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ABSTRACT: 

 

Recent advancement in hardware and software provides the possibility of realizing full automation in stereo-image tasks. This paper 

investigated disparity map generation from aerial images with different methods: unsupervised method and supervised methods. The 

datasets were from aerial stereo dense matching benchmark dataset for deep learning in ISPRS 2021: Vaihingen dataset and the 

WHU MVS/Stereo Dataset released in the CVPR 2020. Two neural networks: GC-net and PSMnet have been trained with the 

Vaihingen dataset and the WHU MVS/Stereo Dataset. With unsupervised methods, stereo block matching(StereoBM) and Stereo 

Semi-Global Matching (StereoSGM) methods from the OpenCV were studied. We selected seven image pairs from the Vaihingen 

dataset and six image pairs from the WHU dataset for testing and evaluation.  Difficulty scenes such as textureless areas, reflective 

surfaces, and repetitive patterns were also included in our study. The performance from different methods was compared by both 

visualization and quantitative means. The advantages and disadvantages are presented. 
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1. INTRODUCTION  1 

Although study on the generation of disparity maps has been for 2 

decades, from the latest statistics of Web of Science 3 

(WebOfScience, 2022), the research on disparity maps is still 4 

increasing yearly, especially in the field of artificial intelligence 5 

(AI). With recent advances in AI, machines are gaining the 6 

ability to learn, improve, and execute repetitive tasks precisely, 7 

especially with deep learning techniques. More and more 8 

researchers started to explore the new methods in the fields of 9 

deep learning to produce disparity maps. The advantages of 10 

utilizing the deep learning technique lie in its intelligence, 11 

meaning that the learning process is done by the machine. 12 

Without demanding professional knowledge from humans, 13 

solutions can be obtained. As the numerous research on deep 14 

learning techniques for stereo images in recent years, the 15 

advantages and disadvantages of the traditional and the new 16 

technology for stereo image tasks should be investigated. 17 

 18 

 19 

Figure 1. Statistics of publications on the topic ‘disparity map’ 20 

in Web of Science. Horizontal axis: publication year; Vertical 21 

axis: number of publications with the topic ‘disparity map’. 22 

 23 

What is a disparity map? A disparity map shows the pixel 24 

locational differences between the left and the right images 25 

when a 3D scene is projected perspectively on the stereo 26 

images. It presents the relative depth while a depth map 27 

demonstrates the absolute depth by giving information about the 28 

distance between the lenses of the stereo camera and the focal 29 

length of the camera. The conventional methods for disparity 30 

map generation were primarily focused on the unsupervised 31 

methods such as area-based matching methods (Bracewell, 32 

1965; Briechle & Hanebeck, 2001) and feature-based matching 33 

methods (Schmid & Mohr, 1997; Baumberg, 2000; Caspi et al., 34 

2006), in which professional knowledge of stereo geometry and 35 

image matching, and a deep understanding of terms in the field 36 

were required. For example, the knowledge of the epipolar 37 

geometry, epipolar planes, and epipolar lines in stereo images, 38 

is needed. In an epipolar geometry, when a stereo camera takes 39 

images of a 3D scene from two distinct positions, the projection 40 

of a 3D scene on two images is constrained. The relations 41 

between the projected points on each image (left or right image) 42 

follow the rules: the image point, the observed 3D point, and 43 

the perspective center of the camera are aligned. An epipolar 44 

plane consists of three points: the perspective centers (the 45 

optical center of a camera) of a stereo camera and the observed 46 

point from a 3D scene. An epipolar line is the intersected line 47 

between the epipolar plane and the left or right image plane. 48 

The steps in traditional methods for producing a disparity map 49 

include i) image rectification; ii) resampling epipolar lines; iii) 50 

estimating the disparity map. Optionally, the users manually 51 

select at least five pairs of corresponding points from stereo 52 

images to estimate the parameters of rotation, scale, and 53 

translation. After image matching, a disparity map can be 54 

computed. The difficulties in producing a disparity map might 55 

rise in the following context: i) illumination inconsistency and 56 

noise presentation on images; ii) inconsistency of specular 57 

reflection on images; iii) perspective distortion and perspective 58 
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inconsistency when cameras are close to the objects; iv) 1 

textureless surfaces; v) transparent objects; vi) repeating 2 

textures on surfaces; vii) occlusion and depth discontinuity. In 3 

the condition of aerial images, case iii) rarely happens. 4 

The core of disparity map generation with an unsupervised 5 

method is to find the corresponding points between the left and 6 

right images. That is image matching. In 2005, Hirschmüller 7 

(2005) proposed the semi-global matching (SGM) method for 8 

image matching. The algorithm has been utilized in various 9 

applications such as aerial image matching to driver assistance 10 

systems. It supports pixel-wise matching for maintaining sharp 11 

object boundaries and fine structures and can be implemented 12 

efficiently on different computation hardware (Hirschmüller, 13 

2005). Later on, the algorithm has been developed further to 14 

utilize mutual information (Hirschmüller, 2008) and increase 15 

memory efficiency (Hirschmüller et al., 2012). 16 

OpenCV (Open Source Computer Vision Library) was built in 17 

2008. It is an open-source library that includes several hundreds 18 

of computer vision algorithms (OpenCV, 2022). There are 19 

functions in OpenCV to support depth estimation from stereo 20 

images. These functions include epipolar geometry estimation 21 

and constraint, and different stereo image matching algorithms 22 

(including the SGM method) for stereo reconstruction.  23 

In recent years, using deep learning methods for obtaining depth 24 

maps from stereo images has been highlighted. Deep learning 25 

models have been successful in learning representations directly 26 

from the raw data and are effective for understanding semantics 27 

(Kendall et al., 2017). The learning-based method can introduce 28 

global semantic information such as specular and reflective 29 

priors for more robust matching (Yao et al.,2018). The rich 30 

training data help in dealing with the difficulty of matching 31 

ambiguity caused by occlusion, varying lighting conditions, or 32 

textureless regions (Wang, et al. 2021). Laga et al. (2020) gave 33 

a comprehensive review of deep learning methods for stereo 34 

depth estimation. The authors categorized deep learning 35 

methods into two groups: one is the traditional stereo-matching 36 

technique, and another is an end-to-end trainable framework. 37 

The traditional method is composed of three modules: a feature 38 

extraction module, a feature matching, and cost aggregation 39 

module, and a disparity/depth estimation module. Each module 40 

is trained independently from the others. The end-to-end 41 

trainable methods were grouped into two types. One type is to 42 

tackle the regression problem with a large amount of training 43 

data, another type is to break the traditional pipeline into 44 

differentiable blocks. GC-Net, HRS Net, MVSNet, PMS Net, 45 

and PLUMENet are examples of convolutional neural networks 46 

(CNNs) with an end-to-end trainable framework.  47 

GC-Net was introduced in 2017 by Kendall et al.. It reasons 48 

about geometry by forming a fully differentiable cost volume 49 

and incorporates context from the data with a 3-D convolutional 50 

architecture to reduce the mismatch in ambiguous regions so 51 

that depth estimation is improved (Kendall et al., 2017). 52 

PMSNet was proposed by Chang & Chen (2018). It employed a 53 

pyramid stereo matching network and presented a stacked 54 

hourglass 3D CNN to extend the regional support of context 55 

information in cost volume. Yao et al. (2018) proposed the 56 

MVSNet (Multi-View-Stereo network). It inferred a depth map 57 

from multi-view images. One reference image and several 58 

source images were input into the network. The differentiable 59 

homography warping operation encodes camera geometries in 60 

the network to build the 3D cost volumes from 2D image 61 

features and enables the end-to-end training. It utilized a 62 

variance-based metric that maps multiple features into one cost 63 

feature in the volume (Yao et al., 2018). HRS Net was 64 

presented by Yang et al. in 2019. The authors proposed a 65 

hierarchical stereo matching architecture to extract multi-scale 66 

features from high-resolution images. Besides, asymmetric 67 

augmentation techniques were introduced to increase the 68 

amount of training data. The algorithm can be run efficiently in 69 

real-time (Yang et al., 2019).  70 

In deep learning methods, some experiment was based on open- 71 

source datasets, such as KITTI stereo (KITTI stereo dataset, 72 

2022) and Middlebury stereo (Middlebury stereo datasets, 73 

2022). KITTI stereo datasets were collected from two video 74 

cameras mounted on the roof of a car. The Middlebury stereo 75 

image pairs were taken in indoor scenes under controlled 76 

lighting conditions. Ready aerial stereo image datasets still 77 

seem to be quite scarce, but at least some can be found, for 78 

example, the stereo image dataset of Vaihingen: Aerial Stereo 79 

Dense Matching Benchmark introduced by the ISPRS in 2021 80 

(ISPRS2021 benchmark, 2022), and the synthetic aerial dataset: 81 

the WHU dataset (Liu & Ji, 2020). 82 

 Our experiment was focused on obtaining disparity maps i) 83 

from two sets of aerial images with two algorithms from the 84 

OpenCV; ii) from two sets of aerial images with deep neural 85 

networks: GC-Net and PSM net; The results from unsupervised 86 

methods and supervised methods are evaluated with both visual 87 

and quantitative analysis. Their advantages and disadvantages 88 

are discussed.   89 

 90 

2. MATERIALS 91 

2.1 The WHU MVS/Stereo Dataset 92 

The WHU Stereo Dataset was provided by Wuhan University, 93 

China (Liu & Ji, 2020). It is a synthetic aerial dataset for large- 94 

scale Earth surface reconstruction. It was generated from a 3D 95 

digital surface model produced from thousands of real aerial 96 

images and refined by manual editing. The dataset covers an 97 

area of 6.7 x 2.2km2 over Meitan county, Guizhou Province in 98 

China. The virtual aerial image was taken at 550 m above the 99 

ground with 90% heading overlap and 80% side overlap. The 100 

ground resolution is 10cm (Liu & Ji, 2020).  The dataset 101 

contains dense and tall buildings, sparse factories, mountains 102 

covered with forests, bare ground, and rivers. The aerial images 103 

are 8-bit RGB images and depth/disparity maps are 16-bit. 104 

The WHU Stereo image dataset was divided into training, 105 

validation, and test sets, respectively. Each dataset contains 106 

both stereo image pairs and corresponding disparity maps with 107 

ground truth. The image size in each of the sets was 768×384 108 

pixels. There were 8,316 RGB image pairs in the training set, 109 

1694 image pairs in the test set, and 924 image pairs in the 110 

validation set. Fig. 2 shows an example of the WHU dataset. 111 

 112 

 113 

Figure 2. The WHU dataset for training, test, and validation.  114 

 From left to right: stereo-left image, stereo-right image, and 115 

disparity map. 116 

  117 

2.2 ISPRS Vaihingen dataset 118 

The ISPRS Vaihingen Aerial Stereo Dense Matching 119 

Benchmark 2021 (ISPRS2021 benchmark, 2022): the 120 

Vaihingen dataset, was provided by the German Society for 121 

Photogrammetry, Remote Sensing, and Geoinformation. The 122 

dataset contains aerial images with a depth of 11 bits and a 123 

ground sample distance (GSD) of 8 cm. The aerial images were 124 

acquired with a fly height of 900m and a focal length of 125 

120mm. Both forward and side overlaps were 60%. It included 126 
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RGB stereo image pairs of size 1024×1024 pixels, and same 1 

size disparity images for labels (see Fig. 3). Only the original 2 

training set of the ISPRS dataset included the reference depth 3 

maps. All training, validation, and test sets were formed from 4 

the original ISPRS training set. This way, the final training set 5 

used training included 449 stereo image pairs and labels, a 6 

validation set of 68 image pairs and labels, and a test set of 68 7 

image pairs and labels.  8 

The reference depth maps were produced by Lidar point clouds, 9 

consisting of points. They were interpolated twice with a 5×5 10 

average window and once with a 3×3 average window for more 11 

consistent disparity image labels that were then used for 12 

training, validation, and test metrics. 13 

 14 

 15 

Figure 3. Stereo images and disparity image labels (reference 16 

data) from the ISPRS Vaihingen dataset. 17 

 18 

3. METHODS 19 

A disparity image for a set of stereo images is defined as an 20 

image where each pixel denotes the distance between the pixel 21 

in image one to its matching pixel in image two. The core 22 

problem in computing a disparity map is to find corresponding 23 

points from a stereo image pair. Image matching is essential for 24 

disparity map generation. In this experiment, we employed 25 

unsupervised methods including stereo block-matching 26 

(SteroBM) and stereo semi-global block matching (StereoSGM) 27 

for our experiment: OpenCV with Matlab 2022 (Mathsworks, 28 

2022), and supervised methods with end-to-end deep learning 29 

frameworks: GC-Net and PSMNet. 30 

 31 

3.1 OpenCV 32 

In OpenCV, two image matching methods were provided: 33 

StereoBM and StereoSGM. With stereoBM algorithm, 34 

parameters of the ‘numDisparities’ and ‘blockSize’ should be 35 

preset. ‘numDisparities’ defines the disparity search range. The 36 

default minimum disparity is 0 while the maximum disparity 37 

needs to be set by the users. ‘blockSize’ defines the size of an 38 

image block. When blockSize =1, it is at pixel level. The 39 

matching is implemented pixel by pixel. 40 

With the StereoSGM algorithm, the parameters include 41 

‘minDisparity’, ‘numDisparities’, ‘SADWindowSize’, 42 

‘disp12MaxDiff’, ‘preFilterCap’, ‘uniquenessRatio’, 43 

‘speckleWindowSize’, ‘speckleRange’, and ‘fullDP’.  44 

SADWindowSize--- Size of block;  45 

disp12MaxDiff ---Maximum allowed difference for disparity 46 

check; 47 

preFilterCap---Truncation value for the prefiltered image pixels; 48 

uniquenessRatio---a threshold to filter out unreliable pixels 49 

from estimated disparity values   50 

speckleWindowSize --- Maximum size of smooth disparity 51 

regions to consider their noise speckles and invalidate.  52 

speckleRange --- Maximum disparity variation within each 53 

connected component. 54 

 55 

3.1.1 Stereo Block Matching: Since the images have been 56 

rectified, the epipolar lines are parallel to the baseline of the 57 

stereo camera. The search range is constrained along the 58 

epipolar line, which is in one dimension. Assume that a pixel in 59 

the left image is located at (x, y), its corresponding pixel in the 60 

right image will be (x+d, y), where d is the distance between its 61 

location in the left image and the right image. A window in the 62 

right image slides along the epipolar line and compares the 63 

contents of that window with the reference window in the left 64 

image. The matching cost is computed by Sum of Square 65 

Distances block-matching (SSD) or Normalized Correlation 66 

(NC).  67 

 68 

3.1.2    Stereo Semi-Global Block Matching: The original idea 69 

of SGM is to perform line optimization along with multiple  70 

directions and compute an aggregated cost by summing the 71 

costs to reach pixel p with disparity d from each direction. The 72 

number of directions affects the run time of the algorithm. In 73 

OpenCV, the class ‘StereoSGBM’ modified the original SGM 74 

algorithm (Hirschmuller, 2008) from i) using five directions as 75 

default to reduce memory consuming; ii) employing block 76 

instead of pixel matching; iii) Mutual information cost function 77 

is not implemented. Instead, a simpler Birchfield-Tomasi sub- 78 

pixel metric from Birchfield & Tomasi (1998) is used. iv) some 79 

pre- and post-processing steps from K. Konolige’s algorithm 80 

(2010) are included, for example, pre-filtering using the sobel 81 

filter and post-filtering  employing uniqueness check, quadratic 82 

interpolation, and speckle filtering (OpenCV, 2022). 83 

 84 

3.2 GC-Net 85 

Figure 4. Architecture overview of GC-Net (Kendall et al.,  86 

2017). 87 

 88 

Geometry and Context Network (GC-Net) is a deep learning 89 

architecture introduced by Kendall et al. in 2017 for the 90 

estimation of 3D geometry from stereo images (Kendall et al., 91 

2017). Fig. 4 shows the network architecture. The left and right 92 

images were fed to the network with a number of 2-D 93 

convolutional operations. Each of the convolutional layers is 94 

followed by batch normalization and a rectified linear non- 95 

linearity. After learning a deep representation, the stereo 96 

matching cost was computed through 2-D convolutional 97 

operations. 5×5 convolutional filter is then applied with the 98 

stride of two for subsampling the input, after which eight 99 

residual blocks are appended. The residual blocks consist of two 100 

3×3 convolutional filters in series. Parameters between the left 101 

and right towers of the GC-Net are shared to effectively learn 102 

corresponding features (Kendall et al., 2017). The highlighted 103 

parts in this network architecture are i) incorporating context 104 

directly from the data; ii) employing 3-D convolutions to filter 105 

the cost volume; iii) using a differentiable soft argmin function 106 

to regress sub-pixel disparity. The network architecture was 107 

implemented with PyTorch (PyTorch, 2022).  108 

 The model was trained using the absolute error between the 109 

ground truth disparity dn, and the model’s predicted disparity 110 

dpn for pixel ‘n’. ‘N’ is the number of pixels. This supervised 111 

regression loss is defined (Kendall et al., 2017):       112 

 113 

                                      114 
  115 
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3.3 PSM Net  1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

Figure 5. Architecture overview of PSM Net (Chang & Chen, 9 

2018). 10 

 11 

The pyramid stereo matching network (PSMNet) was 12 

introduced by Chang & Chen in 2018. It is an end-to-end deep 13 

learning framework, without postprocessing. Fig. 5 depicts the 14 

architecture of the PSMNet. The left and right stereo images are 15 

fed to two weight-sharing pipelines consisting of a CNN for 16 

feature maps calculation, a spatial pyramid pooling (SPP) 17 

module for feature harvesting by concatenating representations 18 

from sub-regions with different sizes, and a convolution layer 19 

for feature fusion. 20 

The image features are then used to form a 4D cost volume, 21 

which is fed into a 3D CNN for cost volume regularization and 22 

disparity regression (Chang & Chen, 2018). Different from 23 

other deep learning frameworks, it exploited a pyramid pooling 24 

module for global context information in stereo matching and 25 

presented a stacked hourglass 3D CNN for extending the 26 

regional support of context information in cost volume.  27 

Because of the disparity regression, the smooth L1 loss function 28 

was adopted to train the PSMNet. The loss function of 29 

PSM Net is defined (Chang & Chen, 2018) as    30 

 31 

 32 
Where      33 

 34 
 35 

3.4 Evaluation methods 36 

We employ the Mean-squared error (MSE) to indicate the 37 

accuracy of the disparity maps. 38 

 39 
Where n --- amount of measured points, i --- the ith point, Ri --- 40 

reference value,  Pi --- predicted value 41 

 42 

 43 

4. RESULTS AND ANALYSIS 44 

In our experiment, we tested supervised methods and 45 

unsupervised methods for disparity map generation with two 46 

datasets: the ISPRS Vaihingen and the WHU datasets. The 47 

supervised methods include the GC-Net and PSM Net, and the 48 

unsupervised methods employ the StereoBM and StereoSGM 49 

methods from the OpenCV. 50 

Image rectification has been implemented in both datasets. The 51 

images have the size of 1024 x 1024 pixels in the Vaihingen 52 

dataset and the size of 384 x768 pixels in the WHU dataset. The 53 

test images were selected from multiple scenes including 54 

buildings with diverse roof structures, vegetation-covered areas, 55 

shadows, reflective areas (water), textureless areas (agricultural 56 

field), repetitive pattern textures, and so on. The reference data 57 

for evaluation were taken from the validation data provided by 58 

the ISPRS and the WHU. OpenCV algorithms were conducted 59 

with Matlab 2022. Different parameter settings were tested in 60 

both StereoBM and StereoSGM methods so that the best results 61 

were obtained. GC-Net and PSM Net models were trained in a 62 

supercomputer environment of the CSC, a Finnish company 63 

offering ICT solutions (CSC, 2022).  64 

Two GC-Net models were trained with two different datasets. 65 

Both models were trained with 256×512 pixel stereo image 66 

pairs randomly cropped from the original image pairs, thus 67 

parameters W is 512 and H is 256. The maximum disparity used 68 

was D=160. The batch size used was 4. The optimizer was the 69 

RMSprop with a learning rate of 0.001 and alpha, which is a 70 

smoothing constant, was 0.9. The loss used was L1-Loss. 71 

Before training, each image was normalized so that the pixel  72 

intensities range from −1 to 1. Best models were saved based on 73 

the lowest validation losses. Model accuracy was evaluated 74 

based on the percentage of disparities with an error of less than 75 

3 pixels. Training accuracy, the percentage of disparities with 76 

error less than 3 pixels was 0.988. Testing accuracy was almost 77 

as good, 0.983.   78 

The stacked hourglass architecture of PSMNet was 79 

implemented using Tensorflow 2.8.0 and Python version 3.7.9. 80 

All models were end-to-end trained with Adam (β1 = 0.9, β2 = 81 

0.999). As a data preprocessing, the values of RGB images were 82 

normalized between 0 and 1. During training, the images were 83 

randomly cropped to size height = 384, width = 512, and 84 

randomly flipped vertically and horizontally. The maximum 85 

disparity was set to 96 for the WHU dataset and 192 for the 86 

ISPRS Vaihingen. The models were trained with a constant 87 

learning rate of 0.001. The batch size was set to 4 for the 88 

training. The models were trained for 30 epochs with the WHU 89 

dataset and 90 epochs with the ISPRS Vaihingen dataset. 90 

Training the model for the WHU dataset took about 52 hours 91 

and about 15 hours for the ISPRS dataset in the CSC Puhti  92 

with one GPU. The WHU model got 0.0253 3-pixel error and 93 

0.38 loss. Vaihingen model got 0.2428 3-pixel error and 1.16 94 

loss. 95 

 96 

4.1 With ISPRS Vaihingen dataset 97 

The test images selected from the ISPRS Vaihingen dataset 98 

include diverse scenes with challenges in shadows, occlusions, 99 

reflection, featureless areas, and area covered with vegetation. 100 

With the GC-Net, the best training loss achieved with the 101 

dataset was 4.41, while the validation loss was 2.27. The testing 102 

loss was 3.70. High training loss can be accounted to the 103 

training, validation, and test set sizes, as the training set was 104 

notably larger than the two other sets. Training accuracy, the 105 

percentage of disparities with error less than 3 pixels, was 106 

0.738. Testing accuracy was even better, 0.796. From the loss 107 

curves in the left image of Fig. 5 can be seen that the validation 108 

set included easier samples for the model than the training set 109 

resulting in smaller validation loss in comparison to training 110 

loss. The validation data is scarce but well represented in the 111 

training dataset, leading to the model performing well on it. It 112 

can also be noticed that there is more spiking in the training 113 

loss. It might be affected by the size of the training data. The 114 

smaller the training data are, the less smooth the training loss 115 

curve is. However, it is good to consider that spiking in the 116 

curves can also be caused by label inaccuracies, as well as the 117 

optimizer and the used learning rate. Spiking of the training loss 118 

curve can also indicate unrepresentative data in some cases, but 119 

as the spiking is not very intense, it can be caused by the dataset 120 

size and label inaccuracies as mentioned.  121 

ISPRS Vaihingen PSMNet model used smooth L1-loss with 122 

beta = 1.0 and the missing values in the disparity masks were 123 

ignored. Both the training loss and validation loss (see the right 124 

image of Fig. 6) had many spikes suggesting that a smaller 125 

[2] 

[3] 

[4] 
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learning rate could have helped with the training. Validation 1 

loss had two large spikes between 20 and 40 epochs. Validation 2 

loss was lower than training loss during most of the epochs. 3 

Validation loss achieved the smallest result at epoch 79. 4 

 5 

    6 
 7 

 8 

 9 

The test results with the ISPRS Vaihingen dataset was shown in 10 

Fig. 7. As references, the first two rows are the stereo images. 11 

Then the disparity maps were generated by different methods: 12 

StereoBM, StereoSGM, GC-Net, and PSM Net. For the 13 

StereoBM method, the block size affects the resultant noise 14 

level. When a small size block is used, more detailed 15 

information can be acquired, but at the same time, more noise is 16 

presented. A balance between the details and a cleaned map 17 

should be kept. Besides, the disparity range needs to be set 18 

properly. In the StereoBM algorithm, the value of the disparity 19 

range should be the multiples of 16, while in the StereoSGM 20 

algorithm, it should be the multiples of 8 and the value 21 

shouldn’t be over 128. For the ISPRS Vaihingen datasets, the 22 

StereoSGM shows better results than the StereoBM method. 23 

The StereoSGM method is more robust and produces smoother 24 

buildings and less noise in the results.  25 

Disparity maps from GC-Net and PSM Net show high 26 

smoothing buildings. The completeness of the building roofs 27 

with supervised methods beats the unsupervised methods. The 28 

results from the supervised methods were clean and no holes 29 

were presented. However, when we check the results carefully 30 

from the supervised methods, it can be seen that there were cut 31 

prints shown in each disparity map. The reason is that the size 32 

of training data is fixed in both networks. When training data 33 

use a size of 256 x 512 in GC-Net, the resultant disparity map is 34 

in a size of 1024 x 1024. Thus, the results were combined from 35 

multiple images.  36 

 37 

  38 
 39 

Figure 7. The test results with the Vaihingen stereo images. 40 

The corresponding photo no. from left to right: 41 

0003, 0045, 0016, 0031, 0038, 5007, 0024, 0048. 42 

 43 

4.2 With the WHU dataset 44 

The selected images from the WHU dataset include more high 45 

and complex buildings. Besides, a scene with repeated textures 46 

was also selected to test the performance of different methods.  47 

The GC-Net model trained with WHU MVS/Stereo Dataset was 48 

trained for 36 epochs, after which the validation loss didn’t 49 

seem to decrease. The best validation loss was achieved during 50 

epoch 32 and the final model was saved. A model trained with 51 

the ISPRS Vaihingen stereo image set, on the other hand, was 52 

trained for 84 epochs, after which the validation loss did not 53 

decrease any more. The lowest validation loss was achieved 54 

after epoch 74, and the final model was saved. The ISPRS 55 

Vaihingen model needing more epochs for training was due to 56 

the dataset’s larger image size (1024×1024 pixels) in 57 

comparison to the WHU dataset’s image size (768×384 pixels), 58 

considering the random cropping data augmentation method 59 

used (256×512 pixel image crops). With the GC-Net, the best 60 

training loss achieved with the dataset was 0.22, while 61 

validation loss remained higher, 0.76. The testing loss was 0.35. 62 

From the left image of Fig. 8 can be seen that the validation loss 63 

curve stays on top of the training loss curve. It also indicates 64 

that the WHU dataset’s division for training, validation, and test 65 

sets seems successful.  66 

 67 

  68 
 69 

 70 

 71 

The WHU PSMNet model used smooth L1-loss with beta = 1.0. 72 

Training loss drops steadily with the training epochs. Validation 73 

loss spiked at epochs 9 and 12 but dropped again in the next 74 

epoch to a smaller value than before the spikes. Training loss 75 

was below validation loss during most of the epochs. Validation 76 

loss achieved the smallest results at epoch 27 and started to rise 77 

slightly after that. With the PSM Net, the WHU model got 78 

0,023 3-pixel error and 0.38 loss. 79 

From Fig. 9 can be seen that, with high buildings, both 80 

StereoBM and StereoSGM performed quite well. Compared to 81 

unsupervised methods, the edges of the roofs in the results of 82 

supervised methods show clearer and sharper. In the water area, 83 

both StereoBM and StereoSGM performed better than the 84 

supervised methods. With the WHU dataset, there were smooth, 85 

no holes, and less noise presented from unsupervised results. It 86 

was better than the results from the ISPRS Vaihingen datasets. 87 

In the WHU dataset, the size of images is much smaller than the 88 

ISPRS images. A WHU image encompasses fewer objects.  It 89 

also indicates that unsupervised methods are good for small and 90 

simple scenes, while supervised methods are suitable for images 91 

containing large and complex scenes. With repeated textures, 92 

both supervised and unsupervised perform well. In addition, the 93 

cut prints were visible on the supervised results. 94 

Fig. 7 and Fig. 9 demonstrated the results visually. Table 1 95 

shows the results of the quantitative evaluation. The resultant 96 

disparity maps were compared to the reference data (given as 97 

validation data for supervised methods). The measurement was 98 

performed with the mean square error. From the quantitative 99 

evaluation results can be seen that, overall, supervised methods 100 

showed better quantitative accuracy than unsupervised methods. 101 

Figure 6. Training loss and validation loss in ISPRS 

Vaihingen dataset with the GC-Net and PSM Net. 

 

Figure 8. Training loss and validation loss in the WHU 

dataset with the GC-Net and PSM Net. 
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 8 

However, the reference disparity maps were tailored for the 9 

validation of the deep learning methods. The reference images 10 

were in the data type of ‘uint16’. Instead, disparity maps 11 

produced from the unsupervised method were in a type of 12 

‘single’, which was not accurate when compared to ‘uint16’. 13 

Furthermore, with the WHU dataset, the training, test, and 14 

validation images were extended to 256 times more in the data 15 

type of uint16 in order to prevent accuracy loss. Due to these 16 

reasons, we keep in mind that the results are shown in Table 1 17 

as a reference. It might not be very accurate. The relative 18 

accuracy between StereoBM and StereoSGM, and between GC- 19 

Net and PSM Net can be an indicator. Between the StereoBM 20 

and StereoSGM, the results relied on the input datasets. In the 21 

supervised methods, the GC-Net performed slightly better than 22 

the PSM Net.  For the ISPRS Vaihingen dataset, the GC-Net 23 

was slightly better, while with the WHU dataset, it was the 24 

opposite.  For the photos of 0024 and 0048, one contained 25 

reflective water area, another was textureless field. It can be 26 

noticed that the MSE values from the GC-Net and PSM Net 27 

were extremely big. With the unsupervised methods, they were 28 

normal.  29 

                              30 

 31 

Table 1. Accuracy evaluation results. 32 

 33 

5. DISCUSSIONS 34 

5.1 Factors that affect the results 35 

In the original GC-Net experiments, disparity D=192 was used 36 

[4]. In our GC-Net experiments, the used value was D=160, 37 

which can affect the resultant disparity accuracy decreasingly. 38 

Also, the used data augmentation methods for GC-Net tests 39 

were scarce as only random cropping was used. It might not 40 

affect greatly the performance of the model trained with the 41 

WHU dataset due to the large dataset size, but the effects are 42 

more visible with the model trained with the smaller ISPRS 43 

Vaihingen dataset. By increasing the amount of used data 44 

augmentation, the performance of that model could be most 45 

likely increased. From the loss plots of the models (Fig. 6 and 46 

Fig. 8) can be found slight overfitting from the end of training 47 

both models, as the validation loss can be noticed to start to 48 

increase. Better and more versatile data augmentation methods 49 

could also delay when the models start to overfit. In addition, it 50 

is good to take the quality of used labels into account. The 51 

WHU dataset had ready-accurate disparity labels, while the 52 

disparity labels used for the ISPRS Vaihingen dataset were self- 53 

made with a rough interpolation that left them a bit uneven. 54 

With more delicate interpolation methods the quality of 55 

disparity labels could be more polished leading to better 56 

performance. This, and the small size of the ISPRS Vaihingen 57 

dataset were the main reasons for the lower performance of the 58 

model in comparison to the model trained with the WHU 59 

dataset. However, from the test outputs of the ISPRS Vaihingen 60 

model can be noticed that the model is able to perform 61 

reasonably well, though the interpolated labels have some holes 62 

and roughness in them. The outputs don’t have any holes and 63 

look smooth.  64 

With PSM Net, both models were trained only once. By training 65 

the models multiple times, some variation could be removed 66 

from the results. The results are affected by multiple factors, for 67 

example, the choice of loss function and optimizer, the amount 68 

of training data, the quality of training data, choice of model 69 

architecture, batch size, preprocessing of the data, for example, 70 

normalizing and cropping, and PSM Net has an intuitive design, 71 

and it can be used to predict the disparity map of aerial stereo 72 

images. However, it requires good training data and lots of 73 

memory and time during training. Recently, Huang et al. (2021) 74 

proposed a method to improve the PSM Net performance. In the 75 

paper, the authors mentioned that the PSM Net needs a long run 76 

time due to the algorithm dealing with too many parameters. In 77 

our test, training with the WHU dataset took 52 hours. In 78 

addition, the authors also pointed out that the PSM Net 79 

performed not well in the cases of reflective areas and the areas 80 

with repetitive pattern textures. We also evidenced such scenes 81 

in our experiment. 82 

Unsupervised methods are not as robust as the supervised 83 

methods. There are many parameters needed to be set properly 84 

in order to achieve a good result. With the StereoBM method, 85 

‘BlockSize’ defines the width of the search window.  If it is set 86 

to too small, more details but a lot of noise will present. With 87 

the StereoSGM method, there were more parameters affecting 88 

the results. Experience and knowledge are important for 89 

obtaining a good result. From Table 1 can be seen that in photo 90 

no. 5007, the result from the StereoSGM showed a big error 91 

compared to the one from the StereoBM. Photo 5007 contains a 92 

scene with repetitive textures.   93 

On the positive side, when many parameters are available. It 94 

also indicates that the user can control the noise level by setting 95 

proper values. And with different scenes such as textureless 96 

areas, reflective surfaces, and repetitive patterns, parameters are 97 

Figure 9. The test results with the WHU stereo images. 

From the upper to lower: left image, right image, disparity 

map from StereoBM, StereoSGB, GC-Net, PSM Net 

The corresponding photo no. from left to right: 

3003, 8006, 2005, 4001, 6002, 5007. 
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adjustable. The users’ experience is valuable for unsupervised 1 

methods.  2 

In addition to the factors affected by the methods, from the 3 

given datasets, the ISPRS dataset has an overlap of 60% in both 4 

forward and side directions while the WHU dataset has 90% 5 

forward overlap and 80% side overlap. Visually, results from 6 

the WHU dataset were better. 7 

 8 

5.2 The unsupervised vs. supervised methods 9 

5.2.1 Efficiency/Processing time: With the supervised 10 

methods, training a model needs a lot of time. The model 11 

performance relies on the amount of training data. That is, if 12 

one wants to achieve a good performed model, a big amount 13 

and a good quality of training data are needed. Thus, training 14 

time becomes an issue that the users need to concern about.  It 15 

is worth doing it when a huge amount of datasets need to be 16 

processed. And also, as long as the model is trained, it can be 17 

repeatedly utilized for the same tasks in the future. 18 

 19 

5.2.2 Robustness: Learned by the machine,  the supervised  20 

methods became more robust than the unsupervised methods. It 21 

is less demanding of user expertise. With the unsupervised 22 

methods, users need to have a good understanding of the 23 

parameters and test them for a good result. 24 

 25 

5.2.3 Handling difficult scenes: Kendall et al. (2017) state that 26 

a number of the challenging problems for stereo algorithms 27 

would benefit from the knowledge of global semantic context 28 

that deep learning methods can utilize, rather than relying solely 29 

on local geometry. From our experiment can also be seen that, 30 

due to the unsupervised methods focused more on local 31 

information, it resulted in poor pixel continuation and surface 32 

smoothness for the scene from the ISPRS Vaihingen dataset. 33 

However, it performs well with a small scene. The WHU dataset 34 

is an example.   35 

 The result for reflective areas (water) shows that unsupervised 36 

methods presented more noise, but also more details. For areas 37 

with textures of the repetitive patterns or featureless areas, it 38 

seems that there are rooms for the supervised methods to be 39 

improved. 40 

 41 

5.3 Future direction 42 

Like Kendall et al. (2017) mentioned, the current state-of-the- 43 

art stereo algorithms often have difficulty with textureless areas, 44 

reflective surfaces, thin structures, and repetitive patterns, and 45 

stereo algorithms aim to mitigate these failures with pooling or 46 

gradient-based regularization (Hirschmuller, 2005; Geiger et al., 47 

2010). This kind of approach often requires a compromise 48 

between smoothing surfaces and detecting detailed structures.  49 

3D convolution has brought large improvement in cost volume 50 

regularization but at a cost of high computational time and 51 

runtime memory requirement. 3D scene reconstruction from 52 

aerial vehicles is in high demand and faces the above challenges 53 

to generate fine-grained city-scale reconstructions; The gap 54 

between depth maps and point clouds still exists and a unified 55 

framework for depth map based coherent scene reconstruction is 56 

needed. The number of available datasets and the diversity of 57 

data is not adequate (Wang et al., 2021). 58 

In this experiment, we only tested two-view stereo pairs of 59 

images. Multi-view stereo images might improve the result 60 

since the redundant data can improve the accuracy and the 61 

results should be more reliable. 62 

 63 

6. CONCLUSIONS 64 

 Our experiment explored the supervised methods and 65 

unsupervised methods for disparity map generation from two 66 

sets of aerial stereo images: the ISPRS Vaihingen dataset and 67 

the WHU dataset. We selected seven pairs of stereo images 68 

from the ISPRS Vaihingen dataset and six image pairs from the 69 

WHU dataset.  With the diffult scene in shadows, reflective 70 

water area, textures with repetitive patterns, featureless area, 71 

and buildings with different heights and complex roof structures 72 

were tested. Overall, from quantative evaluation, the supervised 73 

methods showed better accuracy. In resultant disparity maps, 74 

building roofs had fewer holes and were smoother, and also the 75 

noise level was lower with the supervised methods. However, 76 

unsupervised methods, especially with the StereoBM method, 77 

perform well in small-size images where the local information 78 

was focused on.  79 

 The supervised methods require high-performance 80 

computational facilities and much time to train the models.  As 81 

long as the model is trained, it becomes efficiency and user- 82 

friendly --- not requiring user expertise. 83 

 84 
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