
Orchestrating Urban Footfall Prediction: Leveraging AI and batch-oriented workflow for

Smart City Application

Tom Komar 1, Philip James 1

1 Urban Observatory, School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU – tom.komar@newcastle.ac.uk

Key Words: smart city, footfall, forecasting, machine learning, artificial intelligence, orchestration

Abstract
This paper explores development and deployment of a smart city prediction system, demonstrating this capability on data generated

by footfall counting sensors. Presented approach integrates classical machine learning (ML) techniques with process orchestration

framework Apache Airflow. The architecture is designed to handle datasets in periodic batches, ensuring updates are regularly

integrated into the prediction system and new predictions are created at every increment. Our work demonstrates ease at which

similar systems can be developed, given sufficient volume of data and availability of compute power. This approach highlights that

increasing number of smart sensors, availability of proven ML techniques and modern processing frameworks create a

critical mass for proliferation of real-time forecasting solutions. Our results indicate that the developed system is effective in

predicting footfall patterns, a variable that can be instrumental in applications such as traffic control, resource allocation, public

safety, and urban planning. Used methodology is not limited to footfall data, and can be applied to other timeseries datastreams,

making it a versatile tool for smart city context. Showcasing practical implementation and benefits of the system, the paper

contributes to the ongoing efforts in developing a class of digital urban infrastructure.

1. Introduction

With the term “smart cities” remaining high in popularity (Fig.1),

the attempts to make urban spaces optimally designed and

managed are important, and forecasting of conditions allows

implementation of proactive measures (Kitchin, 2014). For

instance, (X. Tao, 2024) demonstrate the potential of ML models

in optimising road traffic. Their approach for prediction of urban

activity trains on historical data and their research focuses on

achieving improvement in predictive powers of applied

modelling technique. Such objective leads to development of

heavy-weight solutions with high demand for data, high

computational complexity, and lack of interoperability (X. Yin,

2022). Thus, in line with advancements in quality of predictions,

practitioners encounter growing demands for performant

hardware or accessing expensive cloud services. Training cycles

of large models are late in incorporating very recent datapoints,

and the combination of demand for data with duration of training

favours generation of thematic models, untailored to no specific

data source. Gap in research of predictive systems with quick

model turnaround time, low computational requirement and

interoperability has been progressively making wide-scale

implementation of such solutions more difficult. To address these

issues, the primary objective of this study is to develop a real-

time prediction system for footfall timeseries data, collected by

Newcastle Urban Observatory (P. James, 2022). Our work

presents an application of classical machine learning techniques,

orchestrated using Apache Airflow, to aid in real-time prediction

of footfall in a city. The system uses pedestrian movement data

from AI-powered CCTV cameras installed on lamp posts and

overlooking vehicular, cyclists and pedestrian paths. The data is

processed as timeseries to train ML models for uncovering likely

future patterns in people movement, which are important for

effective planning and management of urban infrastructure. In

this work, our focus is operationalising the forecasting solution

by integrating machine learning with batch-oriented data

processing framework. Unlike conventional methods and off-line

experiments that rely on static, historical data, our system

harnesses live, dynamic and accurate representation of urban

movement. The system is online and the results are available

publicly.

Utility of real-time predictions reach beyond themes of

movement, they are highly relevant to accurate urban weather

forecasting (M. Yu, 2021). A highly important area of

implementing predictive systems is disease outbreak prevention

(Ondrikova, 2021), where timely reaction is of essence.

Figure 1. Normalised popularity score (blue) of term “smart

city” in google scholar search. Peak popularity was in February

2016, 12 months running average (orange) is high to this day.

This introduction, with included literature review, provides

context and highlights importance of real-time prediction

systems in smart city environment. The following methodology

section explains details of the approach used in this study -

covering orchestration of data collection, preprocessing and

training of machine learning models. Results section, followed

by discussion and recommendations for future work, presents

challenges in implementation and operations of the system and

an assessment of success criteria fulfilment.

2. Method

Our application postulates the need for the city to be able to

forecast pedestrian footfall in a short time window (1 – 24 hours)

for a variety of application use cases such as traffic control

planning, crowd control, allocating municipal resources like

February
2016

0

10

20

30

40

50

60

70

80

90

100

Ja
n

-0
4

Ju
l-

0
5

Ja
n

-0
7

Ju
l-

0
8

Ja
n

-1
0

Ju
l-

1
1

Ja
n

-1
3

Ju
l-

1
4

Ja
n

-1
6

Ju
l-

1
7

Ja
n

-1
9

Ju
l-

2
0

Ja
n

-2
2

Ju
l-

2
3

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W10-2024
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W10-2024-119-2024 | © Author(s) 2024. CC BY 4.0 License.

119

cleaning services and waste management, enhancing public

safety and awareness of expected crowding levels.

This presents a challenge in terms of volume of data and the need

for rapid, accurate processing. To address these challenges our

application utilises an incremental learning approach, where the

prediction models are continuously updated with new data,

ensuring that the system remains relevant. Single run of the data

preparation process takes a short moment, but with many (186 in

our case) unique location-direction combinations being

predicted, pre-processing data long in advance of when it is used

offers significant time-savings compared with having to extract,

transform and load raw data each time a new model is being

trained. Training models and storing them for later use in handled

prior to requests for their application, immediately after new

batch of data is prepared (“pre-processed”) and added to the

training set. Once all models have been trained, new forecasts are

made, saved, and uploaded to the user portal. This makes them

available without re-running each time they are needed and they

are cached close to where the application serving them runs.

To implement our solution, we rely on end-to-end orchestration

framework that simplifies deployment, operations, and

monitoring of processing pipelines. Airflow (Airbnb

Development Team, 2015) and NiFi (Witt, J., 2006) are popular

solutions for finite batch-oriented workloads and real-time event

driven data flows, respectively. Airflow offers a more mature

support for modern, custom processors written in Python, with

little overhead and easier management of workflows. On the

other hand, NiFi offered multithreaded and fault-resistant

architecture. Evolution of frameworks has made implementing

data processing pipelines using these products an attractive

alternative to building bespoke solutions developed on building

blocks of message queues, key-stores, databases, frontends and

backend processes. Airflow’s customisability and clearer

monitoring (Fig.2) made it our framework of choice for our work

at this stage.

Figure 2. Statistics of model training tasks in Airflow dashboard.

End-to-end orchestration frameworks are instrumental for

handling interrelated processes involved in analysis of data

generated by urban sensors. Application of an orchestration

framework allows for coordination of various data processing

steps, ensuring they are efficiently managed and, once put in

motion, require minimum supervision.

Our methodology uses Directed Acyclic Graphs (DAGs) in

Apache Airflow to streamline steps involved in delivery of all

tasks. Airflow as a pipeline orchestration framework, assists in

scheduling, triggering and monitoring of regular batch processes.

Initially, aggregation of sensor data adds together high frequency

measurements into larger temporal buckets with lower volatility

and less noise. An important element of our methodology

involves pre-processing where incomplete timeseries are

discarded, dataset is transposed, and additional explanatory

features are engineered from timestamps associated with every

reading.

Figure 3. Transformation of timeseries data into supervised

learning format

In the timeseries transformation the dataset is restructured to fit

into a supervised learning workflow (Fig.3). To achieve that we

apply lag features where target feature at timestep T is

accompanied by explanatory features from periods T-1 ... T-8.

Lag features are important for timeseries forecasting as they

allow learning from multiple past data points to predict future

values. By incorporating past readings, the model can learn

temporal dependencies and patterns that are inherent in the data.

It helps the model understand sequence of events and their

development over time, leading to more accurate and reliable

predictions. In the case of urban footfall, knowing counts at

previous time steps enhances model’s ability to predict future

footfall.

Lag features are generated by shifting target variable’s values

backward by an increasing number of steps until reaching

specified length lag length (in our case we used 8 past readings).

Figure 4. Features engineered from timestamps.

Using raw hour values (ranging from 0 to 23) as explanatory

features in machine learning model training can introduce an

issue related to cyclical nature of time being represented as a

linear value growing from 0 to 23 and then resetting back to 0.

This reset creates discontinuity in what in fact is a gradually

changing variable. For example, hours 23 (11PM) and 2 (2AM)

are only 3 hours apart, however, if used as raw values, the

algorithm reads them as being 21 units apart. To address the issue

of discontinuity in representing time, we engineer the raw hour

value into several “distance from set hour” features, so that the

values used for time are transitioning in a smooth and cyclical

manner (Fig.4).

datetime value

2024-05-01 00:00 4

2024-05-01 01:00 2

2024-05-01 02:00 1

2024-05-01 03:00 1

2024-05-01 04:00 1 datetime transposed timeseries of preceding values target value

2024-05-01 05:00 3 2024-05-01 09:00 {4, 2, 1, 1, 1, 3, 4, 14, 38} 65

2024-05-01 06:00 4 2024-05-01 10:00 {2, 1, 1, 1, 3, 4, 14, 38, 65} 109

2024-05-01 07:00 14 2024-05-01 11:00 {1, 1, 1, 3, 4, 14, 38, 65, 109} 91

2024-05-01 08:00 38 2024-05-01 12:00 {1, 1, 3, 4, 14, 38, 65, 109, 91} 128

2024-05-01 09:00 65 2024-05-01 13:00 {1, 3, 4, 14, 38, 65, 109, 91, 128} 146

2024-05-01 10:00 109 2024-05-01 14:00 {3, 4, 14, 38, 65, 109, 91, 128, 146} 123

2024-05-01 11:00 91 2024-05-01 15:00 {4, 14, 38, 65, 109, 91, 128, 146, 123} 128

2024-05-01 12:00 128 2024-05-01 16:00 {14, 38, 65, 109, 91, 128, 146, 123, 128} 112

2024-05-01 13:00 146 2024-05-01 17:00 {38, 65, 109, 91, 128, 146, 123, 128, 112} 33

2024-05-01 14:00 123 2024-05-01 18:00 {65, 109, 91, 128, 146, 123, 128, 112, 33} 23

2024-05-01 15:00 128 2024-05-01 19:00 {109, 91, 128, 146, 123, 128, 112, 33, 23} 17

2024-05-01 16:00 112 2024-05-01 20:00 {91, 128, 146, 123, 128, 112, 33, 23, 17} 25

2024-05-01 17:00 33 2024-05-01 21:00 {128, 146, 123, 128, 112, 33, 23, 17, 25} 7

2024-05-01 18:00 23 2024-05-01 22:00 {146, 123, 128, 112, 33, 23, 17, 25, 7} 15

2024-05-01 19:00 17 2024-05-01 23:00 {123, 128, 112, 33, 23, 17, 25, 7, 15} 6

2024-05-01 20:00 25

2024-05-01 21:00 7

2024-05-01 22:00 15

2024-05-01 23:00 6

datetime to/from12AM to/from6AM to/from12PM to/from6PM

2024-05-01 09:00 9 3 3 9

2024-05-01 10:00 10 4 2 8

2024-05-01 11:00 11 5 1 7

2024-05-01 12:00 12 6 0 6

2024-05-01 13:00 11 7 1 5

2024-05-01 14:00 10 8 2 4

2024-05-01 15:00 9 9 3 3

2024-05-01 16:00 8 10 4 2

2024-05-01 17:00 7 11 5 1

2024-05-01 18:00 6 12 6 0

2024-05-01 19:00 5 11 7 1

2024-05-01 20:00 4 10 8 2

2024-05-01 21:00 3 9 9 3

2024-05-01 22:00 2 8 10 4

2024-05-01 23:00 1 7 11 5

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W10-2024
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W10-2024-119-2024 | © Author(s) 2024. CC BY 4.0 License.

120

Figure 5. Architecture of the prediction system.

Following these pre-processing steps, three ML regressors

(Support Vector, Random Forest, Gradient Boosting) are trained

using cross-validation (Sci-kit Development Team, 2007).

Evaluation is done using Mean Average Percentage Error. In

order to deliver predictions beyond the next hour, predictions are

made for the following hours, by adding the prediction to the

predictors at each step. The process is delivered every hour, with

new training features, new models and new predictions added to

a database at the same frequency.

Presented approach (Fig.5) leverages machine learning models

and continuous learning technique to ensure quick turnaround

and adaptability. Use of cross-validation ensures selection of the

best performing model. By automatically updating all the

individual models with new data, the system remains responsive

to changing patterns and trends in the dynamic urban

environment they operate it.

3. Results

Application of classical ML models provided us with

computational efficiency, interoperability, and interpretability of

the model. Scaling the solution across multiple sites, reliance on

small amounts of data from some newly deployed sensors and

operating with limited computational resources pointed towards

utilisation of these classical ML methods. The solution does not

require access to GPU and has been tested on hardware ranging

from desktop grade machine, high-end PC, and server machines.

Leveraging Airflow for orchestration provided an out-of-the-box

solution for version control, scheduling, monitoring, and alerting.

The use of a database for storing code, source data, restructured

features, models and predictions provides a unified, structured

and open data-engine, available for integration with other

systems. Airflow can fetch new versions of jobs code (DAG) and

automatically deploy it. This approach replaces local files most

up to date version from the database. We also tested python

library “importlib” which allows dynamically importing new

functions during application runtime. This way the process, as

defined by DAG, remains the same and it is the tools (functions)

that are downloaded from the database. We have settled for the

all-in-one solution (formerly explained fetching of most up-to-

date DAGs). This way we limit frequency of database

connections only to the times when new version become

available, unlike with importing functions which requires

instantiating database connection on every run of each job.

Figure 6. Locations of Newcastle Urban Observatory footfall

sensors.

In the study, the pedestrian movement data comes from computer

vision traffic sensors distributed across a city in 74 locations

(Fig.6). These devices are detecting vehicles, bicycles, and

pedestrians, tracking their trajectories, and verifying if they cross

a virtual line placed within cameras field of view (Fig.7).

Hardware used in the sensors is a combination of a

microcomputer (Raspberry Pi) and an AI accelerator (Google

Coral TPU, offering 4 trillion operations per second) (K.

Seshadri, 2022). The object detection model is Mobilenet V2 (M.

Sandler, 2018) and tracking is done using SORT method (A.

Bewley, 2016). The devices communicate with an online API to

submit all individual datapoints, representing line crossing

events, collected over previous 5 minutes. The devices are

centrally managed using Balena IoT platform (R. Botez, 2020).

This platform provides a unified mechanism for commissioning

of new devices, deployment of applications, management of

environmental variables and many other operations on individual

devices and on whole fleet level.

Figure 7. Example camera view of a sensor with a virtual count-

line displayed in orange.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W10-2024
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W10-2024-119-2024 | © Author(s) 2024. CC BY 4.0 License.

121

If considering the count to be a feature of a pedestrian movement

network, it can be treated as a point measurement. Contrary to

movement of vehicular traffic, the wide range of pedestrian

activity at micro level with multiple input/output points on

adjacent buildings and dwell areas on the street, the footfall count

gathered in this manner is not equal, but related to the flow over

a street segment. At the time of writing, in 26 of these locations

the flow of people was too low to adequately train models and

were excluded, but that number can vary every time the process

runs (i.e. every hour). The sensors provide data at event-in-time

granularity that is aggregated into 5-minute bins, then 15-minute,

1-hour and daily periods (Fig.8). Most of these sensors are in

operation for over 12 months, offering clarity on daily and

weekly flows, and a glimpse of seasonal dynamics. Others are

fresh to the field, with limited amounts of data available for

training.

Figure 8. 15-minute (top), hourly (middle) and daily (bottom)

ebbs and flows of footfall counts at one busy location.

In the pre-processing step involving reshaping of the timeseries

dataset into supervised learning structure, value from row T was

used as the target value (prediction - y) and 8 preceding values

were used as explanatory features (predictors - x). If a preceding

value was missing, generation of this training item was skipped.

Additionally, feature engineering added more explanatory

features including one-hot-encoded day of week (single

categorical column is divided into 7 numerical columns, one for

each day), binary feature for weekends, distance-from-set-time

values for time of day, and binary feature for time adjustment

(“daylight saving time”). Such preprocessing gives the model

understanding not only of how the timeseries developed in short

time-period prior to the prediction, but also extra information that

lets the model embed this knowledge in a temporal context.

Use of 8 preceding values as explanatory features might have put

too little emphasis on most recent readings, potentially causing

the models to unnecessarily account for less relevant values from

the past.

4. Discussion

Implementation and use of such system does not come without

challenges. Relying solely on a relational database for storage,

came with its performance limitations meaning that large model

files were slow to upload and download, occasionally leading to

application of not the most recent models. To address this

limitation, we have migrated the database to a server machine on

the same physical network as the Airflow instance.

Locations with pedestrian volumes regularly near the minimum

threshold of 100 people in the previous 24 hours, resulted in

benefits from training on values where regularity can be

observed, but suffered from lack of exposure to relatively low

footfall periods, leading to their predictions being a combination

of values weakly supported by the training data and, effectively,

inferencing on values not represented in the training set. We are

yet to develop solutions addressing this issue.

Figure 9. Process of generating alerts

Alerting built into Apache Airflow generates notifications

delivered by ntfy.sh online service (Heckel P., 2021) which

prompts the system administrator if any tasks of the pipelines

cannot be completed, despite delayed retries. However, the

framework itself is made of several interdependent micro-

services (schedule, trigger, worker, tasks database, web interface)

which may also fail. In such case the system is yielding no alerts

and a higher-level watchdog service becomes necessary. To this

end we took advantage of Airflow containers health check feature

reported on host system, which restarts the service if “Unhealthy”

status is listed. Also, all services running at Newcastle Urban

Observatory are monitored using Prometheus event monitoring

(SoundCloud Development Team, 2012) with separate alerting

mechanism (Fig.9). Since deployment in late October 2023 the

system remained largely uninterrupted, continuously training,

and generating forecasts.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W10-2024
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W10-2024-119-2024 | © Author(s) 2024. CC BY 4.0 License.

122

Figure 10. Real values compared with predictions from earliest

and latest models show decrease in error (from orange to red

line) and part of the value that remains unpredicted (divergence

of blue line from dark green).

Although our work was concerned with operationalizing a

forecasting solution, quality of the results has been observed

throughout the whole time the system is live (Fig.10). Some

locations had footfall fluctuations in the range of the threshold

set for sufficient volume to be included in the training set. Such

instances made these locations drop in and out from the training

regime, effectively making their models only useful for the above

threshold periods, as they have never been trained on below

threshold data. Another implication of using locations with low

footfall is the susceptibility of evaluation metrics to smallest

inaccuracies in predictions – with a minimum volume of only 100

people in the previous 24 required to include a timeseries in the

process, it meant that there are times when the hourly count can

be zero or not much higher. Due to these not so rare cases, the

MAPE score appears evidently higher in low footfall locations

and during low footfall periods. Potential impact of the issue is

that new models with better predictive power for the more

important high footfall periods but worse for the less important

low footfall periods, could have been discarded by the system if

the overall MAPE score was lower than currently deployed

models. A solution for the problem that we are considering is by

applying a weight to individual precision errors prior to

calculating the overall mean value.

The system performs well both in terms of predicting normally

expected values and serving as an alert system when actual values

divert from forecasts. Since the predictions are made at least one

hour into the future, and new set of predictions is available every

hour, that effectively provides multiple reference values and

trends for user’s consideration.

5. Conclusions

The deployment of footfall predictions aims to enhance the real-

time, data-driven governance of the city, contributing to creation

of smart digital infrastructure and more responsive city

management. Presented work has demonstrated that creating a

prediction system by orchestration of classical machine learning

methods using off the shelve components is straight forward to

implement. These capabilities are particularly relevant for traffic

operations and retail, where predicting footfall can improve

safety, comfort, and enhance economic performance. Applied

approach enabled continuous refinement of the system and

delivery of up-to-date forecasts, ensuring that users have access

to the latest estimates of future values.

The usefulness of presented approach extend beyond traffic

operations and retail. Applying similar solution to other

timeseries datastreams can support a wider range of urban

management activities, from emergency response to public

health monitoring. Creation of a digital-twin-like para-simulation

environment could revolutionise how cities are managed.

6. Future work

Areas requiring improvement include issues highlighted in the

results sections include verifying how short a period of preceding

values can be without detrimental effect on quality of predictions,

prototyping solutions addressing issue with locations where

counts oscillate around the threshold value, introducing a model

quality metric that puts emphasis on prediction of counts for busy

periods.

Avenues for future research that we are considering involve

deployment on edge devices performing data collection. That

would solve the issue of scaling the application across severs, and

accelerate prediction delivery time from doing them at regular

interval to generating them at every new data point in real-time.

Another direction to explore is integrating timeseries

representing conditions related to the predicted parameter,

similarly to solution developed by (Makkar G., 2019) for the

retail context. This way the system could gain accuracy by

considering signals in other timeseries. This can involve e.g.

weather data (different theme) as well as coming from other

sensors collecting similar data in proximity, expecting

geographical auto-correlation.

Acknowledgements

We are grateful for the support this research has received from

UK Research and Innovation in partnership with Natural

Environment Research Council under “Digital Solutions”

programme initiative.

This research utilises datastreams captured and provided by

Newcastle University Urban Observatory. Their data collection

efforts and access to real-time data have been instrumental in

development of our prediction system.

References

Beauchemin M., Airbnb Development Team, Apache Software

Foundation, 2015: Airflow Software

Cournapeau D., Scikit-learn Development Team, 2007: Scikit-

learn Library for Machine Learning

Haines, S., 2022: Workflow Orchestration with Apache Airflow.

Modern Data Engineering with Apache Spark. Apress, Berkeley,

CA. doi.org/10.1007/978-1-4842-7452-1_8

Asher, M., Oswald, Y., and Malleson, N., 2023: Predicting Pe-

destrian Counts using Machine Learning. AGILE GIScience Ser.,

4, 18, doi.org/10.5194/agile-giss-4-18-2023

Pedregosa et al., 2011: Scikit-learn: Machine Learning in Python.

Journal of Machine Learning Research, vol. 12, p.2825-2830,

doi.org/10.48550/arXiv.1201.0490

Cohen A., Dalyot S., Natapov A., 2021: Machine Learning for

Predicting Pedestrian Activity Levels in Cities, Proceedings of

the 16th International Conference on Location Based Services,

doi.org/10.34726/1758

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W10-2024
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W10-2024-119-2024 | © Author(s) 2024. CC BY 4.0 License.

123

Kitchin, R., 2014: The real-time city? Big data and smart

urbanism. GeoJournal 79, 1–14 (2014).

https://doi.org/10.1007/s10708-013-9516-8

Tao X, Cheng L, Zhang R, Chan WK, Chao H, Qin J., 2024:

Towards Green Innovation in Smart Cities: Leveraging Traffic

Flow Prediction with Machine Learning Algorithms for

Sustainable Transportation Systems. Sustainability. 2024;

16(1):251. https://doi.org/10.3390/su16010251

P James, J Jonczyk, L Smith, N Harris, T Komar, D Bell, 2022:

Realizing smart city infrastructure at scale, in the wild: A case

study. Frontiers in Sustainable Cities, 2022

X. Yin, G. Wu, J. Wei, Y. Shen, H. Qi and B. Yin, 2022: Deep

Learning on Traffic Prediction: Methods, Analysis, and Future

Directions, IEEE Transactions on Intelligent Transportation

Systems, vol. 23, no. 6, pp. 4927-4943, June 2022, doi:

10.1109/TITS.2021.3054840

M. Yu, F. Xu, W. Hu, J. Sun and G. Cervone, 2021: Using Long

Short-Term Memory (LSTM) and Internet of Things (IoT) for

Localized Surface Temperature Forecasting in an Urban

Environment, IEEE Access, vol. 9, pp. 137406-137418, 2021,

doi: 10.1109/ACCESS.2021.3116809

Ondrikova N, Harris J, Douglas A, Hughes H, Iturriza-Gomara

M, Vivancos R, Elliot A, Cunliffe N, Clough H, 2023: Predicting

Norovirus in England Using Existing and Emerging Syndromic

Data: Infodemiology Study, J Med Internet Res 2023;25:e37540

Witt J., US National Security Agency, Apache Software Founda-

tion, 2006: NiFi Software

A. Bewley, Z. Ge, L. Ott, F. Ramos and B. Upcroft, 2016: Simple

online and realtime tracking, 2016 IEEE International

Conference on Image Processing (ICIP), Phoenix, AZ, USA, pp.

3464-3468, doi: 10.1109/ICIP.2016.7533003

K. Seshadri, B. Akin, J. Laudon, R. Narayanaswami and A.

Yazdanbakhsh, 2022: An Evaluation of Edge TPU Accelerators

for Convolutional Neural Networks, 2022 IEEE International

Symposium on Workload Characterization (IISWC), Austin, TX,

USA, pp. 79-91, doi: 10.1109/IISWC55918.2022.00017

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. Chen,

2018: MobileNetV2: Inverted Residuals and Linear Bottlenecks,

2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Salt Lake City, UT, USA, pp. 4510-4520.

doi: 10.1109/CVPR.2018.0047

R. Botez, V. Strautiu, I. -A. Ivanciu and V. Dobrota, 2020:

Containerized Application for IoT Devices: Comparison between

balenaCloud and Amazon Web Services Approaches, 2020

International Symposium on Electronics and

Telecommunications (ISETC), Timisoara, Romania, pp. 1-4, doi:

10.1109/ISETC50328.2020.9301070

Heckel P., 2021: Ntfy.sh Software

SoundCloud Development Team, 2021: Prometheus Software

Makkar, G., 2020: Real-Time Footfall Prediction Using Weather

Data: A Case on Retail Analytics. Sharma, N., Chakrabarti, A.,

Balas, V. (eds) Data Management, Analytics and Innovation.

Advances in Intelligent Systems and Computing, vol 1042.

Springer, Singapore. doi:10.1007/978-981-32-9949-8_37

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W10-2024
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W10-2024-119-2024 | © Author(s) 2024. CC BY 4.0 License.

124

