation of the translate() method.

Semantique formalizes its own native mapping configuration
through the Semantique sub-class. It implements a knowledge-
driven approach in which the EO expert formulates rules that
quantify binary relations between properties of semantic con-
cepts and data values. These property relations are then com-
bined with a logical “and” operator to quantify the relation for
the semantic concept as a whole. A Semantique instance has
the same structure as a nested Python dictionary, in which the
first layer of keys refer to the low-level categorization of the
semantic concepts into entities and events, the second layer of
keys refer to the names of the semantic concepts, and the third
layer of keys refer to the names of their properties.

To formulate the rules for each property, the EO expert can use
the same building blocks as made available for writing query
recipes. However, they can start a processing chain with a tex-
tual reference to a data layer in the EO data cube, rather than
to a semantic concept. Such a reference can then be directly
followed by an evaluate verb that evaluates a condition on the
data values of one or more layers. More complex rules can be
formulated by utilizing more verbs, and nesting multiple pro-
cessing chains into each other. The translator of a Semantique
instance can evaluate the formulated rules while retrieving the
required data values from a given EO data cube instance, and
merge the resulting binary arrays using a logical “and” operator.

In our example, a mapping is needed that maps the semantic
concepts “greenspace”, “bluespace” and “cloud” to data val-
ues in the EO data cube. We assume a semantically enriched
EO data cube that contains SIAM color indices as a categorical
layer (see Section 2.5). The EO expert uses this layer to map
the “color” property of the semantic concepts, which happens
to be the only property the ontology formalized for these con-
cepts. A code snippet creating the described mapping is shown
in Figure 3. The output is again an entirely textual object that
can be easily shared and stored as a JSON file.

3.4 Executing a query recipe

To execute their formulated query recipe, the application ex-
pert can call its execute() method. At this point they have
to provide a mapping and a representation of an EO data cube.
They can initialize a mapping instance of a certain configura-
tion with rules that are shared with them by the EO expert, and
a data cube instance of a certain configuration with a layout that
is shared with them by the software engineer. The application

Figure 3. Code snippet for constructing a mapping.

expert does not have to be aware of the content of these files,
nor of the implementations of the respective translate() and
retrieve() methods of the initialized objects.

Before executing the query recipe with respect to the mapping
and the EO data cube, the application expert needs to set the
spatial and temporal bounds in which the query needs to be
evaluated. These bounds need to fall entirely inside the spatio-
temporal bounds of the EO data cube. Semantique contains the
classes SpatialExtent and TemporalExtent as representa-
tions for spatial and temporal bounds. In our example, the spa-
tial extent is the city border of Vienna, and the temporal extent
may be set equal to the interval between 1st of June 2021 and
the 1st of September 2021.

When the execute() method is called, semantique internally
creates a QueryProcessor object. This object can be seen as a
worker that takes care of all tasks involving query processing,
such as parsing, optimizing and executing the query. It first
collects and stores the provided components as class properties.
Then, it rasterizes the spatial extent and discretizes the temporal
extent, and combines them together into a three-dimensional ar-
ray that serves as a template for retrieved subsets of the EO data
cube and semantic arrays. For the execution of the query, the
query processor contains specific handler functions as methods,
with each of them being able to handle one specific processing
task. For example, a handler exists for calling the translator of
the mapping in order to translate a semantic concept reference,
and other handlers exist for applying a specific verb to the se-
mantic array that was returned by the translator.

As a data structure for the spatio-temporal extent, retrieved sub-
sets of the EO data cube and semantic arrays, the query pro-
cessor uses DataArray objects from the xarray package (Hoyer
and Hamman, 2017). It extends these objects by a semantique-
specific accessor, that contains for example the implementa-
tions of the different verbs as methods. Most of them combine
different array processing functions from xarray.

The response of the query processor, and hence, the object that
is returned to the application expert, is a dictionary in which
each element contains the executed instructions of a single res-
ult as a DataArray object. The dimensions of these arrays de-
pend on the verbs that where called. Some results might only
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have spatial dimensions (i.e. a map), others only a temporal
dimension (i.e. a time series), and others might even be dimen-
sionless (i.e. a single value such as a summary statistic).

In our example, both results are two-dimensional maps. They
are visualized in Figure 4. Note that especially the blue space
map shows clearly how oversimplified mappings based only on
spectral signatures of single observations fail to capture all the
complexity of the real world. Many shadowed areas are falsely
mapped as being water. This underlines that it is of great im-
portance for an accurate mapping to address multiple proper-
ties of semantic concepts, utilizing multiple data sources in an
convergence-of-evidence approach.

Finally, it is important to emphasize that the ontology itself is
not exploited by the query processor at all. It relies fully on the
mapping in order to translate a semantic concept reference into
a semantic array. Therefore, semantique does not require any
specific structure of the ontology. Although we do recommend
to take the time to explicitly formalize an ontology, query ex-
ecution will also work when the ontology is “silently” agreed
upon, and only made explicit through its mapping.

Figure 4. Visualized output of the query execution.

4. DISCUSSION

4.1 Benefits of the approach

The main benefit of using ontology-based approaches in EO
analytics should not be measured in terms of a higher accur-
acy of the outputs, but in structural improvements (Arvor et al.,

2019). This is also true for our semantic querying approach.
The explicit separation between the semantic domain and the
image domain benefits application experts, who can now in-
fer knowledge from EO data and other, auxiliary data sources,
without the need to be aware of the technical implications re-
garding the ill-posed interpretation of these data. Moreover,
we believe the structure can also improve existing image pro-
cessing workflows of EO experts in several ways.

Firstly, it makes the worfklows clearer and easier to manage.
Definitions of semantic concepts are now made explicit in a
single, separated component, instead of being implicitly rep-
resented inside larger query statements or analysis scripts. As
such, it improves readability, reduces the need for duplicated
code, and is less prone to mistakes in concept definitions. Also,
concept definitions can be easily updated, without the need to
rewrite the analysis scripts.

Secondly, it benefits interoperability and reusability. In our
approach, query recipes reference stable concepts representing
the real world. This makes them largely independent from the
data in the EO data cube and the rules of the mapping. The
same query recipe “count greenspace observations over time”
can be used on different data sources and with different map-
pings. Whenever new data are made available or new interpret-
ation techniques are developed, the query recipe remains stable.
Also, both query recipes and mappings can be easily shared, re-
used and adapted, thus lowering the barriers for the exchange
of knowledge between different working groups and different
disciplines.

We see it as an additional benefit of our approach that the imple-
mented workflow of chaining together different building blocks
into a query recipe can easily be supported by a visual program-
ming interface, taking away the need for an application expert
to write code. This is demonstrated already in an operational
setting by Sen2Cube.at, a nation-wide semantic data cube in-
frastructure for Austria, which uses the semantique package in
the background (Sudmanns et al., 2021a).

4.2 Limitations and directions for future work

In the current implementation of our approach, application ex-
perts do not have to be aware anymore of the EO data and how
to interpret them. However, they still need to understand what
the structure of a translated semantic concept is (i.e. the se-
mantic array) and how to apply array-specific processes to it. In
a “next-level” semantic querying framework, this would not be
needed anymore. The application expert can simply ask “How
much of Vienna was green space in 2021?”. The query pro-
cessor would then be able to translate this text internally into a
query recipe, and infer the spatial and temporal extent. This is
more of a point on the horizon where semantic querying of EO
data could go, rather than a realistic goal to achieve on short-
term. It would allow the integration of EO into linked data and
knowledge graphs.

A more graspable conceptual limitation of our approach is that
it is still entirely pixel-based. Although it does allow EO experts
to formulate mapping rules that look beyond a single pixel, it is
not yet well-suited for purely object-based approaches. This
makes it harder to formulate rules that map certain properties
of real-world entities, such as their shape. A second conceptual
limitation is that we did not yet develop a standardized way to
quantify uncertainties in the mapping rules that goes beyond
simple cloud cover statistics.
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The technical side of our implementation also comes with its
limitations, which mainly affect the computational efficiency of
the query processor. Semantic queries are not yet validated nor
optimized before execution. A first step to a more performant
query processor could be to support parallel computation and
lazy loading through the dask package, which is already well-
integrated with xarray. Semantique could also benefit from in-
tegration with existing open-source platforms for EO data ana-
lysis, such as OpenEO Platform (openEO Platform, 2022), and
emerging standards for exposing big EO data, such as STAC
(SpatioTemporal Asset Catalog, 2022).

As a final remark, we should emphasize that in order to make
the semantic querying approach useful, we should constantly
motivate EO communities to explicitly formalize their know-
ledge into ontologies and associated mappings. In this regard,
we encourage bottom-up approaches in which smaller com-
munities (e.g. a research group) formalize their own ontologies
and mappings, tailored to their specific applications. In line
with the thoughts of Camara (2020) we believe this is a more
realistic approach than waiting for a top-down attempt in which
the whole EO community manages to capture all different con-
texts and views in a single ontology and few mappings.

5. CONCLUSIONS

In this paper we presented a new approach for semantic query-
ing of EO data cubes, in which a user infers new knowledge
from the data through an ontology, rather than by access-
ing the data values themselves. We implemented a proof-of-
concept implementation of our approach as an open-source Py-
thon package, and believe it can be an important contribution
to a broader uptake of EO data across various application do-
mains.
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