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ABSTRACT:

Mobility data, based on global positioning system (GPS) tracking, have been widely used in many areas. These include, but not limited
to: user direction guidance, analyzing travel patterns, and evaluating travel impacts. Transport Mode Detection (TMD) is an essential
factor in understanding mobility within the transport system. A TMD model assigns a GPS point or a GPS trajectory to a particular
transport mode based on the user’s current activity. However, the complexity of the prediction procedure increases with the number
of modes that need to be predicted given the increasing overlaps in feature values between multiple transportation modes. Hence, this
study proposes a two-branch deep learning-based TMD model that predicts multi-class transport modes to improve prediction accuracy.
In addition, it proposed a weakly supervised labelling model using snorkel to improve the volume of labelled data and resulting TMD
model prediction accuracy. We considered publicly available road networks, railway networks, bus routes, etc., for creating road,
bus, train labels by overlaying GPS points on these transportation networks. We introduced a boolean (true/false) based soft-labelling
function, where the same GPS point overlaid on road or railway network. The raw GPS data were used to generate point-level features
such as speed, speed difference, acceleration, acceleration difference, initial bearing and bearing difference, all used as derived features
for the TMD model. To construct the model we opted to use two branches where raw GPS latitude and longitude values were used in
one and the derived mobility features are used in the other.

1. INTRODUCTION

The use of data, based on global positioning system (GPS), or
some other equivalent position system, offers the possibility of
following individual trips with regard to temporal and spatial po-
sitional characteristics in a much more detailed way, when com-
pared to traditional travel surveys and travel diaries (Clifford et
al., 2009), (Nguyen et al., 2020). GPS tracking data are becoming
ubiquitous in various transportation applications and have been
widely used in collecting information on people and goods trans-
port (Furletti et al., 2013). The advancements in GPS technology
and devices used to collect data are improving rapidly, and data
generated by GPS devices have become more accurate and reli-
able (Wu et al., 2016). In general, GPS tracking data provides
information on longitude, latitude, date, time, speed, altitude,
and direction of movement. In order to conduct further trans-
port analysis, data processing is necessary to extract additional
trip characteristics. The major processing steps are trip identifi-
cation, map matching, and transport mode detection (Gong et al.,
2014), (Yang et al., 2015).

Many studies are available focusing on trip identification and map
matching, while studies on transport mode detection (TMD) are
still sparse (Huang et al., 2019). The limited number of reviews
in the area could be due to the fact that transport mode detec-
tion based on GPS tracking data is challenging, especially when
the data is unlabelled, i.e., there is no information regarding the
transport mode used during a trip (Huang et al., 2019). This was
one of the key issues we addressed in this study by proposing a
weakly supervised label generation model using snorkel (Ratner
et al., 2017a). Several previous studies utilized snorkel for la-
bel generation for various other purposes (Ratner et al., 2017b),
(Ratner et al., 2018), however, for the first time a study utilizing
snorkel for TMD label generation.
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There are a couple of studies that have utilized machine learn-
ing approaches for TMD. For example, (Ashqar et al., 2019) in-
troduced a Hierarchical Machine Learning Classifier for TMD,
while (Qin et al., 2019) proposed a deep convolutional neural
network (CNN) with a recurrent neural network. Other studies
utilized Long Sort-Term Memory (LSTM) models to incorpo-
rate the temporal information more effectively to detect transport
mode (Asci and Guvensan, 2019). However, these studies are us-
ing readily available labelled datasets; while in our study we pro-
posed a label generation method as well as a multi branch deep
learning model which includes the raw latitude and longitude data
as well. Several well known architectures of neural networks such
as ResNeXt (Pant et al., 2020), Inception (Szegedy et al., 2017)
are based on the designing idea of having multiple branches and
have demonstrated improved performance in many applications.
A multi-branch deep learning model provides the opportunity to
incorporate entirely different domain dataset and a more mean-
ingful feature concatenation. This approach has the advantage
of generating features using a supervised manner. Therefore, we
opted two-branch approach for our proposed deep learning archi-
tecture where one branch utilizes transportation network/ location
information, while the other utilizes the mobility features.

The key contributions of our work are summarized as below;

• Proposed a weakly supervised model approach for trans-
port mode label generation with GPS features as well as the
transportation network features

• Proposed a two-branch deep learning model to utilize raw
data insights along with mobility features

• Demonstrated the model performance compared with pre-
vious machine learning model as well as with the iOS and
android in-built transport mode recognition tool.
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2. STUDY AREA AND DATA

The main motivation of this study is to build an elegant TMD
model for the Japan region where no TMD ground truth data is
openly available. However, Japan has various openly available
datasets with reliable coverage, such as Open Street Map (Open-
StreetMap contributors, 2017), bus routes (Global map japan,
2020), Cycle routes etc. Hence, this study utilized many of these
openly available datasets, GPS raw data and GPS derived fea-
tures such as speed, acceleration, jerk, bearing, etc., for building a
weakly supervised model to generate ground truth data for TMD
supervised modeling.

2.1 Data

This study used various datsets with the characteristics of these
datasets given in Table 1. Table 1 overviews the characteristics
of each dataset such as its type, provider and availability. All
the datasets, other than the GPS data, are openly available and
used for labelled data generation for TMD. The GPS data is from
a private dataset used in this study and is derived from multiple
mobile applications.

Data Availability Provider Type
Road network Public OSM Polyline

Railway network Public OSM Polyline
Bus route Public Japanese govt. Polyline
Bounary Public Japanese govt. Polygon

GPS Private Rakuten apps Point

Table 1: Characteristics of the datasets used in this study

3. METHODOLOGY

Two distinct methodologies are involved in this work, one to pre-
pare ground truth data using a weakly supervised modelling ap-
proach and the other is a deep learning classification model for the
TMD. However, GPS data with latitude, longitude and timestamp
is the primary data source used for TMD modelling. There are no
sufficient open-sourced ground-truth data available for transport
modes in Japan. Hence, we proposed a transport mode label gen-
eration approach using snorkel (Ratner et al., 2017a). Further,
these generated labels are used to trained a multi-branch deep
learning model. The following subsections will explain in detail
about weakly supervised label generation and multi-branch deep
learning model.

3.1 Feature engineering

Feature engineering is one of the most important steps undergone
in any machine learning or deep learning modelling approaches.
This study derived various mobility related features from GPS
data for feeding those into the deep learning model. Primary data
source for this feature extraction was GPS pings with latitude,
longitude and timestamps. These features can be sub-categorized
into point level features and trajectory level features. Point level
features are computed using the comparisons between previous
points and current point, while, trajectory level features consid-
ers all points in a trajectory to derive features. Table 2 shows
the characteristics of each feature and their data types. There
are seven point level features and two trajectory level features,
the equations for each of which are given below. The four fun-
damental features are the speed, acceleration, jerk and bearing,
while trajectory features are simply average over a single trajec-
tory as shown in Table 2.

Equation 1 shows the distance calculation, with the resulting dis-
tance used for the speed calculation. Equation 2, 3 and 3 are used
to calculate the bearing

d = 2Rarcsin

√
sin2

∆φ

2
+ cos(φ1)cos(φ2)sin2

∆λ

2
(1)

Where, R is the radius of earth in meters (6371000), ∆φ is the
difference in latitude (radians), ∆λ is the difference in longitude
(radians).

X = cos(ϕb) ∗ sin(λb − λa) (2)

Y = cos(ϕa)∗sin(ϕb)−sin(ϕa)∗cos(ϕb)∗cos(λb−λa) (3)

Where a is a and b is the point

b = atan2(X,Y ) (4)

Where X and Y are derived from equation 2 and equation 3 re-
spectively.

Where, R is the radius of the earth in meters (6371000), ∆φ is
the difference in latitude (radians), ∆λ is the difference in lon-
gitude (radians), d represents distance, v represents speed and a
represents acceleration in Table 2.

Feature Level Derivation Unit
Speed Point d / (t−1−t0) m/s

Speed Point vt−1 − vt0 m/s
difference

Acceleration Point (vt−1 − vt0)/(t−1−t0) m/s2

Acceleration Point at−1 − at0 m/s2

difference

Jerk Point (at−1 − at0)/(t−1−t0) m/s3

Bearing Point b = atan2(X,Y) ◦

Bearing Point bt−1 − bt0 m/s
difference

Average Trajectory 1
n

∑n

i=i
vi m/s

speed

Average Trajectory 1
n

∑n

i=i
ai m/s2

acceleration

Table 2: Features derived from the GPS dataset.

3.2 Weakly supervised label generation

In any supervised learning approach, including deep learning,
labelled data availability is critical to maximize model perfor-
mance. As like in several other domains labelled ground truth
data is not available in case of transport mode. As far as we
know, there is no open ground-truth data available for transport
mode detection for the Japan region. Hence, this study proposes
a transport mode label generation approach using snorkel (Ratner
et al., 2017a). Snorkel is a weakly supervised labelling function, a
first-of-its-kind system that enables users to train state-of-the-art
models without hand labelling any training data. Instead, users

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022 
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-525-2022 | © Author(s) 2022. CC BY 4.0 License.

 
526



Figure 1: Example for a snorkel label generation model

Figure 2: Soft-labelling approach using transportation network
and geospatial datasets

write labelling functions that express arbitrary heuristics based
on their expertise and understanding of the data in the related
field, transport mode identification in this case. The primary dif-
ference between manual labelling and programmatic labelling is
the type of input that the user provides. With manual labelling,
user input comes in the form of individual labels, created one by
one. With programmatic labelling, users instead create labelling
functions, which capture labelling rationales and can be applied
to vast amounts of unlabelled data and aggregated to auto-label
large training sets. This approach leads to a number of benefits
over manual labelling such as scalability, adaptability and gov-
ernability (Ratner et al., 2017a).

In this study we used snorkel for generating the ground truth data
for transport mode. We considered publicly available datasets
related to road network, railway network, bus routes, etc.These
datasets were then used for creating road, bus, train labels by
overlaying GPS points on associated transportation network. The
road and rail network s were extracted from Open Street Map
(OSM) (OpenStreetMap contributors, 2017), bus routes down-
loaded from the openly available sources from Ministry of Land,
Infrastructure, Transport and Tourism (MLIT) (Ministry of Land
Infrastructure and Tourism, 2020) and Japan boundary from the
Geospatial Information Authority of Japan (GIAJ) (Global map
japan, 2020). Figure 2 shows, the flowchart of soft-labelling gen-
eration using underlying these transportation networks. A buffer
of 20m was created around road and railway network to identify
the overlaid points. We chose a 20m buffer size as the average
spatial resolution of the GPS points in our dataset were approxi-
mately 20m. The boundary polygon was assigned a large 100m
buffer to account for the polygon dataset being out of date and
low spatial resolution.

There are multiple occasions where the road, bus and train classes
overlap each-other, especially in a city region. Hence, we in-
troduced a boolean type (True/False) based soft-labelling func-
tion, where same GPS point might have multiple True values for
road or railway or bus. These boolean values were utilized in the
snorkel model along with mobility features such as speed, accel-
eration, etc.

Figure 3: Sample of labelling functions used for weakly super-
vised labelling

3.3 Multi-branch deep learning

The snorkel-based label generation model needs additional trans-
portation network-based soft-labelled classifications; these were
generated using computationally expensive spatial joining and
spatial indexing jobs. Hence, this approach is not scalable for
big data TMD. Therefore, this study proposed a separate deep
learning model which can utilize mobility features as well as the
raw GPS latitude and longitude for TMD. Transportation network
based soft-labelling and other mobility features are used to define
labelling functions in snorkel. These label functions are then used
to create true ground truths by means of a generative machine
learning model with a limited number of GPS data. The gener-
ated labels (walk, cycle, bus, car, train, boat/ship) were used to
train the proposed deep learning model. For the TMD model we
propose a two-branch deep learning architecture where raw GPS
latitude and longitude values are used in one branch and derived
mobility related features are used in the other branch Figure 4.
We used 3 fully-connected hidden layers for raw GPS data (lati-
tude/longitude) with 256, 128 and 32 hidden layers respectively.
For mobility features we used 4 fully connected hidden layers
for mobility features with 256, 128, 64 and 64 hidden layers ac-
cordingly. Features derived from the two branches are concate-
nated in feature domains. Furthermore, 3 fully connected hidden
layers with 128, 64, 32 hidden layers and softmax cross-entropy
were used as a loss function. The proposed deep learning model
has 108,614 trainable parameters and Adam is used as an opti-
mizer. The TMD model is implemented using the Keras python
API (Chollet et al., 2015).

This particular two-branch model structure achieves better accu-
racy as it combines raw data as well as the derived mobility fea-
tures in the network. An example of this is the relationship be-
tween latitude/longitude and one of the road driving classes, thus
inferring the location is on a road. Note, many of these inferences
that improve classification accuracy are possible via dramatically
more advanced pre-processing to build out additional features,
but that process can be time consuming and would be unlikely
to catch all the potential inferences that an un-biased set of deep
learning layers can inherently extract. When building classifi-
cation models, a data scientist first conducts feature engineering
to incorporate their industry knowledge to build features from the
raw data to make it easier to decide what class the input data point
is, and thus increase the model’s classification accuracy. With
this, the model is built trained using the extracted features alone.
By incorporating the raw data as well as one of the features, there
are two options in a single branch model architecture: 1) Using
a similar complexity (number of nodes per layer) model, which
can cause high risk of the additional raw data reducing the effec-
tiveness of the node tuning and thus reducing the overall model’s
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Figure 4: Multi-branch deep learning model for TMD.

classification accuracy. Or 2) increasing the model complexity
(increasing the number of nodes per layer), enabling increased
tunability at the risk of causing tuning biases that would require
greater training duration and larger training data volume to help
mitigate those biases. Thus, in our model we created a sepa-
rate and specifically designed branch to draw out any additional
intelligence/classification indicators not already included in the
extracted features without overly complicating the model.

3.4 Pipeline and deployment

The TMD model introduced in the previous section has been
deployed to predict transport mode on big commercial mobile
application data that is collected every day in a large volume.
Hence, the pipeline deployment, job scheduling and maintenance
are very critical for this application. However, this study uti-
lized various Free and Open Source Solutions (FOSS) for im-
plementing the deep learning model using a scheduled pipeline
for estimating TMD on a daily basis. Multiple dedicated mo-
bile applications collect location information, and the pipeline
will gather daily data and process using a function as a service
(FaaS). The jobs are scheduled and triggered as daily batch using
he open source scheduler Apache Airflow (Kotliar et al., 2019).
The implementation utilizes Apache Hadoop (Nandimath et al.,
2013) clusters to collect, gather and process big GPS data and
Apache Hive tables are used to store the daily batch TMD results.
We used PySpark via the Python API for Apache Spark (Spark,
2018) as an open source distributed computing framework. In
addition to providing an API for Spark, PySpark helped us to in-
terface with Resilient Distributed Datasets (RDDs) by leveraging
the Py4j library. Several geo-spatial analysis were carried out to
pre-process and prepare deep learning ready data using geopan-
das (Jordahl, 2014), shapely (Westra, 2015) and rtree (Alfarrarjeh
et al., 2020).

Figure 5 shows architecture of the pipeline implementation. Mo-
bile application collected data is stored and maintained in Apache
hive tables, with queries performed using spark sql and process-
ing using pyspark. Furthermore, these results are stored in Apache
hive tables. Apache Airflow is used to orchestrate scheduling
jobs on the previously mentioned daily basis. All compute and
data storage tasks described here are performed using Rakuten’s
internal cloud infrastructure, ensuring all data privacy, usage re-
strictions and security regulations are adhered to.

4. RESULT AND DISCUSSION

We used weakly supervised labels for the deep learning model
training and evaluation, hence it is important to evaluate perfor-

Figure 5: General solution architecture for pipeline deployment

Figure 6: Demonstration of transportation mode for a single user
in a day

mance of the model with unseen data. We carried out quantitative
and qualitative evaluations, where test data have been collected
by multiple users for various parts of Kanto, Japan.

4.1 Comparison with previous model

The proposed deep learning model was trained on a subset of
the user GPS data, with the model showing an overall accuracy
of 0.85. However, it is also beneficial if the model performance
can be evaluated in detail with real-world use-cases. Therefore,
we compared the proposed model with our own previous model,
hereafter call as TMD V0.1. TMD V0.1 is a machine learning
model trained using a XGBoost classifier (Chen et al., 2015), this
model also utilized a similar set of input mobility features as the
model proposed in this work. The primary difference between the
two versions are the proposed one is a multi-branch deep learning
model with raw latitude/longitude information as an additional
input.

Figure 6 demonstrates the TMD for GPS trajectory of a single
user for a single day who uses one of the transportation modes
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supported by the models. Figure 6 overlays the resulting pre-
dicted transportation modes onto a map, where each GPS point
assigned a transport mode. We compared the results against the
popular XGBoost classifier (TMD V0.1), with our model produc-
ing over 5% higher accuracy for the benchmark Geolife dataset
(Zheng et al., 2011). The qualitative evaluation of the results
is carried out in two ways, including demonstration of user tra-
jectory with model detected transport mode as shown in 6 and
comparing the obvious user coverage expected in Japan. Table
3 shows the user coverage increase is largest for car and train
modes. Apart from that, we also identified the increase in train
user coverage in city areas where the primary transportation mode
of people is train.

KPI TMD V0.1 TMD V1.0
Number of modes 4 6
Car user coverage 20% 32%

Train user coverage 4% 9%
Prediction accuracy 35.62% 66.99%

Table 3: Comparison between TMD V0.1 & TMD V1.0 results
on field testes conducted by various voluntary users.

Moreover, we collected smartphone-based GPS trajectories for
multiple modes of transportation collected by testers in Tokyo,
Japan. This test is conducted on a completely new and dataset
with a different spatial resolution and temporal resolution com-
pared to the dataset used for training the model. With this new
absolute ground truth data we compared the resulting predicted
classes between TMD V0.1 and TMD V1.0. Figure 7(a), 7(b) and
7(c) show the locations of field tests where user’s transport mode
was Car. Figure 7(d), 7(e), and 7(f) show the locations of field
tests where user’s transport mode was Car. Table 3 shows signif-
icant improvement in the average overall accuracy for the unseen
dataset collected over the Kanto region. Experiments show that
TMD V1.0 results are promising with improved accuracy and in-
creases in number of labelled data points. Apart from that, TMD
V1.0 can predict six transport modes while TMD V0.1 can only
only predict four modes.

This study also compared the results with on-device iOS (CM-
MotionActivity, 2020) and android (AndroidActivity recognition,
2020) in-built activity recognition tools using multiple field test
carried out by different users in different popular road and railway
routes the Kanto, Japan region. Table 4 shows the resulting ac-
curacy for each field test. The proposed model shows significant
improvement in average accuracy. Table 4 includes, highways,
expressways, local roads, rapid train routes, local train routes.
We also found that the proposed model (TMD V1.0) works rea-
sonably well in both Android and iOS operating systems. The
evaluation shows activity mode recognition improvement in av-
erage accuracy between all field tests from 74.4% to 92% com-
pared to Android and iOS in-built systems. Of key note is that
the iOS and android in-built activity recognition tools provide the
’automotive’ class as a single class, while our proposed model
efficiently distinguishes automotive classes as car, bus, and train
with improved accuracy.

5. CONCLUSION

This research work proposes a two step TMD model, where the
first step is to generate labels in a weakly supervised manner and
the second is to train a multi-branch deep learning model. We
were motivated to create this two step approach for two reasons,
a) the alternative label data preparation mechanisms are compu-
tationally intensive for big spatial data and b) the alternative ap-
proach of robust feature engineering by experts to incorporate

Location tmode OS Acc (OS) Acc (v1.0)
Edogawa car iOS 96% 90%

Nishikasai car iOS 99% 95%
Yokohama car android 100% 83%
Jiyugaoka train android 47% 90%
Yokohama train android 70% 89%
Nagatsuta train iOS 100% 99%
Tokaichiba train iOS 67% 98%

Table 4: Comparison with iOS and android activity recognition
results

(a) Edogawa (b) Nishikasai (c) Yokohama

(d) Jiyugaoka (e) Yokohama (f) Nagatsuta

Figure 7: Selected filed test locations in Kanto, Japan

industry expertise is time consuming and unlikely to catch all in-
herent relationships between the raw data and the transportation
mode. The weak supervised learning application to generate la-
bels for TMD models, is one of the first of its kind, if not the
first, and proved successful in reducing need for compute capac-
ity even when processing big spatial data. The multi-branch deep
learning TMD model to incorporate raw data and remove the need
for robust feature engineering also accomplished its goal of im-
proving classification by nearly 2x (35.63% to 66.99%) compared
to our previous v0.1 model, and also resulted in higher average
accuracy compared to the Android and iOS built in activity clas-
sification in our field testing (92% over the OS-based 74%).

We also noted that our model performed well due to the fact the
transport mode is highly dependent on the location of the GPS
points whether its overlying on the road or railway track or water.
Our multi-branch approach will provide an underlying informa-
tion about location, in addition, these underlying location facts
are not frequently changed. However, the challenge of this study
is its application in more complex urban transportation networks
of metropolitan cities like Tokyo. For such cities, roads and rail-
ways are in close proximity, run directly parallel to each other
and even directly overlap vertically introducing many cases with
multiple viable transportation modes for a given GPS point. We
assume that the combination with other mobility features have
added distinguishing characteristics to adequately resolve the ma-
jority of those cases, but will add additional features and data
sources in future versions as needed should further testing in-
validate that assumption. This work highly depends upon Free
and Open Source Solutions (FOSS) for data preparation, mobil-
ity feature generation, deep learning model training, and big data
computing. One future stage of this study is to implement the pro-
posed deep learning model on smartphones to enable on-device
near real-time transport mode detection using tensorflowlite in
Andoid devices as coreml in iOS devices.
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