
TACKLING THE CHALLENGES OF SOFTWARE PROVISION

Peter Vogt 1*, Pierrick Rambaud 2

1 European Commission, Joint Research Centre (JRC), Ispra, Italy – Peter.Vogt@ec.europa.eu

2 United Nations FAO, Rome, Italy – Pierrick.Rambaud@fao.org

Commission IV, WG IV/4

KEY WORDS: Software, packaging, open source, dissemination, application outreach.

ABSTRACT:

In this perspective, we investigate the less documented topic of software provision, aimed at bridging the community of software

developers to the one of software end-users. We outline aspects of the circular flow of software development, starting from the

source code, software packaging, the target platform, licensing, program documentation, and feedback. Next, we highlight challenges

and opportunities of these aspects and how they contribute to the overall success and adoption of a software application. Finally, we

exemplify and illustrate how these aspects were addressed with the provision of the software GWB on FAO’s cloud computing

platform SEPAL. The outlined reflections on software provision are of generic nature and, depending on a given software, may

include many more, or different aspects. Yet, we hope that this perspective may trigger more interest and dedication to the topic of

software provision and its integral function to promote and improve software development.

* Corresponding author

1. INTRODUCTION

For most end-users, the term ‘software’ is equivalent with

executing a given application to obtain a desired result.

Moreover, the highest importance is usually attributed to the

software being free to use. Besides intuitive use, a key

requirement for success and wider acceptance of a software

application is easy access, which is often facilitated through

open-source projects. While most end-users naturally only care

about stability and functionality of the software, software

developers often see their task completed once the application

reaches a certain degree of maturity and its source code is made

available. However, in addition to ease of use and targeted

software development, a third component in the life cycle of

software design (Vogt, 2019) is the software provision. The

importance of adequate software dissemination entails a wide

range of aspects, which are often undervalued but are crucial to

best meet end-user expectations and to achieve the highest

application acceptance.

In this manuscript, we outline a perspective on approaches to

appropriately address issues of software provision aimed at

promoting software in an efficient way. We illustrate the

motivation and features of various aspects of software provision

on the recently published software GWB (1) (Vogt et al., 2022)

and its implementation on the FAO cloud computing platform

SEPAL (2), the System for Earth observations, data access,

processing & analysis for land monitoring.

2. SOFTWARE PROVISION

This section summarises reflections on various aspects when

disseminating a software application for a given operating

system (OS). Figure 1 illustrates six individual sub-sections,

which address generic, major aspects only. These aspects are

not meant to be exhaustive because any given application can

have a different focus area, which in turn requires dedicating

more time and effort into respective aspects of software

provision. In general, the overarching goal of software

provision is to optimise the usage of the software application

and to maximise its outreach into the user community.

Figure 1. Typical aspects of software provision.

2.1 Source code

The provision of the source code is often perceived as a final

product delivery. The main reason for this perception is that a

fully transparent access to the source code will allow any

interested user to analyse all processing steps, or to modify, or

re-use sections of the code for any related purpose. Open-source

access is also important from an educational perspective

because software developers can use the source code to improve

their programming skills or learn how to code in a different

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License.

531

programming language. Furthermore, full access to the source

code implies that many experts can review and test the code, a

critical aspect for security and building trust in the software

application. On the other hand, the majority of end-users cannot

make any use of the source code itself because they either do

not understand the programming language used, or even if so,

they may well be overextended with the complexity of a given

source code. In addition, end-users may not have the skills to

compile the source code or know how to properly link required

dependencies. The large number of Linux distributions provide

an additional challenge due to varying inter-dependencies of

distribution-specific compiled libraries and packaging policies.

In most cases, the process of compiling source code is quite

different across various operating systems and often requires

choosing and setting up an appropriate and dedicated OS-

specific compilation environment. In brief, packaging - the

conversion of compiled source code into a functional executable

binary - is a science on its own and is beyond the abilities of a

typical end-user.

2.2 Software packaging

The scope of packaging is to bundle the entire application into a

single installation archive, including and/or linking OS-specific

dependencies, pre- and post-installation instructions, and the

integration into the OS via menu entries. Examples are rpm and

deb-packages (Linux), dmg-packages (macOS), and exe/msi-

packages (MS-Windows). Packaging allows for efficient

system-wide software management: installation, upgrades, and

removal of the application. System-wide installation also

provides application access to all OS users in a coherent way.

A particular advantage of the Linux OS is the availability of,

and easy access to, various compiler suits, programming

languages, and libraries. Virtually all Linux distributions

provide a package manager, which can be used to query, install,

and uninstall any software or libraries of interest for direct use

or temporary evaluation. The Linux package manager is a

unique and very powerful tool: browse the repository and select

all packages of interest and once done, click the Apply button.

The same is true for updating the entire system. A simple mouse

click, or the respective installation command, is all it needs to

automatically download all selected software packages

including any depending libraries. And all packages to be

installed or upgraded are tested, validated, and officially

approved. In fact, it is quite puzzling to see that no other OS has

adopted such a user-friendly, efficient, and secure software

management tool. Yet, a disadvantage of software packaging on

Linux is the vast number of Linux distributions. In addition to

various packaging formats, the high variety of custom compiled

libraries and distribution-specific dependencies makes

packaging under Linux a challenging task. One solution, though

time-consuming and tedious, is to provide distribution-specific

packages for the most common Linux distributions. Another

alternative is to generate statically linked executables or use

generic installation formats such as Snap (3), AppImage (4) or

Flatpak (5), each having its own advantage or disadvantage.

In contrast to Linux, setting up a specific compiler environment

and required libraries on any other OS can be a time-consuming

and rather daunting exercise. It requires browsing the Internet

for information, comparing various options against each other,

manual download and subsequent execution of individual

installer packages, and often custom actions to setup required

elements in the packaging chain. Yet, once established, the

resulting compiled binary is likely to work without issues across

various editions of the MS-Windows or macOS operating

systems. Finally, OS-agnostic compiling is facilitated when the

application is coded in platform independent, mostly scripting

languages such as JAVA (6), R (7), or Python (8). The TIOBE (9)

programming community index is a measure of popularity of

various programming languages. This index is updated monthly

and may help to select a future-proof programming language

when starting to build a new software system. Figure 2 shows a

snapshot of the TIOBE index, illustrating the strong increase for

the Python programming language (light blue colour) over the

past 20 years, which in April 2022 has become the most popular

programming language.

Figure 2. TIOBE (9) index showing the most used programming

languages since June 2001.

Various tools exist for packaging the binary and adding package

maintenance utilities. They differ in program features, ease of

use, and price, from fully fledged proprietary commercial

applications to powerful and free open-source solutions, for

example the Nullsoft Scriptable Install System – NSIS (10) for

MS-Windows. The Wikipedia website (11) provides an overview

of notable software package management systems for a series of

OS and packaging scopes.

In general, the installation of software into an operating system

requires administrator rights, which are not available on many

secured or closed IT environments, such as in government

agencies, where users may fully access a limited OS-space only,

for example their $HOME directory. Yet, this situation can be

addressed by setting up the software and all required

components in a self-contained single directory, which is then

compressed into a self-extracting installer. Any user can then

download such a standalone installer, extract it in a private

location with write and execute permissions, and have full

access to the application without administrator rights. An

additional benefit of this way of software distribution is that the

application in a self-contained directory can be copied to and

executed from any external device, for example a USB flash

drive, providing maximum portability of the given application.

Finally, the provision of a single application, or even a suite of

applications up to a fully customised operating system, can also

be setup within a Docker (12) container, or in a virtual machine

setup, see the overview in this Wikipedia website (13).

Nowadays, virtualization software is an ideal way for

developers to draft, test, deploy, and run applications in a

controlled and isolated environment with all its dependencies,

and configured for a variety of operating systems without the

need to purchase any additional hardware.

2.3 Target platform

Maximum outreach is achieved through a software setup that

will work on as many platforms and operating systems as

possible. In addition to personal computing, an even wider

outreach may be achieved by using a cloud computing platform,

such as GEE (14), the Google Earth Engine (Gorelick et al.,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License.

532

2017) or BDAP (15), the Big Data Analytics Platform (Soille et

al., 2018). Yet another alternative is designing the application

as a web-based online application or, where possible, as an

Android/iOS application for portable devices. According to

Statcounter (16, Figure 3), the use of portable devices has

increased steadily over the past years and its global market

share has surpassed the desktop market share in 2017. This

trend is likely to continue, due to the growing adoption of

smartphones (Almunawar et al., 2018) and the CPU

performance increase in mobile devices (Halpern et al., 2016).

Another deciding factor for choosing the appropriate target

platform may also be the age class of the envisioned end-user

audience (Bröhl et al., 2018).

Figure 3. Global market share (16): desktop (blue line) and

mobile devices (green line) from Jan 2009 to April 2022.

2.4 Licensing

A software license agreement is a legally binding agreement

between the software creator and the software end-user. There

are two main types of software license agreements. A

proprietary or closed source license, usually outlined in an End

User License Agreement (EULA), must be applied when using a

proprietary programming language or the developer wishes to

maintain full ownership and exclusive control over future

developments. The other main type is Open-Source licenses.

Open-Source Software (OSS) is a widely used term describing

software that comes with all necessary permissions granted in

advance to permit its use, improvement, and redistribution

(modified or unmodified) by anyone and for any purpose. These

permissions are often called the four freedoms (17) of software

users. The ability of individuals and organisations to freely

reuse software under standardised open-source licences has

many benefits: it avoids the need for custom license

negotiations, enables business innovation through rapid

deployment of existing technology, increases sharing and

popularity of software development methodologies, and

supports sharing of development costs, resulting in improved

code quality. The Open-Source Initiative (OSI) website (18)

provides extensive information on over 100 open-source

licenses and answers to related questions. The choice of an

appropriate license scheme may be further complicated by

having to review license compliance checks when a software

project combines various modules or libraries, each with its

individual license scheme. Here, the OSS Review Toolkit (19)

can assist with license compliance checks. An alternative

introduction and guideline, outlines the European Union Public

License (EUPL) and other common OSS licenses (Schmitz, P.

2021). The Joinup Licensing Assistant (20) is yet another very

helpful online tool to interactively compare and select an

adequate open-source licensing scheme, while maintaining

license compatibility. Finally, OSOR (21), the Open-Source

Observatory, is a place where the open-source software

community can publish news, find relevant open-source

software solutions and read about the use of free and open

source in public administrations across and beyond Europe in

24 languages. In summary, choosing the appropriate license for

a given software project requires a good deal of thought and

rationale to ensure all legal aspects are addressed in an adequate

way, and covered also for future software developments.

2.5 Documentation

Documentation is crucial for software adoption. The most

obvious scope is explaining application features and provide

detailed usage instructions. Yet, documentation has many facets

and can be fine-tuned in various ways to best match customer

expectations, for example as a user manual, product sheets with

application examples, guided instructions in workshop material,

providing and distributing flyers, offering online training

courses, or by using social media services, for example

promoting the software via Twitter or recorded YouTube video

sessions.

From a strictly technical perspective, any application is fully

functional by executing correct command-line instructions. The

addition of a Graphical User Interface (GUI) does not provide

any new program functionality but will simply act as a user-

friendly way to collect the information for setting up the

underlaying command-line instructions for execution. By

providing only valid options to choose from, a GUI has the

additional benefit to reduce potential wrong user input. The

scope of a GUI is to increase program usability, and, in this

sense, a GUI can be seen as a form of program documentation

aimed at simplifying program interaction and execution. While

GUI coding is an extra burden for software developers,

adequate GUI design is one of the most important aspects for

the success and adoption of any application. A GUI should be

intuitive, easy to interact with, and logically structured to flatten

the learning curve, encourage, facilitate, and stimulate using the

application to its full extent. In fact, the success of personal

computing was triggered through the introduction of a mouse-

driven GUI for Apple Macintosh in 1984 and MS-Windows 3.0

in 1990. Equally, Linux desktop environments such as KDE,

Gnome, XFCE, etc. are nothing else but GUIs to the

underlaying operating system. Another example, illustrating the

importance and impact of GUIs, are geographic information

system (GIS) applications such as ArcGIS (22), QGIS (23),

GRASS (24), gvSIG (25), or simplifying coding interfaces such

as RStudio (26) and JupyterLab (27), which greatly increased the

wider adoption of image analysis techniques and the

exploitation of spatial data. Furthermore, please note that

nowadays virtually all portable or mobile devices use GUI-

driven applications.

2.6 Feedback

End-users interact with the software application. This statement

is not trivial at all, but in fact crucial because it entails many

possibilities to enhance software adoption and improve software

outreach into the user community. In fact, feedback is likely the

most fundamental aspect in software provision because it

concerns and serves as an indicator for all other aspects in the

entire software cycle (see Figure 1), from product development,

dissemination, and usage. It is therefore critical that software

developers should be actively involved in tackling end-user

feedback (Srba et al., 2016) to avoid misunderstandings and

ensure efficient target-driven software development.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License.

533

Ideally, the application should be accompanied with various

feedback options to allow the end-user sending back

constructive comments and suggestions. A good example is the

GDAL project (28), which uses a mailing list, GitHub, chat,

social media, and conferences (FOSS4G 2022) to exchange

information between developers and the user community. Stack

Overflow (29) is another prominent example serving the same

purpose. Typically, feedback will result in improved

documentation, bug fixing, or adding new program features.

However, it may also trigger setting up various versions of the

application, to specifically address targeted end-user groups.

For example, the application, or modular parts of it, can be

provided as a simple script (R, Python, etc), GIS-plugins,

standalone-, mobile-, or webserver-based application. Feedback

promotes transparency, security, and trust by actively involving

the user community in the software life cycle. Feedback opens

an efficient communication channel between all participants. It

highlights areas of improvement, streamlines efficient

development, and fosters end-user engagement. Ultimately,

feedback contributes to increased application performance and

acceptance of the software. Closed source projects often have a

dedicated marketing department, which monitors, measures, and

channels user feedback in dedicated customer satisfaction

studies (Farris et al., 2010), considered essential for ensuring

product success and end-user loyalty. In open-source projects

(30), feedback is a critical component for efficiently facilitating

code revisions, allowing for security screening, and even

attracting new contributors from developers to translators to

educators. Feedback is a natural way of communication, starting

from sharing an idea to finding participants having the same

interests and setting up a new project for implementation.

Feedback then continuous as a stimulating collaborative tool for

monitoring, listening, and constantly improving the software.

3. APPLICATION EXAMPLE

The GuidosToolbox Workbench (GWB) (Vogt et al., 2022)

provides various generic image analysis modules as command

line scripts on 64-bit Linux systems. In this section, we use

GWB as an example to illustrate how we addressed the software

provision points mentioned before.

3.1 Source code

In addition to the distribution-independent compiled

executables, we provide the plain text source code for all IDL

modules in a dedicated subdirectory of the application. The

source code and dependencies of the IDL and all other C-

programs, including the very popular spatial pattern analysis

routine MSPA (Soille and Vogt, 2009; Soille and Vogt, 2022),

has been placed on the public GitHub project page (31). We

believe that the inclusion of the simple plain text IDL source

code within the application facilitates the access to the source

code, for example in the absence of internet access. All modules

are launched via customised Bash scripts and setup in IDL (32),

the Interactive Data Language. IDL is an interpreter

programming language (33), meaning that every source

statement will be executed line by line. While compiled object

code will run faster, interpreter language will be easier to

understand for the novice user and facilitate modification,

debugging or extracting code sequences of interest. All GWB

modules include a program version checker routine, which will

test for, and if available, inform the user about a new GWB

version. For the user, using the most recent program version is

important to benefit from up-to-date program features and latest

bug fixes. For the developer, program feedback and bug reports

are most meaningful when reported for the current program

version only.

3.2 Software packaging

When coding GWB, Bash and IDL were chosen due to personal

coding preference. With respect to packaging, IDL provides an

additional advantage because it provides its own set of highly

efficient OS-specific processing libraries. This means that all

scripts and required IDL libraries can be stored in a single

application directory, which then works on all Linux

distributions. Combined with customised packaging setup-files,

this archive is then converted into distribution-specific

installation packages in rpm- and deb-format for the most

common Linux distributions. In addition, we provide a generic

standalone installer using the open source makeself (34)

archiving tool. The standalone installer can be used on any

Linux distribution for either, system-wide installation, or

installation in user space on restricted systems without

administrator privileges, for example under $HOME.

All installer packages include two sample images and module-

specific usage descriptions, aimed at generating sample output

illustrating the features of each application module.

3.3 Target platform

With its focus as a server-application, GWB is setup for the

Linux OS, but it can also be used on a regular desktop PC

running Linux. The installation on cloud computing platforms,

including an interface to upload/download personal data,

greatly enlarges the outreach into the user community and

allows usage of the software from any device having a Web

browser and Internet access. First, GWB was installed, and can

easily be maintained, via the respective deb-package on FAO’s

cloud computing platform SEPAL. To further facilitate end-user

interaction, we developed a Jupyter (Kluyver et al., 2016) based

graphical user interface for GWB on SEPAL. This GUI uses

widgets and interactive displays to help the end-user provide

personal data to the individual software routines. The interface

is developed in Python using the sepal-ui framework (35,

Rambaud et al., 2022), embedding a fully independent set of

requirements. Because the GUI application is run via the voilà

dashboarding tool (QuantStack, 2019), the end-user is never

confronted with the underlaying command-line interface.

However, the command line access to individual GWB image

analysis modules is always available for the interested user for

direct use or for inclusion into custom scripts setup by the

SEPAL user.

3.4 Licensing

GWB consists of C and IDL source code, which are subject to

various license conditions. A license compatibility check

resulted in choosing GPLv3 (36) as the general applicable

license for GWB. This choice was triggered due to using one

GSL, Gnu Scientific Library (37) subroutine within a C-code

module. GSL is released under GPLv3, which is known as a

strong copyleft license, Copyleft is an arrangement, where

software may be used, modified, and distributed freely but

under the condition that anything derived from it is bound by

the same GPLv3 conditions. As a result, this requirement

enforced that all other licence conditions had to be merged

under GPLv3. The respective licensing information was then

included in the software and its GitHub repository.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License.

534

3.5 Documentation

The GWB project homepage, as well as the GWB application

itself, provides a brief overview and installation instructions. To

foster understanding and exemplify proper usage we provide

highly detailed usage instructions on a dedicated SEPAL

documentation page for the GWB command-line tools (38). The

instructions on this page outline the use and configuration of

features of each module with the help of the application-

provided sample images. In addition, and to further facilitate

using the application especially for novice users and non-IT

experts, we wrote a second documentation page (39) illustrating

the use of the individual GWB modules via the interactive

Jupyter (40) dashboard.

3.6 Feedback

In fact, GWB itself is a prime example of user feedback. GWB

is a spin-off of the desktop application GTB (41, Vogt and

Riitters, 2017). GTB-users suggested to extract the most

popular GTB image analysis modules into individual command-

line driven modules. This suite of modules then turned into the

new application GWB, allowing GUI-free execution of

dedicated GTB images analysis routines on webservers, or

executing a GWB module from custom scripts setup by the user

in any other programming language. Initial user feedback via

email to the GWB lead developer then triggered setting up the

much-detailed command-line documentation page on SEPAL.

Further feedback from SEPAL users then lead to developing the

Jupyter GUI application on SEPAL, which with its own

dedicated documentation page, further simplifies interacting

with the GWB image analysis modules. Both SEPAL

documentation pages are setup on GitHub for efficient inclusion

of end-user feedback and updating its content for new features

in future versions of GWB. With GWB being a spin-off of

GTB, GWB users may also consult the extensive documentation

in form of thematic product sheets and workshop material

available on the GTB homepage. Consulting these documents

will enhance understanding of the existing modules and their

application fields, which in turn may prompt suggestions for

improvements or new functionality to be included in a future

GWB version.

4. CONCLUSIONS

Software provision is an often overlooked yet critical

component in software design. It comprises various aspects,

which when addressed appropriately, can make a great impact

in the promotion, outreach, and acceptance of a software

application. Obviously, the number, type, and content of

software provision aspects will be directly related to the size

and complexity of a given software project. For example, very

simple software may only require downloading a Bash-script

and running it in a terminal. However, the need for tailored

concepts and dedicated programming efforts in software

provision will become paramount when dealing with large and

complex software projects. In fact, at enterprise and commercial

level, aspects of software provision become the driving

principles in development, efficient dissemination, quality

management, progress monitoring, and inclusion of end-user

feedback to increase customer satisfaction and maximise the

overall success of a software project. Software provision may

even expand into areas that are no longer strictly related to the

software itself. Efficient software provision efforts contribute to

disseminating knowledge and analytical methods beyond the

traditional user community. For example, an intuitive and user-

friendly application for digital image analysis, which originally

was targeted for the GIS user community, may then become an

interesting, new analysis tool in medical image analysis:

analysing the shape of forest patches or blood cells in a digital

image is technically the same task but its implications for the

respective user-community are rather different, yet they could

both use the same software doing the same type of analysis.

Another important aspect of software provision is the fact that it

acts as a bridge between software developers and end-users, and

as such contributes to a closer interaction for the benefit of both

communities. Finally, lessons learned in software provision will

also be beneficial and often directly applicable to future or other

related software projects. We hope that this perspective has

shed some light on the topic of software provision and that it

will stimulate further discussions to improve communication

and efficient dissemination of software throughout various end-

user communities.

REFERENCES

Almunawar, M. N., Anshari, M., Susanto, H., & Chen, C. K.,

2018. How People Choose and Use Their Smartphones. In P.

Ordóñez de Pablos (Ed.), Management Strategies and

Technology Fluidity in the Asian Business Sector (pp. 235-

252). IGI Global. doi.org/10.4018/978-1-5225-4056-4.ch014.

Bröhl, C., Rasche, P., Jablonski, J., Theis, S., Wille, M.,

Mertens, A., 2018. Desktop PC, Tablet PC, or Smartphone? An

Analysis of Use Preferences in Daily Activities for Different

Technology Generations of a Worldwide Sample. In: Zhou, J.,

Salvendy, G. (eds) Human Aspects of IT for the Aged

Population. Acceptance, Communication and Participation.

ITAP 2018. Lecture Notes in Computer Science, vol 10926.

Springer, Cham. doi.org/10.1007/978-3-319-92034-4_1.

Farris, P. W., Bendle, N. T., Pfeifer, P. E., Reibstein, D. J.,

2010. Marketing Metrics: The Definitive Guide to Measuring

Marketing Performance. Upper Saddle River, New Jersey:

Pearson Education, Inc. ISBN 0-13-705829-2.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau,

D., Moore, R., 2017. Google Earth Engine: Planetary-scale

geospatial analysis for everyone. Remote Sensing of

Environment, 202, pp 18-27,

doi.org/10.1016/j.rse.2017.06.031.

Halpern, M., Zhu Y., Reddi, V. J. 2016. Mobile CPU's rise to

power: Quantifying the impact of generational mobile CPU

design trends on performance, energy, and user satisfaction.

IEEE International Symposium on High Performance Computer

Architecture (HPCA), doi.org/10.1109/HPCA.2016.7446054.

Kluyver, T., Ragan-Kelley, B., Fernando Pérez, Granger, B.,

Bussonnier, M., Frederic, J., Willing, C., 2016. Jupyter

Notebooks – a publishing format for reproducible

computational workflows. In F. Loizides & B. Schmidt (Eds.),

Positioning and Power in Academic Publishing: Players, Agents

and Agendas (pp. 87–90)

QuantStack 2019. And voilà! Jupyter Blog.

https://blog.jupyter.org/and-voil%C3%A0-f6a2c08a4a93

Rambaud, P., Guerrero, D., d'Annunzio R., 2022. sepal-ui: a

framework to transform Python based GIS workflows into

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License.

535

stand-alone web applications. Zenodo,

doi.org/10.5281/zenodo.6467835.

Schmitz, P., 2021. European Union Public Licence (EUPL):

guidelines July 2021, European Commission, Directorate-

General for Informatics, Publications Office,

doi.org/10.2799/77160.

Soille, P., Burger, A., De Marchi, D., Kempeneers, P.,

Rodriguez, D., Syrris, V., Vasilev, V., 2018. A versatile data-

intensive computing platform for information retrieval from big

geospatial data. Future Generation Computer Systems. 81: 30–

40, doi.org/10.1016/j.future.2017.11.007.

Soille, P., Vogt, P., 2009. Morphological segmentation of

binary patterns. Pattern Recognition Letters, 30(4), 456-459.

Soille, P., Vogt, P., 2022. Morphological spatial pattern

analysis: open source release. The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences, this volume.

Srba, I., Bielikova, M., 2016. A Comprehensive Survey and

Classification of Approaches for Community Question

Answering. ACM Trans. Web 10, 3, Article 18 (August 2016),

63 pages. doi.org/10.1145/2934687.

Vogt, P., Riitters K., 2017. GuidosToolbox: universal digital

image object analysis. European Journal of Remote Sensing,

50, 1, pp. 352-361, doi.org/10.1080/22797254.2017.1330650.

Vogt, P., 2019. Patterns in software design. Landscape

Ecology, doi.org/10.1007/s10980-019-00797-9.

Vogt, P., Riitters, K., Rambaud, P., d’Annunzio, R., Lindquist,

E., Pekkarinen, A., 2022. GuidosToolbox Workbench: spatial

analysis of raster maps for ecological applications. Ecography,

doi.org/10.1111/ecog.05864.

1 https://forest.jrc.ec.europa.eu/en/activities/lpa/gwb/
2 https://sepal.io/
3 https://snapcraft.io/
4 https://appimage.org/
5 https://flatpak.org/
6 https://www.java.com/
7 https://www.r-project.org/
8 https://www.python.org/
9 https://www.tiobe.com/tiobe-index
10 https://nsis.sourceforge.io/
11https://en.wikipedia.org/wiki/List_of_software_package_mana

gement_systems
12 https://www.docker.com/
13 https://en.wikipedia.org/wiki/Virtual_machine
14 https://earthengine.google.com/
15 https://jeodpp.jrc.ec.europa.eu/bdap
16 https://gs.statcounter.com
17 https://www.gnu.org/philosophy/free-sw.en.html
18 https://opensource.org/licenses
19 https://github.com/oss-review-toolkit/ort
20https://joinup.ec.europa.eu/collection/eupl/solution/joinup-

licensing-assistant/jla-find-and-compare-software-licenses
21 https://joinup.ec.europa.eu/collection/open-source-

observatory-osor/about
22 https://www.esri.com/arcgis
23 https://qgis.org/

24 https://grass.osgeo.org/
25 http://www.gvsig.com/
26 https://www.rstudio.com/
27https://jupyterlab.readthedocs.io/en/stable/getting_started/over

view.html
28 https://gdal.org/community/index.html
29 https://stackoverflow.com
30 https://en.wikipedia.org/wiki/Open-source_software
31 https://github.com/ec-jrc/GWB
32 https://www.l3harrisgeospatial.com/Software-

Technology/IDL
33 https://en.wikipedia.org/wiki/Interpreter_(computing)
34 https://makeself.io/
35 https://pypi.org/project/sepal-ui/
36 https://www.gnu.org/licenses/gpl-3.0.en.html
37 https://www.gnu.org/software/gsl/
38 https://docs.sepal.io/en/latest/cli/gwb.html
39 https://docs.sepal.io/en/latest/modules/dwn/gwb.html
40 https://jupyter.org
41 https://forest.jrc.ec.europa.eu/en/activities/lpa/gtb/

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 – Academic Track, 22–28 August 2022, Florence, Italy

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-531-2022 | © Author(s) 2022. CC BY 4.0 License.

536

