The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 — Academic Track, 22—28 August 2022, Florence, Italy

TACKLING THE CHALLENGES OF SOFTWARE PROVISION

Peter Vogt **, Pierrick Rambaud ?

L European Commission, Joint Research Centre (JRC), Ispra, Italy — Peter.Vogt@ec.europa.eu
2 United Nations FAO, Rome, Italy — Pierrick.Rambaud@fao.org

Commission 1V, WG 1V/4

KEY WORDS: Software, packaging, open source, dissemination, application outreach.

ABSTRACT:

In this perspective, we investigate the less documented topic of software provision, aimed at bridging the community of software
developers to the one of software end-users. We outline aspects of the circular flow of software development, starting from the
source code, software packaging, the target platform, licensing, program documentation, and feedback. Next, we highlight challenges
and opportunities of these aspects and how they contribute to the overall success and adoption of a software application. Finally, we
exemplify and illustrate how these aspects were addressed with the provision of the software GWB on FAO’s cloud computing
platform SEPAL. The outlined reflections on software provision are of generic nature and, depending on a given software, may
include many more, or different aspects. Yet, we hope that this perspective may trigger more interest and dedication to the topic of
software provision and its integral function to promote and improve software development.

1. INTRODUCTION

For most end-users, the term ‘software’ is equivalent with
executing a given application to obtain a desired result.
Moreover, the highest importance is usually attributed to the
software being free to use. Besides intuitive use, a key
requirement for success and wider acceptance of a software
application is easy access, which is often facilitated through
open-source projects. While most end-users naturally only care
about stability and functionality of the software, software
developers often see their task completed once the application
reaches a certain degree of maturity and its source code is made
available. However, in addition to ease of use and targeted
software development, a third component in the life cycle of
software design (Vogt, 2019) is the software provision. The
importance of adequate software dissemination entails a wide
range of aspects, which are often undervalued but are crucial to
best meet end-user expectations and to achieve the highest
application acceptance.

In this manuscript, we outline a perspective on approaches to
appropriately address issues of software provision aimed at
promoting software in an efficient way. We illustrate the
motivation and features of various aspects of software provision
on the recently published software GWB (%) (Vogt et al., 2022)
and its implementation on the FAO cloud computing platform
SEPAL (%), the System for Earth observations, data access,
processing & analysis for land monitoring.

2. SOFTWARE PROVISION

This section summarises reflections on various aspects when
disseminating a software application for a given operating
system (OS). Figure 1 illustrates six individual sub-sections,
which address generic, major aspects only. These aspects are
not meant to be exhaustive because any given application can
have a different focus area, which in turn requires dedicating

* Corresponding author

more time and effort into respective aspects of software
provision. In general, the overarching goal of software
provision is to optimise the usage of the software application
and to maximise its outreach into the user community.

: |
é} O] |=
Target platform
¢ ~

Packaging
= \ = Software
-

open source
initiative

Approved License

l 0 Tube

\ Documentation }

Ay B
&f

o provision

y

Source code

<> I

Figure 1. Typical aspects of software provision.

|
32

2.1 Source code

The provision of the source code is often perceived as a final
product delivery. The main reason for this perception is that a
fully transparent access to the source code will allow any
interested user to analyse all processing steps, or to modify, or
re-use sections of the code for any related purpose. Open-source
access is also important from an educational perspective
because software developers can use the source code to improve
their programming skills or learn how to code in a different

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License. 531

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 — Academic Track, 22—28 August 2022, Florence, Italy

programming language. Furthermore, full access to the source
code implies that many experts can review and test the code, a
critical aspect for security and building trust in the software
application. On the other hand, the majority of end-users cannot
make any use of the source code itself because they either do
not understand the programming language used, or even if so,
they may well be overextended with the complexity of a given
source code. In addition, end-users may not have the skills to
compile the source code or know how to properly link required
dependencies. The large number of Linux distributions provide
an additional challenge due to varying inter-dependencies of
distribution-specific compiled libraries and packaging policies.
In most cases, the process of compiling source code is quite
different across various operating systems and often requires
choosing and setting up an appropriate and dedicated OS-
specific compilation environment. In brief, packaging - the
conversion of compiled source code into a functional executable
binary - is a science on its own and is beyond the abilities of a
typical end-user.

2.2 Software packaging

The scope of packaging is to bundle the entire application into a
single installation archive, including and/or linking OS-specific
dependencies, pre- and post-installation instructions, and the
integration into the OS via menu entries. Examples are rpm and
deb-packages (Linux), dmg-packages (macOS), and exe/msi-
packages (MS-Windows). Packaging allows for efficient
system-wide software management: installation, upgrades, and
removal of the application. System-wide installation also
provides application access to all OS users in a coherent way.

A particular advantage of the Linux OS is the availability of,
and easy access to, various compiler suits, programming
languages, and libraries. Virtually all Linux distributions
provide a package manager, which can be used to query, install,
and uninstall any software or libraries of interest for direct use
or temporary evaluation. The Linux package manager is a
unique and very powerful tool: browse the repository and select
all packages of interest and once done, click the Apply button.
The same is true for updating the entire system. A simple mouse
click, or the respective installation command, is all it needs to
automatically download all selected software packages
including any depending libraries. And all packages to be
installed or upgraded are tested, validated, and officially
approved. In fact, it is quite puzzling to see that no other OS has
adopted such a user-friendly, efficient, and secure software
management tool. Yet, a disadvantage of software packaging on
Linux is the vast number of Linux distributions. In addition to
various packaging formats, the high variety of custom compiled
libraries and distribution-specific ~ dependencies makes
packaging under Linux a challenging task. One solution, though
time-consuming and tedious, is to provide distribution-specific
packages for the most common Linux distributions. Another
alternative is to generate statically linked executables or use
generic installation formats such as Snap (%), Applmage (*) or
Flatpak (%), each having its own advantage or disadvantage.

In contrast to Linux, setting up a specific compiler environment
and required libraries on any other OS can be a time-consuming
and rather daunting exercise. It requires browsing the Internet
for information, comparing various options against each other,
manual download and subsequent execution of individual
installer packages, and often custom actions to setup required
elements in the packaging chain. Yet, once established, the
resulting compiled binary is likely to work without issues across
various editions of the MS-Windows or macOS operating
systems. Finally, OS-agnostic compiling is facilitated when the

application is coded in platform independent, mostly scripting
languages such as JAVA (6), R (%), or Python (8). The TIOBE (°)
programming community index is a measure of popularity of
various programming languages. This index is updated monthly
and may help to select a future-proof programming language
when starting to build a new software system. Figure 2 shows a
snapshot of the TIOBE index, illustrating the strong increase for
the Python programming language (light blue colour) over the
past 20 years, which in April 2022 has become the most popular
programming language.

TIOBE Programming Community Index

m\/\/ W \/\/\“\/“n,

A YRR

£ ,c‘/‘
e o I WY e AR N P
T s Y 5 & e S ? 28N

Python ==C - Java - Ct+ w=C# == VisualBasic ~ JavaScript == Assemblylanguage ==SQL - PHP

Figure 2. TIOBE (°) index showing the most used programming
languages since June 2001.

Various tools exist for packaging the binary and adding package
maintenance utilities. They differ in program features, ease of
use, and price, from fully fledged proprietary commercial
applications to powerful and free open-source solutions, for
example the Nullsoft Scriptable Install System — NSIS (%) for
MS-Windows. The Wikipedia website (‘%) provides an overview
of notable software package management systems for a series of
OS and packaging scopes.

In general, the installation of software into an operating system
requires administrator rights, which are not available on many
secured or closed IT environments, such as in government
agencies, where users may fully access a limited OS-space only,
for example their SHOME directory. Yet, this situation can be
addressed by setting up the software and all required
components in a self-contained single directory, which is then
compressed into a self-extracting installer. Any user can then
download such a standalone installer, extract it in a private
location with write and execute permissions, and have full
access to the application without administrator rights. An
additional benefit of this way of software distribution is that the
application in a self-contained directory can be copied to and
executed from any external device, for example a USB flash
drive, providing maximum portability of the given application.
Finally, the provision of a single application, or even a suite of
applications up to a fully customised operating system, can also
be setup within a Docker (*?) container, or in a virtual machine
setup, see the overview in this Wikipedia website (*3).
Nowadays, virtualization software is an ideal way for
developers to draft, test, deploy, and run applications in a
controlled and isolated environment with all its dependencies,
and configured for a variety of operating systems without the
need to purchase any additional hardware.

2.3 Target platform

Maximum outreach is achieved through a software setup that
will work on as many platforms and operating systems as
possible. In addition to personal computing, an even wider
outreach may be achieved by using a cloud computing platform,
such as GEE (%), the Google Earth Engine (Gorelick et al.,

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License. 532

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 — Academic Track, 22—28 August 2022, Florence, Italy

2017) or BDAP (*%), the Big Data Analytics Platform (Soille et
al., 2018). Yet another alternative is designing the application
as a web-based online application or, where possible, as an
Android/iOS application for portable devices. According to
Statcounter (*6, Figure 3), the use of portable devices has
increased steadily over the past years and its global market
share has surpassed the desktop market share in 2017. This
trend is likely to continue, due to the growing adoption of
smartphones (Almunawar et al., 2018) and the CPU
performance increase in mobile devices (Halpern et al., 2016).
Another deciding factor for choosing the appropriate target
platform may also be the age class of the envisioned end-user
audience (Brohl et al., 2018).

T

StatCounter Global Stats
arket hars Worldwids fram pan

Figure 3. Global market share (*6): desktop (blue line) and
mobile devices (green line) from Jan 2009 to April 2022.

2.4 Licensing

A software license agreement is a legally binding agreement
between the software creator and the software end-user. There
are two main types of software license agreements. A
proprietary or closed source license, usually outlined in an End
User License Agreement (EULA), must be applied when using a
proprietary programming language or the developer wishes to
maintain full ownership and exclusive control over future
developments. The other main type is Open-Source licenses.
Open-Source Software (OSS) is a widely used term describing
software that comes with all necessary permissions granted in
advance to permit its use, improvement, and redistribution
(modified or unmodified) by anyone and for any purpose. These
permissions are often called the four freedoms (*7) of software
users. The ability of individuals and organisations to freely
reuse software under standardised open-source licences has
many benefits: it avoids the need for custom license
negotiations, enables business innovation through rapid
deployment of existing technology, increases sharing and
popularity of software development methodologies, and
supports sharing of development costs, resulting in improved
code quality. The Open-Source Initiative (OSI) website (18)
provides extensive information on over 100 open-source
licenses and answers to related questions. The choice of an
appropriate license scheme may be further complicated by
having to review license compliance checks when a software
project combines various modules or libraries, each with its
individual license scheme. Here, the OSS Review Toolkit (*%)
can assist with license compliance checks. An alternative
introduction and guideline, outlines the European Union Public
License (EUPL) and other common OSS licenses (Schmitz, P.
2021). The Joinup Licensing Assistant (%°) is yet another very
helpful online tool to interactively compare and select an
adequate open-source licensing scheme, while maintaining
license compatibility. Finally, OSOR (%), the Open-Source

Observatory, is a place where the open-source software
community can publish news, find relevant open-source
software solutions and read about the use of free and open
source in public administrations across and beyond Europe in
24 languages. In summary, choosing the appropriate license for
a given software project requires a good deal of thought and
rationale to ensure all legal aspects are addressed in an adequate
way, and covered also for future software developments.

2.5 Documentation

Documentation is crucial for software adoption. The most
obvious scope is explaining application features and provide
detailed usage instructions. Yet, documentation has many facets
and can be fine-tuned in various ways to best match customer
expectations, for example as a user manual, product sheets with
application examples, guided instructions in workshop material,
providing and distributing flyers, offering online training
courses, or by using social media services, for example
promoting the software via Twitter or recorded YouTube video
sessions.

From a strictly technical perspective, any application is fully
functional by executing correct command-line instructions. The
addition of a Graphical User Interface (GUI) does not provide
any new program functionality but will simply act as a user-
friendly way to collect the information for setting up the
underlaying command-line instructions for execution. By
providing only valid options to choose from, a GUI has the
additional benefit to reduce potential wrong user input. The
scope of a GUI is to increase program usability, and, in this
sense, a GUI can be seen as a form of program documentation
aimed at simplifying program interaction and execution. While
GUI coding is an extra burden for software developers,
adequate GUI design is one of the most important aspects for
the success and adoption of any application. A GUI should be
intuitive, easy to interact with, and logically structured to flatten
the learning curve, encourage, facilitate, and stimulate using the
application to its full extent. In fact, the success of personal
computing was triggered through the introduction of a mouse-
driven GUI for Apple Macintosh in 1984 and MS-Windows 3.0
in 1990. Equally, Linux desktop environments such as KDE,
Gnome, XFCE, etc. are nothing else but GUIs to the
underlaying operating system. Another example, illustrating the
importance and impact of GUIs, are geographic information
system (GIS) applications such as ArcGIS (%), QGIS (%),
GRASS (%), gvSIG (%), or simplifying coding interfaces such
as RStudio (%) and JupyterLab (¥"), which greatly increased the
wider adoption of image analysis techniques and the
exploitation of spatial data. Furthermore, please note that
nowadays virtually all portable or mobile devices use GUI-
driven applications.

2.6 Feedback

End-users interact with the software application. This statement
is not trivial at all, but in fact crucial because it entails many
possibilities to enhance software adoption and improve software
outreach into the user community. In fact, feedback is likely the
most fundamental aspect in software provision because it
concerns and serves as an indicator for all other aspects in the
entire software cycle (see Figure 1), from product development,
dissemination, and usage. It is therefore critical that software
developers should be actively involved in tackling end-user
feedback (Srba et al., 2016) to avoid misunderstandings and
ensure efficient target-driven software development.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License. 533

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 — Academic Track, 22—28 August 2022, Florence, Italy

Ideally, the application should be accompanied with various
feedback options to allow the end-user sending back
constructive comments and suggestions. A good example is the
GDAL project (?8), which uses a mailing list, GitHub, chat,
social media, and conferences (FOSS4G 2022) to exchange
information between developers and the user community. Stack
Overflow (?°) is another prominent example serving the same
purpose. Typically, feedback will result in improved
documentation, bug fixing, or adding new program features.
However, it may also trigger setting up various versions of the
application, to specifically address targeted end-user groups.
For example, the application, or modular parts of it, can be
provided as a simple script (R, Python, etc), GIS-plugins,
standalone-, mobile-, or webserver-based application. Feedback
promotes transparency, security, and trust by actively involving
the user community in the software life cycle. Feedback opens
an efficient communication channel between all participants. It
highlights areas of improvement, streamlines efficient
development, and fosters end-user engagement. Ultimately,
feedback contributes to increased application performance and
acceptance of the software. Closed source projects often have a
dedicated marketing department, which monitors, measures, and
channels user feedback in dedicated customer satisfaction
studies (Farris et al., 2010), considered essential for ensuring
product success and end-user loyalty. In open-source projects
(®9), feedback is a critical component for efficiently facilitating
code revisions, allowing for security screening, and even
attracting new contributors from developers to translators to
educators. Feedback is a natural way of communication, starting
from sharing an idea to finding participants having the same
interests and setting up a new project for implementation.
Feedback then continuous as a stimulating collaborative tool for
monitoring, listening, and constantly improving the software.

3. APPLICATION EXAMPLE

The GuidosToolbox Workbench (GWB) (Vogt et al., 2022)
provides various generic image analysis modules as command
line scripts on 64-bit Linux systems. In this section, we use
GWB as an example to illustrate how we addressed the software
provision points mentioned before.

3.1 Source code

In addition to the distribution-independent compiled
executables, we provide the plain text source code for all IDL
modules in a dedicated subdirectory of the application. The
source code and dependencies of the IDL and all other C-
programs, including the very popular spatial pattern analysis
routine MSPA (Soille and Vogt, 2009; Soille and Vogt, 2022),
has been placed on the public GitHub project page (*!). We
believe that the inclusion of the simple plain text IDL source
code within the application facilitates the access to the source
code, for example in the absence of internet access. All modules
are launched via customised Bash scripts and setup in IDL (*?),
the Interactive Data Language. IDL is an interpreter
programming language (*), meaning that every source
statement will be executed line by line. While compiled object
code will run faster, interpreter language will be easier to
understand for the novice user and facilitate modification,
debugging or extracting code sequences of interest. All GWB
modules include a program version checker routine, which will
test for, and if available, inform the user about a new GWB
version. For the user, using the most recent program version is
important to benefit from up-to-date program features and latest

bug fixes. For the developer, program feedback and bug reports
are most meaningful when reported for the current program
version only.

3.2 Software packaging

When coding GWB, Bash and IDL were chosen due to personal
coding preference. With respect to packaging, IDL provides an
additional advantage because it provides its own set of highly
efficient OS-specific processing libraries. This means that all
scripts and required IDL libraries can be stored in a single
application directory, which then works on all Linux
distributions. Combined with customised packaging setup-files,
this archive is then converted into distribution-specific
installation packages in rpm- and deb-format for the most
common Linux distributions. In addition, we provide a generic
standalone installer using the open source makeself (34)
archiving tool. The standalone installer can be used on any
Linux distribution for either, system-wide installation, or
installation in user space on restricted systems without
administrator privileges, for example under $HOME.

All installer packages include two sample images and module-
specific usage descriptions, aimed at generating sample output
illustrating the features of each application module.

3.3 Target platform

With its focus as a server-application, GWB is setup for the
Linux OS, but it can also be used on a regular desktop PC
running Linux. The installation on cloud computing platforms,
including an interface to upload/download personal data,
greatly enlarges the outreach into the user community and
allows usage of the software from any device having a Web
browser and Internet access. First, GWB was installed, and can
easily be maintained, via the respective deb-package on FAO’s
cloud computing platform SEPAL. To further facilitate end-user
interaction, we developed a Jupyter (Kluyver et al., 2016) based
graphical user interface for GWB on SEPAL. This GUI uses
widgets and interactive displays to help the end-user provide
personal data to the individual software routines. The interface
is developed in Python using the sepal-ui framework (%,
Rambaud et al., 2022), embedding a fully independent set of
requirements. Because the GUI application is run via the voila
dashboarding tool (QuantStack, 2019), the end-user is never
confronted with the underlaying command-line interface.
However, the command line access to individual GWB image
analysis modules is always available for the interested user for
direct use or for inclusion into custom scripts setup by the
SEPAL user.

3.4 Licensing

GWB consists of C and IDL source code, which are subject to
various license conditions. A license compatibility check
resulted in choosing GPLv3 (%) as the general applicable
license for GWB. This choice was triggered due to using one
GSL, Gnu Scientific Library (°) subroutine within a C-code
module. GSL is released under GPLv3, which is known as a
strong copyleft license, Copyleft is an arrangement, where
software may be used, modified, and distributed freely but
under the condition that anything derived from it is bound by
the same GPLv3 conditions. As a result, this requirement
enforced that all other licence conditions had to be merged
under GPLv3. The respective licensing information was then
included in the software and its GitHub repository.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License. 534

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 — Academic Track, 22—28 August 2022, Florence, Italy

3.5 Documentation

The GWB project homepage, as well as the GWB application
itself, provides a brief overview and installation instructions. To
foster understanding and exemplify proper usage we provide
highly detailed usage instructions on a dedicated SEPAL
documentation page for the GWB command-line tools (*8). The
instructions on this page outline the use and configuration of
features of each module with the help of the application-
provided sample images. In addition, and to further facilitate
using the application especially for novice users and non-IT
experts, we wrote a second documentation page (*°) illustrating
the use of the individual GWB modules via the interactive
Jupyter (“°) dashboard.

3.6 Feedback

In fact, GWB itself is a prime example of user feedback. GWB
is a spin-off of the desktop application GTB (*, Vogt and
Riitters, 2017). GTB-users suggested to extract the most
popular GTB image analysis modules into individual command-
line driven modules. This suite of modules then turned into the
new application GWB, allowing GUI-free execution of
dedicated GTB images analysis routines on webservers, or
executing a GWB module from custom scripts setup by the user
in any other programming language. Initial user feedback via
email to the GWB lead developer then triggered setting up the
much-detailed command-line documentation page on SEPAL.
Further feedback from SEPAL users then lead to developing the
Jupyter GUI application on SEPAL, which with its own
dedicated documentation page, further simplifies interacting
with the GWB image analysis modules. Both SEPAL
documentation pages are setup on GitHub for efficient inclusion
of end-user feedback and updating its content for new features
in future versions of GWB. With GWB being a spin-off of
GTB, GWB users may also consult the extensive documentation
in form of thematic product sheets and workshop material
available on the GTB homepage. Consulting these documents
will enhance understanding of the existing modules and their
application fields, which in turn may prompt suggestions for
improvements or new functionality to be included in a future
GWB version.

4. CONCLUSIONS

Software provision is an often overlooked yet critical
component in software design. It comprises various aspects,
which when addressed appropriately, can make a great impact
in the promotion, outreach, and acceptance of a software
application. Obviously, the number, type, and content of
software provision aspects will be directly related to the size
and complexity of a given software project. For example, very
simple software may only require downloading a Bash-script
and running it in a terminal. However, the need for tailored
concepts and dedicated programming efforts in software
provision will become paramount when dealing with large and
complex software projects. In fact, at enterprise and commercial
level, aspects of software provision become the driving
principles in development, efficient dissemination, quality
management, progress monitoring, and inclusion of end-user
feedback to increase customer satisfaction and maximise the
overall success of a software project. Software provision may
even expand into areas that are no longer strictly related to the
software itself. Efficient software provision efforts contribute to
disseminating knowledge and analytical methods beyond the

traditional user community. For example, an intuitive and user-
friendly application for digital image analysis, which originally
was targeted for the GIS user community, may then become an
interesting, new analysis tool in medical image analysis:
analysing the shape of forest patches or blood cells in a digital
image is technically the same task but its implications for the
respective user-community are rather different, yet they could
both use the same software doing the same type of analysis.
Another important aspect of software provision is the fact that it
acts as a bridge between software developers and end-users, and
as such contributes to a closer interaction for the benefit of both
communities. Finally, lessons learned in software provision will
also be beneficial and often directly applicable to future or other
related software projects. We hope that this perspective has
shed some light on the topic of software provision and that it
will stimulate further discussions to improve communication
and efficient dissemination of software throughout various end-
user communities.

REFERENCES

Almunawar, M. N., Anshari, M., Susanto, H., & Chen, C. K.,
2018. How People Choose and Use Their Smartphones. In P.
Ordofiez de Pablos (Ed.), Management Strategies and
Technology Fluidity in the Asian Business Sector (pp. 235-
252). IGI Global. doi.org/10.4018/978-1-5225-4056-4.ch014.

Brohl, C., Rasche, P., Jablonski, J., Theis, S., Wille, M.,
Mertens, A., 2018. Desktop PC, Tablet PC, or Smartphone? An
Analysis of Use Preferences in Daily Activities for Different
Technology Generations of a Worldwide Sample. In: Zhou, J.,
Salvendy, G. (eds) Human Aspects of IT for the Aged
Population. Acceptance, Communication and Participation.
ITAP 2018. Lecture Notes in Computer Science, vol 10926.
Springer, Cham. doi.org/10.1007/978-3-319-92034-4_1.

Farris, P. W., Bendle, N. T., Pfeifer, P. E., Reibstein, D. J.,
2010. Marketing Metrics: The Definitive Guide to Measuring
Marketing Performance. Upper Saddle River, New Jersey:
Pearson Education, Inc. ISBN 0-13-705829-2.

Gorelick, N., Hancher, M., Dixon, M., llyushchenko, S., Thau,
D., Moore, R., 2017. Google Earth Engine: Planetary-scale
geospatial analysis for everyone. Remote Sensing of
Environment, 202, pp 18-27,
doi.org/10.1016/j.rse.2017.06.031.

Halpern, M., Zhu Y., Reddi, V. J. 2016. Mobile CPU's rise to
power: Quantifying the impact of generational mobile CPU
design trends on performance, energy, and user satisfaction.
IEEE International Symposium on High Performance Computer
Architecture (HPCA), doi.org/10.1109/HPCA.2016.7446054.

Kluyver, T., Ragan-Kelley, B., Fernando Pérez, Granger, B.,
Bussonnier, M., Frederic, J., Willing, C., 2016. Jupyter
Notebooks — a publishing format for reproducible
computational workflows. In F. Loizides & B. Schmidt (Eds.),
Positioning and Power in Academic Publishing: Players, Agents
and Agendas (pp. 87-90)

QuantStack 2019. And voilal Jupyter
https://blog.jupyter.org/and-voil%C3%A0-f6a2c08a4a93

Blog.

Rambaud, P., Guerrero, D., d'Annunzio R., 2022. sepal-ui: a
framework to transform Python based GIS workflows into

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License. 535

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 — Academic Track, 22—28 August 2022, Florence, Italy

stand-alone web Zenodo,

doi.org/10.5281/zen0do.6467835.

applications.

Schmitz, P., 2021. European Union Public Licence (EUPL):
guidelines July 2021, European Commission, Directorate-
General for Informatics, Publications Office,
doi.org/10.2799/77160.

Soille, P., Burger, A., De Marchi, D., Kempeneers, P.,
Rodriguez, D., Syrris, V., Vasilev, V., 2018. A versatile data-
intensive computing platform for information retrieval from big
geospatial data. Future Generation Computer Systems. 81: 30—
40, doi.org/10.1016/j.future.2017.11.007.

Soille, P., Vogt, P., 2009. Morphological segmentation of
binary patterns. Pattern Recognition Letters, 30(4), 456-459.
Soille, P., Vogt, P., 2022. Morphological spatial pattern
analysis: open source release. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, this volume.

Srba, 1., Bielikova, M., 2016. A Comprehensive Survey and
Classification of Approaches for Community Question
Answering. ACM Trans. Web 10, 3, Article 18 (August 2016),
63 pages. doi.org/10.1145/2934687.

Vogt, P., Riitters K., 2017. GuidosToolbox: universal digital
image object analysis. European Journal of Remote Sensing,
50, 1, pp. 352-361, doi.org/10.1080/22797254.2017.1330650.

Vogt, P., 2019. Patterns in software design. Landscape
Ecology, doi.org/10.1007/s10980-019-00797-9.

Vogt, P., Riitters, K., Rambaud, P., d’Annunzio, R., Lindquist,
E., Pekkarinen, A., 2022. GuidosToolbox Workbench: spatial
analysis of raster maps for ecological applications. Ecography,
doi.org/10.1111/ecog.05864.

! https://fforest.jrc.ec.europa.eu/en/activities/Ipa/gwhb/

2 https://sepal.io/

3 https://snapcraft.io/

4 https://appimage.org/

5 https://flatpak.org/

6 https://www.java.com/

7 https://www.r-project.org/

8 https://www.python.org/

9 https://www.tiobe.com/tiobe-index

10 https://nsis.sourceforge.io/
Uhttps://en.wikipedia.org/wiki/List_of software_package mana
gement_systems

12 https://www.docker.com/

13 https://en.wikipedia.org/wiki/Virtual_machine

14 https://earthengine.google.com/

15 https://jeodpp.jrc.ec.europa.eu/bdap

16 https://gs.statcounter.com

7 https://www.gnu.org/philosophy/free-sw.en.html

18 https://opensource.org/licenses

19 https://github.com/oss-review-toolkit/ort
2https://joinup.ec.europa.eu/collection/eupl/solution/joinup-
licensing-assistant/jla-find-and-compare-software-licenses
21 https://joinup.ec.europa.eu/collection/open-source-
observatory-osor/about

22 https://www.esri.com/arcgis

23 https://qgis.org/

24 https://grass.osgeo.org/

25 http://www.gvsig.com/

26 https://www.rstudio.com/
2Thttps://jupyterlab.readthedocs.io/en/stable/getting_started/over
view.html

28 https://gdal.org/community/index.html

2 https://stackoverflow.com

30 https://en.wikipedia.org/wiki/Open-source_software
31 https://github.com/ec-jrc/GWB

32 https://www.I3harrisgeospatial.com/Software-
Technology/IDL

33 https://en.wikipedia.org/wiki/Interpreter_(computing)
34 https://makeself.io/

35 https://pypi.org/project/sepal-ui/

36 https://www.gnu.org/licenses/gpl-3.0.en.html

37 https://www.gnu.org/software/gsl/

38 https://docs.sepal.io/en/latest/cli/gwb.html

39 https://docs.sepal.io/en/latest/modules/dwn/gwb.html
40 https://jupyter.org

4 https://forest.jrc.ec.europa.eu/en/activities/Ipa/gth/

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI1I-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License. 536

