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ABSTRACT: 

This paper describes a land survey of the Bedugul area in Central Bali that was constructed using multi-temporal and multi-spectral 
data collected from a new class of commercially available satellites to produce detailed land cover mappings. The paper discusses the 
significance of the land area under investigation, including difficulties in reading land cover features in the tropics. It describes 
participatory field mapping efforts set in place in order to complement the reading of remote sensing assets and our attempts to represent 
land use features of particular interest to a local NGO. We further discuss the challenges and opportunities of representing land cover 
and use scenarios that satellite assets can only partially capture. We use band operations and object-based classification methods to 
represent change in settlement activity in the area under observation. We also describe a collaborative cloud-based analysis and 
evaluation pipeline that facilitates the processing of different sources of remote sensing data as well as the representation of various 
types of land use scenarios defined with the assistance of local knowledge 
.

1. INTRODUCTION

God Island, Bali, is home to a population of 4,317,404 inhabitants 
and spans some 5,636.7 km2 (Ministry of Environment and 
Forestry Indonesia, 2020). Situated east of Java and west of 
Lombok, Bali is a destination for both domestic and foreign 
tourists. In the center of Bali lies one particularly interesting 
locale, the Bedugul area, a part of the Tabanan and Buleleng 
Regencies. The terrain here reaches elevations ranging from 
1,200 to 2,100 m. Ease of access created by the Denpasar-
Singaraja highway has facilitated rapid development, 
increasingly dense settlements and additional public facilities and 
services, as well as the expansion of all kinds of touristic 
activities.  
Bedugul consists of a basin area set in a volcanic mountain 
region, and the land surrounding these mountainous hills are sites 
intended for small-scale settlements, dryland agriculture and 
vegetable farming. The morphology of these undulating lands is 
co-defined by three volcanic lakes: Lake Buyan, Lake Bratan, 
and Lake Tamblingan (Figure 1). Because of its relative 
accessibility, fertile lands, fresh-water resources and high-land 
climate, the Bedugul area is considered a valuable resource for 
indigenous groups, local residents, developers, conservationists 
and tourists alike, with each group holding different interests in 
the area (Zen, 2019). Moreover, the forests of Bali span some 
136,831 hectares across the west, middle, and east of the island. 
The forest management system was originally adopted from a 
Dutch colonial template (Widiastawa et al., 2016). Today, there 
are six different types of forest area management units, namely 
the Protected Forest Management Units of West Bali,  Central 
Bali, and East Bali as well as the TAHURA Ngurah Rai Forest 
Management Unit, the Bali Natural Resources Conservation 
Center, and West Bali National Park (Widdiastawa et al., 2016). 

1* Corresponding author 

This background information is offered here in order to better 
contextualize the overall project goal, outlined in detail in section 
3 below. 

2. EARLY GIS ASSETS in BALI

In the past, the use of spatial data to survey Indonesia has not 
been particularly effective, mainly due to the lack of availability 
as well as the lack of diversity of appropriate data sources. The 
situation changed in 2012 with the introduction of data from 
Landsat 7 and Landsat 8/OLI (Ministry of Environment and 
Forestry Indonesia, 2013). However, with a spatial resolution of 
30 meters per pixel, Landsat is useful for land cover 
interpretation at medium scale only.  

Figure 1. Overview of the study area in Central Bali. 
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3. CONTESTED LAND 
 
The Alas Merta Jati in Central Bali is contested territory as it is 
currently claimed as ancestral lands by the Tamblingan 
community (Suryawan, 2021), and at the same time has been 
designated as a state forest by the Indonesian government. While 
both entities claim to protect the forest along “sustainable” 
principles (Strauss, 2015), each entity interprets the 
responsibilities and benefits of sustainable actions in different 
ways.  
 
This project has multiple goals. First, we want to improve the 
state of GIS based land cover analysis in Bali in general. Second, 
we are invested in procedures that can operate with constrained 
resources, where such constraints can be of economic or 
computational nature. Third, want to include needs and interests 
in land cover representation that are usually not included. To that 
end, we are working together with a local Non-Governmental 
Organization (WISNU, 2022) representing the Tamblingan 
community of Central Bali to assess the ways in which different 
priorities impact the use of GIS assets as well as the conception 
of land cover categories and their representation.  
 
3.1 Data sources 
 
Informed by the history of land use debates and of satellite 
imaging in Bali, we make use of the current surge of commercial 
satellite assets that offer unprecedented access to daily 
acquisition of new imagery. Our data collection relies on a 
combination of high-resolution satellite imagery from 
PlanetScope (PS) provided by Planet Labs (PS, 2022), ESA’s 
Sentinel2 (Sentinel2, 2012) and field level data collection 
provided by  inhabitants of the area.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Still image from video collected by informant (GPS 
coordinates Lat -8.256662, Lon 115.079644). The videos are 
used to clarify the actual conditions on the ground. 
 

PS offers a spatial resolution of 3.7m/pixel across all its bands 
while Sentinel2 has a maximum resolution of 10m/pixel for 
bands at central wavelengths 490nm, 665nm, 842nm and 
resolutions of 20 and 60m for the other bands. However, PS in 
the recent past only offered 4 channels, specifically  Blue (455 - 
515 nm), Green (500 - 590 nm), Red (590 - 670 nm), and Near-
Infrared (780 - 860 nm) versus Sentinel2’s 13 channels. 
Importantly, PS assets are updated daily while Sentinel2 has an 
effective revisit frequency of 5 days (Raza et al. 2020). 
 
3.2 Data collection and verification 
 
Our first data collection step follows standard practices. We study 
the composite’s PS satellite data in conjunction with Google 
Earth imagery (GE, 2022) to identify a first round of land cover 
features. However, we then include elements of participatory 
mapping (Cochrane, 2020) to verify questionable sites.  Local 
informants, remunerated for their contributions, collect short 
video recordings of the actual situation on the ground, and upload 
these verification datasets to a shared server for review by the 
research team (Figure 2).  
 

4. CONCEPTUAL CHALLENGES 
 

The single most significant issue we encounter in this project is 
the fact that local knowledge and local interests are not 
represented in GIS maps nor in the land cover categories that 
constitute formal categories in GIS representation in Indonesia.  
 
Moreover, while spectral reflectance can identify an object in an 
idealized scenario, some factors such as dynamic land use 
scenarios are not discernible. Any attempt to automate land cover 
classification must take these limitations into account. 
Algorithmic classification based on the collection of training data 
samples (ROI sets) can address some of these conditions if the 
training samples are carefully selected and validated. However, 
it is imperative that knowledge in satellite imagery be combined 
with information regarding conditions on the ground. Even then, 
one must contend with visual confusion from heterogeneous land 
use scenarios (Zen, 2019). The next sections describe some of 
these conditions. 
 
4.1 Complex land cover conditions 
 
A major limitation to satellite observations in the tropics is the 
high frequency of cloudy days that make observations in the 
visual bands impossible. Weeks can pass between times when 
low cloud coverage allows for views of a given location, despite 
daily image asset updates. 
 
 
 
 
 
 
 
 
 
Figure 3. PS satellite images of rice paddies (left) and grasslands 
(right) displayed in true color (RGB 321). Small grassland 
patches appear very similar to rice paddies in spectral and textural 
information. 
 
Due to the warm and humid climate, agricultural plots can 
contain crop plants or appear barren in short succession. And the 
lusciousness of the island renders the land as an ocean of green 
tones, many of which are lumped together by the limited spectral 
perception of the most accessible commercial satellite assets. The 
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well-known Balinese rice paddies are a case in point, as figures  
3, 4,  5 and 6  illustrate. 
 
In addition to the limited spectral information, the spatial 
resolution constraints make differentiation between settlement 
and grasslands difficult. Figure 6 shows examples of settlement 
and grassland areas. The orange arrow on the left points to a 
settlement and the red arrow on the right points to grassland lying 
directly next to  a large body of water. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 4. Spectral signature plot of grasslands (green) and rice 
paddies (orange). Bands 1, 2, and 3 (R, G, B) are almost 
indistinguishable when grassland and rice paddies are plotted. 
Only  band 4 (IR) offers some information to differentiate the 
categories. 
 

 
 
Figure 5. Composite false color (RGB 432) comparison of water 
with grass (right) and rice paddies (left). 
 

 
 
Figure. 6. Settlement (left) and grasslands directly adjacent to a 
body of water (right) on true color (RGB 321). 
 

 
 
Figure 7. Examples of mixed forest (bottom left: true color, 
bottom right: false color) and homogenous forest (top left: true 
color, top right: false color). 
 

Homogenous forests dominated by a single species can serve as 
indicators of agricultural production or, more importantly, sites 
of untouched original forest areas. Usually, these homogeneous 
sites are interspersed amongst areas of mixed forest full of a 
variety of tropical forest species with similar spectral and textural 
signatures. Homogeneous forests are dominated by Liquidambar 
excelsa (Noronha) Oken (family: Altingiaceae), hence we must 
rely on the spectral signature of that single plant species to 
differentiate mixed from homogenous forests (Figure 7). 
 
Representing instances of small-scale tropical agroforestry, the 
intentional integration of trees, shrubs and plants into farming 
systems, is similarly onerous. Agroforestry covers in principle a 
large collection of crops (from tomatoes to oranges trees, flowers 
and bananas) cultivated using a variety of methods and intensities 
and is a subset of general agriculture. The major issues to contend 
with include the informal spatial arrangements typical of small-
scale production as well the lack of spectral differentiation 
between agroforestry products and the surrounding forested areas 
as the flower garden below illustrates (Figure 8).   
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Hortensia flower garden (Lat -8.266422, Lon 
115.087146) with hortensia, coffee plants, banana and orange 
trees, PS asset, May 2021). 
 
While our study produces the most detailed land cover map of 
Central Bali to date, we are still only able to include a subset of 
all possible types of land cover due to the complex land use 
situations on the ground and the limitations of the satellite sensor 
systems observing them from above.  
 

5. APPROACH 
 
Taking these limitations into account, we set our focus on the 
land cover categories listed in Table 1 both are relevant to our 
goals and achievable using our analysis methods. We expect the 
collection to change as the project progresses, specifically as we 
learn how to include additional elements of agroforestry.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Overview of land use categories. Agriculture1 
represents an agricultural area with crops. Agriculture2 
represents the same area before or after crop growth. 
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Our analytical approach relies on a hybrid of algorithm-based 
classification in conjunction with human feedback, combining 
the information from state-of-the-art GIS land cover 
classification techniques described below with human expertise 
in response to falsely positive or negative identified categories 
produced by classifiers during testing. The human expert, in 
consultation with informants on the ground, acts as the control 
function that adds site specific knowledge, and even land use 
memories. These insights enter updated ROI datasets and are then 
ingested into classification operations in an iterative process. 
 

6.  LIMITS OF SATELLITE IMAGERY 
 
The extent to which water resources are able to emanate from and 
through land forms one of the most significant features of our 
study area,  and one  that satellite imagery can only indirectly 
capture. Recent research has described how near-infrared, 
thermal infrared and passive microwave bands can be used to 
detect evapotranspiration, crop moisture and precipitation in 
support of water management in Bali (Aryastana, 2020).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Study area in May 2021 (PS image). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Significant waterways in the study area, 
superimposed in red on the image of Figure 9. 
 
However, the location of streaming surface waters in the tropics 
remains largely hidden to earth orbiting satellites. Towering trees 

and dense foliage render the extent and expanse of the various 
brooks, streams and rivers invisible from above (Figure 9).  
 
Figure 10 shows the image from Figure 9 superimposed with a 
comprehensive hydrology map of the area. The hydrology 
information was produced by the Geospatial Information Agency 
Indonesia (Ina-Geoportal, 2022). Given that about 30% of Bali’s 
water is sourced from this area (Zen, 2019), the inclusion of water 
resources into land use discussions is meaningful as it makes the 
significance and extent of water resources in the area visually 
salient, an aspect of information representation that is particularly 
important where the use of limited water resources is a point of 
contention, as is the case in Central Bali. 
 
 

7.  IMPLEMENTATION 
 
In order to support the challenging data interpretation work and 
enable a testing framework for international collaboration, we 
have developed a cloud-based GIS environment (COCKTAIL, 
2022)  that combines elements of established open source 
libraries QGIS, GDAL, OTB and SAGA such that we can design 
processing pipelines across these various widely-used GIS 
systems and run this software cocktail remotely, securely and 
reliably in the cloud under conditions that are not always 
guaranteed in the contexts of emerging economies. This 
environment allows our research team to work in their respective 
time zones and to explore different approaches to the data 
analysis and classification approaches within a shared analytic  
framework.  

 
Cocktail offers modules to access Sentinel2 data sets directly 
from the Copernicus Open Access Hub (ESA, 2022), and can 
process data collected from Landsat and Planet Labs as well. In 
our case, we combine the use of freely available Sentinel2 data 
with commercial imagery from PS that offers higher spatial 
resolution. Cocktail contains modules to quickly determine GIS 
features of interest to our research, including the Normalized 
Difference Built-up Index (NDBI) as well as the Normalized 
Difference Vegetation Index (NDVI), and apply these features 
directly onto raster imagery. Cocktail can be used for object-
based classification via Random Forest, Support Vector Machine 
and Neural Networks with the support of annotated training data 
of labelled areas of interest. Moreover, textural information can 
be added as an additional layer of information to the classifiers. 
Our cloud-based classification pipelines allow us to perform all 
permutations of hyperparameter combinations possible, and to 
keep track of the results in a sharable environment.  
 
In our case, the training sets for object-based classification 
contain dozens of examples from each of the 12 land cover 
classes (Table 1). While these classification approaches produce 
detailed results, they are costly to generate due to the effort 
required to build the training datasets in the first place. That 
makes the band-operations described above attractive, 
particularly for the generation of quick overview results. The 
band operation results on the Sentinel2 imagery provide first 
order insights toward what can likely be detected in greater detail 
in the corresponding analysis of the PS assets. 
 
To be clear, our goal is not to innovate on the construction of any 
single classifier - we are using the algorithms as provided by a 
trusted open-source remote sensing library (ORFEO, 2022). 
Rather, our goal is to make the best use of the many pathways 
along which any classification can occur, in order to easily find 
statistically viable solutions so that we may then make an 
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informed selection from those candidates’ solutions that also pass 
human visual inspection. 
 

8.  EVALUATION 
 

With the assistance of batch processes enabled using the Cocktail 
environment outlined above, we scanned the space of 
combinations of three prominent GIS classifiers (Support Vector 
Machines, Random Forest and Neural Networks) and 
hyperparameters that result in the best combination of f1-scores 
across all selected land cover categories. We use the f-score, a 
measure of classification quality that combines precision and 
recall into a single metric, as our indicator of a classifier’s 
performance in our experiments. While a high f-score average is 
required, it is not sufficient to ensure an actually useable output. 
Multiple and different types of errors are not adequately captured 
by the metric. The paragraphs below describe some of these 
errors. 
 

# Image Settings Classifier mean 
f1 

score 

min 
f1 

score 

max 
f1  

score 

1 06_12_2020 kernel=linear, c=1.0 SVM 0.71 0.20 0.88 

2 06_12_2020 kernel=linear, c=0.3 SVM 0.69 0.19 0.81 

3 06_12_2020 kernel=sigmoid, c=1.0 SVM 0.61 0.15 0.69 

4 06_12_2020 kernel=sigmoid, c=0.3 SVM 0.59 0.13 0.64 

5 06_12_2020  300trees, nodesize =3 RF 0.69 0.53 0.72 

6 06_12_2020 300trees, nodesize =5 RF 0.68 0.49 0.69 

7 06_12_2020 1000trees, nodesize =3 RF 0.69 0.61 0.80 

8 06-12-2020 1000trees, nodesize =5 RF 0.72 0.69 0.76 

9 05_01_2017 kernel=linear, c =1.0 SVM 0.65 0.18 0.73 

10 05_01_2017 kernel=linear, c=0.3 SVM 0.63 0.13 0.71 

11 05_01_2017 kernel=sigmoid, c=1.0 SVM 0.62 0.14 0.68 

12 05_01_2017 kernel=sigmoid, c=0.3 SVM 0.59 0.14 0.65 

13 05_01_2017 300trees, node size =3 RF 0.58 0.51 0.69 

14 05_01_2017 300trees, node size =5 RF 0.63 0.52 0.70 

15 05_01_2017 1000trees, node size =3 RF 0.65 0.52 0.71 

16 05_01_2017 1000trees, node size =5 RF 0.67 0.51 0.72 

 
Table 2. Some of the  SVM (Support Vector Machine) and RF 
(Random Forest) experiments performed with Cocktail 
 
In the mostly flat Buyan area (Figure 11), the dominant land 
cover categories are ‘settlement’, ‘mixed garden’ and 
‘agriculture’. The category ‘rice paddy’ (in turquoise) represents 
a false positive result and should not appear in this area, as 
evidenced by the satellite image (left) and confirmed by a local 
expert. 
 
The term ‘open land’ refers to an area without settlement or a 
specific use, and this term sometimes serves as catch-all phrase 
for all kinds of under-specified and temporary land use scenarios. 
For example, one area near a mixed forest was visited by our local 
informant, who reported back that the land was being used 
temporarily as a camping site. Additionally, among the open 
areas around mixed forests located on the upper part of 

Tamblingan forest (Figure 12), dominant categories to describe 
them  include “open land” and “mixed forest”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Comparison between satellite asset (left) and SVM 
classification (right) from experiment #1. 
 

 
 
 
 
 
 
 
 

 
Figure 12. Comparison between 2020 satellite image (left) and 
the SVM classification result (right) from experiment #1. 
 
Agricultural plots can be represented in a variety of forms. The 
category agriculture covers a large collection of crops cultivated 
using a variety of methods. Moreover, the category agriculture 
can be defined using similar spectral information as bare soil, 
causing further overlaps with the category of open land. These 
various sources of interpretive confusion are not only the result 
of limitations on the available satellite imagery, rather they 
reflect unstable land use conditions on the ground. Categorization 
tends to reduce these varied use dimensions to a single item for 
the sake of clarity and at the cost of a loss of nuance.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 13. Best result from 2017 (#9). Top center cluster of 
presumed rice paddies and settlements (black arrow) are 
interpretation errors; The original satellite image shows cloud 
cover over that part of the terrain. 
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Nonetheless, several of our classification results are statistically 
and visually convincing. We can recognize from figures 13 
(2017), 14 and 15 (2020) that there has in fact been noticeable 
change in settlement activity in some areas. Particularly in the 
vicinity of lake Buyan along the main road ways and within the 
rice paddies on the eastern side of the study area (inside the black 
ovals in Figure 14, details in Figure 15) there have been obvious 
increases in settlement expansion and density. These 
observations, produced by SVM and RF classifiers, are largely 
confirmed in Figures 16a/b, which show a Sentinel RGB image 
from May 2021, with the Normalized Difference Built-up Index 
(NDBI) difference between the years 2017 and 2021 
superimposed onto it. The red area indicates change if growth 
exceeds 80%. The built-up area at the edge of lake Tamblingan 
in the yellow ellipse, representing a complex mix of grasslands 
and shallow waters, produced spurious results. 
 
Observations regarding growth of settlements among these 
sensitive areas allow for a more candid assessment of the 
territorial claims of competing stakeholders. Providing 
reproducible documentation of land use changes and in particular 
settlement growth can support spatial planning efforts 
(Sulistyawan, 2018) and provide conflicting positions for candid 
discussions on the various ways in which settlement construction 
and deforestation, tourism and sustainability are interlinked 
(Austin 2019). 
 

9. DISCUSSION 
 
PS  assets are now recognized as emerging key resources for 
Earth imaging and analysis. However, some key aspects of these 
image assets have been understood as lacking in comparison to 
traditional satellite datasets.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Best classification result from the year 2020 (#1) 
 
For example, Frazier observes that the geometric and radiometric 
quality of PS assets does not match ‘analysis ready’ datasets 
(Frazier, 2021). As the authors observe, these limitations can be 
overcome, but they require access to services from PS that are 
subject to a licensing agreement and are thus of limited use to 
resource constrained research communities, including within  
many organizations in emerging economies. 
 
As mentioned above, we have observed that the 4 channels 
previously made available through the use of PS are at times 
unable to offer sufficient information to parse complex land 
cover encountered in the tropics. The newly introduced 

SuperDove satellite fleet covering 8 spectral channels will likely 
be able to alleviate this problem to some degree (Superdove, 
2022). With an almost identical spatial resolution (3.7 m - 4.2 m, 
depending on altitude) [7] as the previous PS constellation,  
SuperDove’s 8-channels include the categories Coastal Blue 
(443nm), Blue (480nm), Green 1 (531nm), Green (565nm), Red 
(665nm), Yellow (610nm), Red Edge (705nm) and NIR (865nm), 
where  Yellow and Green1 have no equivalent in Sentinel2.  

 
Figure 15. Detail. Change in settlement development between 
2017 (top and bottom left) to 2020 (top and bottom right) based 
on PS datasets and experiment #1. 
 

 
 
Figure 16a. Simple band operations for quick overviews. Change 
in the Normalized Built-up Index (NDBI) between 2017 and 
2021. 
 
We base this cautious optimism on the evaluation of an early 8-
channel PS asset to which we applied our object-based SVM 
classifier from the ORFEO library. As Figure 17 below shows, 
the new image asset provides  the classifier with additional 
information it may use to discern the two types of forests of 
interest in much finer detail, but it creates false positive results 
for rice paddies south of Lake Buyan (within the black ellipse). 
This suggests that there might be some spectral differences 
between the 4-channel data and the new 8-channel data of the 
Superdove constellation. Certainly, the training sets produced for 
the 4-band data will have to be updated for the new Superdove 
assets. 
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Figure 16b.  Figure 16a, superimposed on 2021 Sentinel image 
from July 26th,  2021. The areas in red have at least 80% increase 
in settlement activity with respect to the 2017 NDBI result. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. SVM on PS Superdove image, May 2nd, 2022. 
 
Yet spectral and spatial resolution, as well as revisit frequency 
are not the only requirements for making satellite imagery 
actionable assets. Attention to location specific details and 
careful analysis are equally important. Not every area in the 
world will receive equal attention in the quest for responsible 
forest management and observation, as other authors have 
already pointed out (Rothe, 2017).  
 
Figure 18 shows how our study area is represented in the highly 
regarded Global Forest Watch that offers “near real time 
information about where and how forests are changing around the 
world” (GlobalForestWatch, 2022). Here, it becomes clear that 
near real time updates do not necessarily translate into deeper 
insights. The classification results offered by Global Forest 

Watch offer no useful insights onto our study area. Real time data 
must be coupled with careful interpretation; image asset 
interpretation severely lags behind the acquisition of the data, and 
in some cases,  it is not performed at all.  
 
It is possible that yet better classification algorithms (Tong, 2020) 
will make some of our efforts redundant in the future. However, 
we believe that there will remain areas of uncertainty and 
confusion that need to be addressed using an added  portion of 
human expertise and care. We see our work as a contribution to 
an A.I.-facilitated local knowledge in-the-loop GIS future that is 
sensitized to resource-constrained environments. If nothing else, 
our work should improve the quality and reliability of land cover 
analysis in Bali. 
 
Our collaboration with the NGO WISNU remains in its early 
stages, and the results presented here must be recognized as 
preliminary. What we can say at this point is that no single remote 
sensing source can capture all the interests and needs that the 
agency seeks to collect. For example, while certain  agroforestry 
assets such as clove gardens are discernible using PS imagery, at 
this time other components such as flower gardens are not, and 
are thus likely to remain undetectable to current commercial 
satellite observation. Other researchers have resorted to UAVs to 
address some of these limitations on remote sensing (Vilar, 
2020), and this project might have to consider a similar approach. 
 

 
 
Figure 18. Global Forest Watch’s low-resolution view of land 
use and forest change in the study area (March 2022).  
https://tinyurl.com/GFWatch-Tamblingan.  
 
The time intensive sense-making effort inherent to this project 
reminds us that the representation of complex land use conditions 
across time is not something that remote sensing in conjunction 
with AI analysis can solve without human assistance. Careful 
asset creation and science communication remain integral 
elements of the sense making process, and the communication 
effort must not only carry a message of unprecedented 
opportunities but also of limitations, even under state-of-the-art 
resource observation (Böhlen, 2014). Despite these limitations, 
the mapping of remote sensing opportunities has the potential to 
build a shared framework for assessing environmental impacts, 
and new ways to speak for the forest in the tropics. 
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