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Abstract
This paper explores development and deployment of a smart city prediction system, demonstrating this capability on data generated 

by footfall counting sensors. Presented approach integrates classical machine learning (ML) techniques with process orchestration 

framework Apache Airflow. The architecture is designed to handle datasets in periodic batches, ensuring updates are regularly 

integrated into the prediction system and new predictions are created at every increment. Our work demonstrates ease at which 

similar systems can be developed, given sufficient volume of data and availability of compute power. This approach highlights that 

increasing number of smart sensors, availability of proven ML techniques and modern processing frameworks create a 

critical mass for proliferation of real-time forecasting solutions. Our results indicate that the developed system is effective in 

predicting footfall patterns, a variable that can be instrumental in applications such as traffic control, resource allocation, public 

safety, and urban planning. Used methodology is not limited to footfall data, and can be applied to other timeseries datastreams, 

making it a versatile tool for smart city context. Showcasing practical implementation and benefits of the system, the paper 

contributes to the ongoing efforts in developing a class of digital urban infrastructure. 

1. Introduction

With the term “smart cities” remaining high in popularity (Fig.1), 

the attempts to make urban spaces optimally designed and 

managed are important, and forecasting of conditions allows 

implementation of proactive measures (Kitchin, 2014). For 

instance, (X. Tao, 2024) demonstrate the potential of ML models 

in optimising road traffic. Their approach for prediction of urban 

activity trains on historical data and their research focuses on 

achieving improvement in predictive powers of applied 

modelling technique. Such objective leads to development of 

heavy-weight solutions with high demand for data, high 

computational complexity, and lack of interoperability (X. Yin, 

2022). Thus, in line with advancements in quality of predictions, 

practitioners encounter growing demands for performant 

hardware or accessing expensive cloud services. Training cycles 

of large models are late in incorporating very recent datapoints, 

and the combination of demand for data with duration of training 

favours generation of thematic models, untailored to no specific 

data source. Gap in research of predictive systems with quick 

model turnaround time, low computational requirement and 

interoperability has been progressively making wide-scale 

implementation of such solutions more difficult. To address these 

issues, the primary objective of this study is to develop a real-

time prediction system for footfall timeseries data, collected by 

Newcastle Urban Observatory (P. James, 2022). Our work 

presents an application of classical machine learning techniques, 

orchestrated using Apache Airflow, to aid in real-time prediction 

of footfall in a city. The system uses pedestrian movement data 

from AI-powered CCTV cameras installed on lamp posts and 

overlooking vehicular, cyclists and pedestrian paths. The data is 

processed as timeseries to train ML models for uncovering likely 

future patterns in people movement, which are important for 

effective planning and management of urban infrastructure. In 

this work, our focus is operationalising the forecasting solution 

by integrating machine learning with batch-oriented data 

processing framework. Unlike conventional methods and off-line 

experiments that rely on static, historical data, our system 

harnesses live, dynamic and accurate representation of urban 

movement. The system is online and the results are available 

publicly. 

Utility of real-time predictions reach beyond themes of 

movement, they are highly relevant to accurate urban weather 

forecasting (M. Yu, 2021). A highly important area of 

implementing predictive systems is disease outbreak prevention 

(Ondrikova, 2021), where timely reaction is of essence. 

Figure 1. Normalised popularity score (blue) of term “smart 

city” in google scholar search. Peak popularity was in February 

2016, 12 months running average (orange) is high to this day. 

This introduction, with included literature review, provides 

context and highlights importance of real-time prediction 

systems in smart city environment. The following methodology 

section explains details of the approach used in this study - 

covering orchestration of data collection, preprocessing and 

training of machine learning models. Results section, followed 

by discussion and recommendations for future work, presents 

challenges in implementation and operations of the system and 

an assessment of success criteria fulfilment. 

2. Method

Our application postulates the need for the city to be able to 

forecast pedestrian footfall in a short time window (1 – 24 hours) 

for a variety of application use cases such as traffic control 

planning, crowd control, allocating municipal resources like 
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cleaning services and waste management, enhancing public 

safety and awareness of expected crowding levels. 

 

This presents a challenge in terms of volume of data and the need 

for rapid, accurate processing. To address these challenges our 

application utilises an incremental learning approach, where the 

prediction models are continuously updated with new data, 

ensuring that the system remains relevant. Single run of the data 

preparation process takes a short moment, but with many (186 in 

our case) unique location-direction combinations being 

predicted, pre-processing data long in advance of when it is used 

offers significant time-savings compared with having to extract, 

transform and load raw data each time a new model is being 

trained. Training models and storing them for later use in handled 

prior to requests for their application, immediately after new 

batch of data is prepared (“pre-processed”) and added to the 

training set. Once all models have been trained, new forecasts are 

made, saved, and uploaded to the user portal. This makes them 

available without re-running each time they are needed and they 

are cached close to where the application serving them runs. 

 

To implement our solution, we rely on end-to-end orchestration 

framework that simplifies deployment, operations, and 

monitoring of processing pipelines. Airflow (Airbnb 

Development Team, 2015) and NiFi (Witt, J., 2006) are popular 

solutions for finite batch-oriented workloads and real-time event 

driven data flows, respectively. Airflow offers a more mature 

support for modern, custom processors written in Python, with 

little overhead and easier management of workflows. On the 

other hand, NiFi offered multithreaded and fault-resistant 

architecture. Evolution of frameworks has made implementing 

data processing pipelines using these products an attractive 

alternative to building bespoke solutions developed on building 

blocks of message queues, key-stores, databases, frontends and 

backend processes. Airflow’s customisability and clearer 

monitoring (Fig.2) made it our framework of choice for our work 

at this stage. 

 

 
Figure 2. Statistics of model training tasks in Airflow dashboard. 

 

End-to-end orchestration frameworks are instrumental for 

handling interrelated processes involved in analysis of data 

generated by urban sensors. Application of an orchestration 

framework allows for coordination of various data processing 

steps, ensuring they are efficiently managed and, once put in 

motion, require minimum supervision. 

 

Our methodology uses Directed Acyclic Graphs (DAGs) in 

Apache Airflow to streamline steps involved in delivery of all 

tasks. Airflow as a pipeline orchestration framework, assists in 

scheduling, triggering and monitoring of regular batch processes. 

Initially, aggregation of sensor data adds together high frequency 

measurements into larger temporal buckets with lower volatility 

and less noise. An important element of our methodology 

involves pre-processing where incomplete timeseries are 

discarded, dataset is transposed, and additional explanatory 

features are engineered from timestamps associated with every 

reading. 

 

 
Figure 3. Transformation of timeseries data into supervised 

learning format 

 

In the timeseries transformation the dataset is restructured to fit 

into a supervised learning workflow (Fig.3). To achieve that we 

apply lag features where target feature at timestep T is 

accompanied by explanatory features from periods T-1 ... T-8. 

Lag features are important for timeseries forecasting as they 

allow learning from multiple past data points to predict future 

values. By incorporating past readings, the model can learn 

temporal dependencies and patterns that are inherent in the data. 

It helps the model understand sequence of events and their 

development over time, leading to more accurate and reliable 

predictions. In the case of urban footfall, knowing counts at 

previous time steps enhances model’s ability to predict future 

footfall. 

 

Lag features are generated by shifting target variable’s values 

backward by an increasing number of steps until reaching 

specified length lag length (in our case we used 8 past readings). 

 

 

 
Figure 4. Features engineered from timestamps. 

 

Using raw hour values (ranging from 0 to 23) as explanatory 

features in machine learning model training can introduce an 

issue related to cyclical nature of time being represented as a 

linear value growing from 0 to 23 and then resetting back to 0. 

This reset creates discontinuity in what in fact is a gradually 

changing variable. For example, hours 23 (11PM) and 2 (2AM) 

are only 3 hours apart, however, if used as raw values, the 

algorithm reads them as being 21 units apart. To address the issue 

of discontinuity in representing time, we engineer the raw hour 

value into several “distance from set hour” features, so that the 

values used for time are transitioning in a smooth and cyclical 

manner (Fig.4). 

 

datetime value

2024-05-01 00:00 4

2024-05-01 01:00 2

2024-05-01 02:00 1

2024-05-01 03:00 1

2024-05-01 04:00 1 datetime transposed timeseries of preceding values target value

2024-05-01 05:00 3 2024-05-01 09:00 {4, 2, 1, 1, 1, 3, 4, 14, 38} 65

2024-05-01 06:00 4 2024-05-01 10:00 {2, 1, 1, 1, 3, 4, 14, 38, 65} 109

2024-05-01 07:00 14 2024-05-01 11:00 {1, 1, 1, 3, 4, 14, 38, 65, 109} 91

2024-05-01 08:00 38 2024-05-01 12:00 {1, 1, 3, 4, 14, 38, 65, 109, 91} 128

2024-05-01 09:00 65 2024-05-01 13:00 {1, 3, 4, 14, 38, 65, 109, 91, 128} 146

2024-05-01 10:00 109 2024-05-01 14:00 {3, 4, 14, 38, 65, 109, 91, 128, 146} 123

2024-05-01 11:00 91 2024-05-01 15:00 {4, 14, 38, 65, 109, 91, 128, 146, 123} 128

2024-05-01 12:00 128 2024-05-01 16:00 {14, 38, 65, 109, 91, 128, 146, 123, 128} 112

2024-05-01 13:00 146 2024-05-01 17:00 {38, 65, 109, 91, 128, 146, 123, 128, 112} 33

2024-05-01 14:00 123 2024-05-01 18:00 {65, 109, 91, 128, 146, 123, 128, 112, 33} 23

2024-05-01 15:00 128 2024-05-01 19:00 {109, 91, 128, 146, 123, 128, 112, 33, 23} 17

2024-05-01 16:00 112 2024-05-01 20:00 {91, 128, 146, 123, 128, 112, 33, 23, 17} 25

2024-05-01 17:00 33 2024-05-01 21:00 {128, 146, 123, 128, 112, 33, 23, 17, 25} 7

2024-05-01 18:00 23 2024-05-01 22:00 {146, 123, 128, 112, 33, 23, 17, 25, 7} 15

2024-05-01 19:00 17 2024-05-01 23:00 {123, 128, 112, 33, 23, 17, 25, 7, 15} 6

2024-05-01 20:00 25

2024-05-01 21:00 7

2024-05-01 22:00 15

2024-05-01 23:00 6

datetime to/from12AM to/from6AM to/from12PM to/from6PM

2024-05-01 09:00 9 3 3 9

2024-05-01 10:00 10 4 2 8

2024-05-01 11:00 11 5 1 7

2024-05-01 12:00 12 6 0 6

2024-05-01 13:00 11 7 1 5

2024-05-01 14:00 10 8 2 4

2024-05-01 15:00 9 9 3 3

2024-05-01 16:00 8 10 4 2

2024-05-01 17:00 7 11 5 1

2024-05-01 18:00 6 12 6 0

2024-05-01 19:00 5 11 7 1

2024-05-01 20:00 4 10 8 2

2024-05-01 21:00 3 9 9 3

2024-05-01 22:00 2 8 10 4

2024-05-01 23:00 1 7 11 5
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Figure 5. Architecture of the prediction system. 

 

Following these pre-processing steps, three ML regressors 

(Support Vector, Random Forest, Gradient Boosting) are trained 

using cross-validation (Sci-kit Development Team, 2007). 

Evaluation is done using Mean Average Percentage Error. In 

order to deliver predictions beyond the next hour, predictions are 

made for the following hours, by adding the prediction to the 

predictors at each step. The process is delivered every hour, with 

new training features, new models and new predictions added to 

a database at the same frequency.  

 

Presented approach (Fig.5) leverages machine learning models 

and continuous learning technique to ensure quick turnaround 

and adaptability. Use of cross-validation ensures selection of the 

best performing model. By automatically updating all the 

individual models with new data, the system remains responsive 

to changing patterns and trends in the dynamic urban 

environment they operate it. 

 

3. Results 

Application of classical ML models provided us with 

computational efficiency, interoperability, and interpretability of 

the model. Scaling the solution across multiple sites, reliance on 

small amounts of data from some newly deployed sensors and 

operating with limited computational resources pointed towards 

utilisation of these classical ML methods. The solution does not 

require access to GPU and has been tested on hardware ranging 

from desktop grade machine, high-end PC, and server machines. 

 

Leveraging Airflow for orchestration provided an out-of-the-box 

solution for version control, scheduling, monitoring, and alerting. 

The use of a database for storing code, source data, restructured 

features, models and predictions provides a unified, structured 

and open data-engine, available for integration with other 

systems. Airflow can fetch new versions of jobs code (DAG) and 

automatically deploy it. This approach replaces local files most 

up to date version from the database. We also tested python 

library “importlib” which allows dynamically importing new 

functions during application runtime. This way the process, as 

defined by DAG, remains the same and it is the tools (functions) 

that are downloaded from the database. We have settled for the 

all-in-one solution (formerly explained fetching of most up-to-

date DAGs). This way we limit frequency of database 

connections only to the times when new version become 

available, unlike with importing functions which requires 

instantiating database connection on every run of each job. 

 

 
Figure 6. Locations of Newcastle Urban Observatory footfall 

sensors. 

 

In the study, the pedestrian movement data comes from computer 

vision traffic sensors distributed across a city in 74 locations 

(Fig.6). These devices are detecting vehicles, bicycles, and 

pedestrians, tracking their trajectories, and verifying if they cross 

a virtual line placed within cameras field of view (Fig.7). 

Hardware used in the sensors is a combination of a 

microcomputer (Raspberry Pi) and an AI accelerator (Google 

Coral TPU, offering 4 trillion operations per second) (K. 

Seshadri, 2022). The object detection model is Mobilenet V2 (M. 

Sandler, 2018) and tracking is done using SORT method (A. 

Bewley, 2016). The devices communicate with an online API to 

submit all individual datapoints, representing line crossing 

events, collected over previous 5 minutes. The devices are 

centrally managed using Balena IoT platform (R. Botez, 2020). 

This platform provides a unified mechanism for commissioning 

of new devices, deployment of applications, management of 

environmental variables and many other operations on individual 

devices and on whole fleet level. 

 

 
Figure 7. Example camera view of a sensor with a virtual count-

line displayed in orange. 
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If considering the count to be a feature of a pedestrian movement 

network, it can be treated as a point measurement. Contrary to 

movement of vehicular traffic, the wide range of pedestrian 

activity at micro level with multiple input/output points on 

adjacent buildings and dwell areas on the street, the footfall count 

gathered in this manner is not equal, but related to the flow over 

a street segment. At the time of writing, in 26 of these locations 

the flow of people was too low to adequately train models and 

were excluded, but that number can vary every time the process 

runs (i.e. every hour). The sensors provide data at event-in-time 

granularity that is aggregated into 5-minute bins, then 15-minute, 

1-hour and daily periods (Fig.8). Most of these sensors are in 

operation for over 12 months, offering clarity on daily and 

weekly flows, and a glimpse of seasonal dynamics. Others are 

fresh to the field, with limited amounts of data available for 

training. 

 

 

 

 
Figure 8. 15-minute (top), hourly (middle) and daily (bottom) 

ebbs and flows of footfall counts at one busy location. 

 

In the pre-processing step involving reshaping of the timeseries 

dataset into supervised learning structure, value from row T was 

used as the target value (prediction - y) and 8 preceding values 

were used as explanatory features (predictors - x). If a preceding 

value was missing, generation of this training item was skipped. 

Additionally, feature engineering added more explanatory 

features including one-hot-encoded day of week (single 

categorical column is divided into 7 numerical columns, one for 

each day), binary feature for weekends, distance-from-set-time 

values for time of day, and binary feature for time adjustment 

(“daylight saving time”). Such preprocessing gives the model 

understanding not only of how the timeseries developed in short 

time-period prior to the prediction, but also extra information that 

lets the model embed this knowledge in a temporal context. 

 

Use of 8 preceding values as explanatory features might have put 

too little emphasis on most recent readings, potentially causing 

the models to unnecessarily account for less relevant values from 

the past. 

 

4. Discussion 

Implementation and use of such system does not come without 

challenges. Relying solely on a relational database for storage, 

came with its performance limitations meaning that large model 

files were slow to upload and download, occasionally leading to 

application of not the most recent models. To address this 

limitation, we have migrated the database to a server machine on 

the same physical network as the Airflow instance. 

 

Locations with pedestrian volumes regularly near the minimum 

threshold of 100 people in the previous 24 hours, resulted in 

benefits from training on values where regularity can be 

observed, but suffered from lack of exposure to relatively low 

footfall periods, leading to their predictions being a combination 

of values weakly supported by the training data and, effectively, 

inferencing on values not represented in the training set. We are 

yet to develop solutions addressing this issue. 

 

 
Figure 9. Process of generating alerts 

 

 

Alerting built into Apache Airflow generates notifications 

delivered by ntfy.sh online service (Heckel P., 2021) which 

prompts the system administrator if any tasks of the pipelines 

cannot be completed, despite delayed retries. However, the 

framework itself is made of several interdependent micro-

services (schedule, trigger, worker, tasks database, web interface) 

which may also fail. In such case the system is yielding no alerts 

and a higher-level watchdog service becomes necessary. To this 

end we took advantage of Airflow containers health check feature 

reported on host system, which restarts the service if “Unhealthy” 

status is listed. Also, all services running at Newcastle Urban 

Observatory are monitored using Prometheus event monitoring 

(SoundCloud Development Team, 2012) with separate alerting 

mechanism (Fig.9). Since deployment in late October 2023 the 

system remained largely uninterrupted, continuously training, 

and generating forecasts. 
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Figure 10. Real values compared with predictions from earliest 

and latest models show decrease in error (from orange to red 

line) and part of the value that remains unpredicted (divergence 

of blue line from dark green). 

 

Although our work was concerned with operationalizing a 

forecasting solution, quality of the results has been observed 

throughout the whole time the system is live (Fig.10). Some 

locations had footfall fluctuations in the range of the threshold 

set for sufficient volume to be included in the training set. Such 

instances made these locations drop in and out from the training 

regime, effectively making their models only useful for the above 

threshold periods, as they have never been trained on below 

threshold data. Another implication of using locations with low 

footfall is the susceptibility of evaluation metrics to smallest 

inaccuracies in predictions – with a minimum volume of only 100 

people in the previous 24 required to include a timeseries in the 

process, it meant that there are times when the hourly count can 

be zero or not much higher. Due to these not so rare cases, the 

MAPE score appears evidently higher in low footfall locations 

and during low footfall periods. Potential impact of the issue is 

that new models with better predictive power for the more 

important high footfall periods but worse for the less important 

low footfall periods, could have been discarded by the system if 

the overall MAPE score was lower than currently deployed 

models. A solution for the problem that we are considering is by 

applying a weight to individual precision errors prior to 

calculating the overall mean value. 

 

The system performs well both in terms of predicting normally 

expected values and serving as an alert system when actual values 

divert from forecasts. Since the predictions are made at least one 

hour into the future, and new set of predictions is available every 

hour, that effectively provides multiple reference values and 

trends for user’s consideration. 

 

5. Conclusions 

The deployment of footfall predictions aims to enhance the real-

time, data-driven governance of the city, contributing to creation 

of smart digital infrastructure and more responsive city 

management. Presented work has demonstrated that creating a 

prediction system by orchestration of classical machine learning 

methods using off the shelve components is straight forward to 

implement. These capabilities are particularly relevant for traffic 

operations and retail, where predicting footfall can improve 

safety, comfort, and enhance economic performance. Applied 

approach enabled continuous refinement of the system and 

delivery of up-to-date forecasts, ensuring that users have access 

to the latest estimates of future values. 

 

The usefulness of presented approach extend beyond traffic 

operations and retail. Applying similar solution to other 

timeseries datastreams can support a wider range of urban 

management activities, from emergency response to public 

health monitoring. Creation of a digital-twin-like para-simulation 

environment could revolutionise how cities are managed. 

 

6. Future work 

Areas requiring improvement include issues highlighted in the 

results sections include verifying how short a period of preceding 

values can be without detrimental effect on quality of predictions, 

prototyping solutions addressing issue with locations where 

counts oscillate around the threshold value, introducing a model 

quality metric that puts emphasis on prediction of counts for busy 

periods. 

Avenues for future research that we are considering involve 

deployment on edge devices performing data collection. That 

would solve the issue of scaling the application across severs, and 

accelerate prediction delivery time from doing them at regular 

interval to generating them at every new data point in real-time. 

Another direction to explore is integrating timeseries 

representing conditions related to the predicted parameter, 

similarly to solution developed by (Makkar G., 2019) for the 

retail context. This way the system could gain accuracy by 

considering signals in other timeseries. This can involve e.g. 

weather data (different theme) as well as coming from other 

sensors collecting similar data in proximity, expecting 

geographical auto-correlation. 
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