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Abstract:

This paper introduces an enhanced approach to loop closure detection in Simultaneous Localization and Mapping (SLAM) by 
integrating the Faster-LIO framework with Stable Triangle Descriptors (STD). SLAM, essential in autonomous driving and 
augmented reality, often encounters cumulative errors affecting mapping accuracy. Traditional detection methods based on sensor 
data like camera images and LiDAR point clouds struggle with environmental changes that alter scene appearance and geometry. Our 
approach utilizes LiDAR sensors and STD, exploiting the geometric stability of triangles to maintain robustness against rotational 
and translational changes. The process involves storing triangle descriptors from key frames in a hash table within the Faster-LIO 
framework, a voxel-based LiDAR-Inertial Odometry optimized for efficiency and speed. These descriptors are then matched across 
frames using a voting mechanism to ensure reliable loop closure detection. Validation on the KITTI dataset and a proprietary 
subterranean parking garage dataset demonstrates that this integration not only enhances loop closure detection but also simplifies 
computational demands by avoiding complex tree structures. This method shows promise for broader applications in robotics and 
autonomous systems, with future research focusing on refining the descriptor and expanding its applicability to other sensor 
modalities.

1. Introduction

Simultaneous Localization and Mapping (SLAM) is a
cornerstone technology in fields such as autonomous driving,
augmented reality, and virtual reality. Its incremental nature in
positioning and mapping inevitably leads to cumulative errors
in large-scale mapping. Loop closure detection methods
mitigate these errors by establishing constraints between current
and historical frames, thus necessitating position recognition to
ascertain whether the data collection process has revisited a
historical location. Position recognition involves determining
whether two sensor measurements (e.g., camera images, LiDAR
point clouds) were collected in the same scene.

The extensive use of cameras has led to the development of
many vision-based SLAM systems. However, these loop
closure detection methods struggle with significant alterations
caused by changes in lighting, appearance, or perspective. In
contrast, Light Detection and Ranging (LiDAR) sensors capture
the structural information of the environment directly,
remaining unaffected by changes in lighting and appearance.
The advent of low-cost, high-performance LiDAR has further
expanded its application in robotics. LiDAR-based position
recognition solutions must exhibit rotational and translational
invariance,.

Triangles, being more stable and possessing rotational and
translational invariance compared to other polygonal shapes, are
utilized in this study to encode any three arbitrary keypoints in a
scene using Stable Triangle Descriptors, building upon the
Faster-LIO framework. This approach enables position
1recognition through descriptor matching, facilitating loop

closure detection by increasing frame-to-frame constraints. In
Faster-LIO, voxel point clouds are constructed from key frames
to create planar voxels meeting a specific threshold, with
non-conforming points designated as boundary voxels. The
farthest point on a boundary voxel from planar voxels is
projected as a boundary pixel value onto a planar voxel map,
selecting the largest pixel value within a defined range (e.g.,
4x4) as the keypoint. Kd-tree construction based on these
keypoints facilitates the search for adjacent points to form
triangle descriptors, which are then stored in a hash table for
rapid querying and matching. The hash key values are computed
using the dot product of edge lengths and normal projection
vectors in the descriptors, ensuring rotational and translational
invariance. During the site recognition process, the hash key
values of the descriptors in the current key frame are searched,
with each matched key frame receiving a vote. Following the
processing and querying of all descriptors, the descriptors of the
key frames with the highest vote counts are retained for
subsequent loop detection steps.

2. Related

2.1 Frame

To address rapid movement and environmental noise, Xu et al.
introduced the FAST-LIO framework(Xu and Zhang, 2021), a
robust, tightly-coupled laser-inertial odometry system.
FAST-LIO integrates LiDAR with IMU using an error state
iterative Kalman filter, enhancing computational efficiency by
focusing on state dimensions rather than measurement
dimensions. FAST-LIO2(Xu et al., 2022) further refines this
approach by omitting feature extraction and employing a
dynamic kd-Tree structure, ikd-Tree(Cai, Xu, and Zhang, 2021),
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which offers better performance compared to traditional
dynamic data structures.

Extensive testing shows that FAST-LIO2 offers significant
improvements in processing speed and robustness, particularly
in high-speed environments. However, its real-time mapping
capabilities in large-scale scenarios are limited by the
maintenance demands of the ikd-Tree structure. Building upon
FAST-LIO2, Faster-LIO(Bai et al., 2022) uses an incremental
sparse voxel (iVox) data structure, which significantly speeds
up point cloud registration without compromising odometry
accuracy.

Overall, these advancements in LiDAR SLAM technologies
emphasize improvements in speed, accuracy, and adaptability to
environmental challenges, yet they also highlight the ongoing
challenges in large-scale mapping and real-time data processing.

2.2 key frame

The generation of keyframes significantly impacts the
performance of SLAM algorithms; selecting the correct
keyframes can conserve computational resources, eliminate
redundant data, and enhance both processing speed and
accuracy. Existing LiDAR SLAM systems such as
LeGO-LOAM and LIO-SAM utilize a fixed mechanism for
keyframe generation, where keyframes are chosen based on
predefined distance and temporal thresholds between frames.

Place recognition in 3D data is crucial for autonomous robot
localization and has been explored through various
methodologies. These approaches are typically categorized into
three distinct types:

(i) local descriptors that focus on point features;

(ii) global descriptors that capture overall appearance;

(iii) learning-based methods.

Local Descriptors: Bosse and Zlot(Bosse and Zlot, 2013)
directly identify keypoints on 3D data using the Gestalt
Descriptor, which captures each keypoint's local neighborhood
to compute a voting matrix for place recognition. Other
descriptors such as PFH(Rusu, Blodow, Marton, and Beetz,
2008), SURFs(Bay, Tuytelaars, and Van Gool, 2006), and
SHOT(Salti, Tombari, and Di Stefano, 2014) operate under
similar frameworks but tend to be sensitive to the variability in
LiDAR point cloud density and noise, lacking invariance to
changes in rotation or viewpoint.

Global Descriptors: Giseop Kim and Ayoung Kim(Kim and
Kim, 2018) developed Scan Context, a 2D descriptor based on
the height of surrounding structures, and V. Nardari et
al.(Nardari, Cohen, Chen, Liu, Arcot, Romero, and Kumar,
2021) designed a polygon descriptor for forest environment
recognition, while Jiang et al.(Jiang, Zhu, and Liu, 2019) use a
triangle feature-based descriptor for 2D SLAM. Global
descriptors leverage general appearance attributes such as
surface flatness, orientation, and height.

Learning-Based Methods: Contrasting with traditional
descriptors, learning-based methods use deep learning to
enhance place recognition. SegMap(Dubé, Dugas, Stumm,
Nieto, Siegwart, and Cadena, 2017) utilizes semantic features
for recognition, whereas OverlapNet(Chen, Läbe, Milioto,
Röhling, Vysotska, Haag, Behley, and Stachniss, 2020)

employs a neural network for calculating overlaps and
estimating relative yaw angles between pairs of 3D scans. These
approaches generally require training and benefit from GPU
acceleration to manage their computational load.

The Stable Triangle Descriptor introduced here is a global
descriptor that integrates three critical points. These descriptors
are specifically extracted within a keyframe to accurately
represent the relative distribution of key points across the frame.
Unlike other global descriptors, this Stable Triangle Descriptor
demonstrates enhanced invariance to rotation and translation,
offering a distinct advantage in dynamic environments.

In contrast to typical polygon descriptors that are extracted in
2D space, this descriptor operates directly in 3D space. It
leverages the most stable and consistent triangle formation
found among polygons, thus providing a more reliable and
recognizable descriptor. Moreover, this approach enables
comprehensive pose estimation with full degrees of freedom,
significantly streamlining the registration process by reducing
time and enhancing accuracy. This makes the Stable Triangle
Descriptor particularly valuable for applications requiring
precise and efficient mapping and localization.

3. Method

Figure 1 STD flowchart

As depicted in Figure 1, the integration of iVox with Stable
Triangle Descriptors (STD) involves leveraging a k-d tree for
nearest neighbor searches essential for forming triangle
descriptors within STD. A k-d tree is an efficient binary tree
structure where each node represents an axis-aligned hyperplane
that splits the space into two halves. This tree selects the node to
be split as the median point along the longest dimension to
ensure compact spatial partitioning, which is particularly
effective in solving k-Nearest Neighbors (kNN) problems due to
its ability to handle low-dimensional data efficiently when
stored in primary memory.

However, despite its efficiency in spatial queries, the k-d tree
may experience a loss in performance due to deep branching
during searches for nearest neighbors. Such extensive searching
does not necessarily improve the accuracy of local plane
estimation and can introduce inefficiencies, particularly in
LiDAR-Inertial Odometry (LIO) applications where time and
computational resources are critical.
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In contrast, Faster-LIO utilizes a voxel-based algorithm to
constrain the search within a pre-defined boundary, enhancing
efficiency by preventing the extensive search depths typical of
k-d trees. This approach ensures that even discarded points do
not significantly affect the overall residual computations,
making it more suitable for real-time applications. The voxel
method avoids the extensive construction, iteration, balancing,
and removal processes associated with k-d tree nodes, thereby
streamlining the computation process.

3.1 iVox

Faster-LIO introduces a sparse, incremental, voxel-based
LiDAR-Inertial Odometry (LIO) algorithm, differing from
FastLIO2 by utilizing sparse voxels instead of k-d trees. The
choice for sparse incremental voxels is motivated by two main
reasons: First, unlike k-d trees, which may traverse distant
branches to find a potential nearest neighbor, the search range in
sparse voxel-based algorithms is confined within a preset limit,
with the omission of such nearest neighbors having negligible
impact on the majority of residuals. Second, voxels are more
efficient since the construction, iteration, balancing, and
removal of k-d tree nodes can impede LIO performance.

In the iVox framework, the point clouds are strategically stored
within sparse voxel structures. This storage is facilitated
through the use of a sparse hash map, which is designed to
efficiently maintain records of voxels that encompass at least
one point. This method optimizes memory usage by ensuring
that only those voxels which are non-empty are indexed,
thereby enhancing the computational efficiency and speed of
access during point cloud processing tasks.

Figure 2 Diagram illustrating the mapping of 3D points to the
same one-dimensional hash index.

Using the following hash function:

P=[px，py，pz]T (1)

v=[px，py，pz]T (2)

idv=hash(v)=(vxnx)xor(vyny)xor(vzny)modN (3)

(1)Represents a point is position in three-dimensional space.

(2) In the context, v denotes the voxel index, and s represents
the size of the voxel.

(3)idv refers to the method used to calculate the hash value of
vector v for spatial hashing. It represents the voxel index is hash
value. The final modulus operation ensures that the resultant
hash value falls within the size N of the hash table. This

modulus operation guarantees that, even if the number obtained
through the XOR operation is very large, the final hash value
will be confined within the valid index range of the hash table.

Figure 3 k-NN search flowchart

The k-NN search in the iVox framework follows a predefined
range and is divided into three critical steps. Considering the
iVox structure V and a query point P, the process unfolds as
follows: 1) Identify the voxel index and surrounding voxels
(which may include 6, 18, or 26 voxels); collectively, these
voxels are referred to as S. 2) Iterate through each voxel in S,
searching for up to K nearest neighbors within each voxel. 3)
Aggregate all search results and select the optimal K neighbors.
It is noteworthy that step 2 can be parallelized for each voxel.
However, since parallel processing has already been
implemented at the point cloud level, there is no need for
separate parallel searches within each voxel. The k-NN search
within iVox is straightforward and efficient, although it may not
be as strict as tree-based algorithms, it is sufficiently robust for
LIO applications.(Bai, Xiao, Chen, Wang, Zhang, and Gao,
2022)

3.2 boundary voxels and descriptor

Figure 4 boundary voxels

Boundary voxels are employed as a method for extracting key
points from 3D point clouds.As shown in Figure 4, these are the
boundary voxels during the experimental process.In this process,
the entire point cloud is first divided into voxels of a specified
size. Each voxel contains a set of points, and the covariance
matrix of these points is calculated to determine whether they
form a plane. If it is established that a plane is formed, this
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voxel is designated as a planar voxel. Subsequently, a plane is
initialized, starting with any planar voxel, and is expanded by
searching adjacent voxels. If neighboring voxels share the same
planar normal vector as the current plane and are within a
certain distance threshold, they are added to the plane.
Conversely, if adjacent voxels do not lie on the same plane, they
are added to the list of boundary voxels of the expanding plane.

The formula for calculating the covariance matrix of points is as
follows:

�
=1

� �=1
� ��� ; = 1

�
� �=1

�� (pi-
�
)(pi-

�
)T (4)

The first part, computes the mean vector of the point set, where
pi represents the i -th point in the dataset, and N is the total
number of points. The mean is derived by taking the arithmetic
average of all the data points.

The second part,represents the covariance matrix, which
measures the extent of variation between each point pi and the
mean point

p
. The difference between each data point pi and the

mean
p

is first computed, then this difference vector is
multiplied by its own transpose vector. The sum of these
products, normalized by the total number of points N,yields the
covariance matrix. The diagonal elements of the covariance
matrix indicate the variance within each dimension, while the
off-diagonal elements represent the covariance between
different dimensions.

Figure 5 Boundary Voxel Search Flowchart

The Stable Triangle Descriptor is an innovative tool for 3D
position recognition, represented by a six-dimensional vector
that includes the lengths of a triangle's three sides and the angles
between the normals of adjacent planes at each triangle vertex,
as shown in Figure 1. The STD employs a triangle to encode
any three key points within a scene, offering enhanced stability
compared to other descriptors. Its primary advantage lies in the
determinacy of its shape by either side lengths or angles,
maintaining invariance under rigid transformations.

Figure 6 A standard triangle descriptor

The process begins with the extraction of triangle descriptors
from key frames, utilizing a hash table as the database for
efficient storage and matching. Frames are ranked based on
descriptor matching scores, with the top ten frames selected as
candidates. These candidates undergo geometric verification to
identify valid loops, and relative transformations between the
loop and candidate frames are established upon loop detection.
As depicted in Figure 1, following the registration of point
cloud data collected via LiDAR Odometry and Mapping
(LOAM)(Zhang and Singh, 2014), the comprehensive STD
process commences. It starts with the accumulation of point
cloud data, followed by the extraction of triangle descriptors
from key frames. Plane boundary detection involves identifying
all planar regions and their boundaries within the point cloud.

Key point extraction and assembly entail locating points within
the point cloud that possess unique geometric characteristics,
which are vital for subsequent data processing steps such as
point cloud registration and feature matching. These key points
are matchable across datasets captured from various viewpoints
or moments in time. The process continues with querying loop
candidates, integrating historical point clouds into the hash table,
and performing stable triangle descriptor matching and scoring
against the current point cloud. Loop closure and correction are
achieved through RANSAC and geometric verification if a loop
is detected; otherwise, the process concludes without loop
closure.(Yuan, Lin, Zou, Hong, and Zhang, 2023)

3.3 Methodology

Building on the foundation of Faster-LIO, this paper uses a
novel application of Stable Triangle Descriptors (STDs) for
encoding any three arbitrary keypoints within an environment
for position recognition. This method enhances the constraints
between the current and historical frames, facilitating point
cloud correction.

4. Experiment

The KITTI dataset is a renowned repository in the domain of
computer vision, predominantly utilized for research in
autonomous vehicular technologies. This dataset encompasses a
diverse array of sensor data, including outputs from stereo
cameras, Light Detection and Ranging (LiDAR) scanners,
Global Positioning System (GPS), and Inertial Measurement
Units (IMU). The KITTI dataset was collaboratively developed
by the Karlsruhe Institute of Technology in Germany and the
Toyota Technological Institute, providing a comprehensive
suite of high-resolution sensor data critical for the advancement
of perception, navigation, and autonomous driving systems. The
dataset has been pivotal in benchmarking the performance of a
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multitude of computer vision algorithms, specifically in the
tasks of object detection, tracking, and scene understanding
within the dynamic context of real-world driving environments.

In the experimental section, in addition to utilizing the KITTI
dataset, we have also employed a self-collected subterranean
parking garage dataset for our experiments.

This study utilized the AGILE mobile platform as the
experimental apparatus. The platform is equipped with a
nine-axis IMU for precise inertial navigation, along with four
infrared obstacle avoidance sensors and wheel motors for
propulsion, capable of achieving a maximum speed of 5 meters
per second and a payload capacity of 50 kilograms. The control
system employs a high-performance industrial computer with an
i7 CPU and 16GB of memory, supporting the ROS operating
system to ensure robust computing power and stability.
Additionally, the experimental platform is equipped with
HESAI's Pandar40 LiDAR, enabling 360-degree
omnidirectional scanning, high-density point cloud output, and
remote distance measurement, facilitating efficient, accurate,
and comprehensive environmental perception.Our experimental
equipment is as shown in Figure 7.

Figure 7 Experimental equipment

On the software side, this experimental platform can run on
Ubuntu 20.04 and is integrated with ROS, providing powerful
software support and a wide range of algorithm libraries.

4.1 Experimental and Data Comparisons

In the course of our experiments, we initially conducted
validation on the KITTI dataset, which provides ground truth
data. Within the KITTI dataset experiments, the ground truth is
represented by the grey dashed lines. It is evident from Figures
8 and 9 that our experiments demonstrate an enhanced
performance in loop closure detection compared to FasterLIO,
particularly noticeable within the KITTI_00 dataset. It can be
distinctly observed that the trajectory formed by our method
adheres more closely to the ground truth, indicating a superior
accuracy of our approach.

Figure 8 Comparison of the effects of dataset KITTI_00,The
visualization of Faster-lio is on the left, and ours is on the right.

Figure 9 Comparison of the effects of dataset KITTI-07,The
visualization of Faster-lio is on the left, and ours is on the right.

kitti 00
mean std rmse max min

fasterlio 18.18 10.67 21.08 54.48 2.17
ours 13.86 6.80 15.44 33.38 1.20

Table 1 KITTI_00 experimental data

kitti 07
mean std rmse max min

fasterlio 8.42 3.94 9.29 18.97 0.99
ours 7.53 3.57 8.33 15.76 0.41

Table 2 KITTI_07 experimental data

4.2 a self-collected subterranean parking garage dataset

In our proprietary dataset of point clouds collected from an
underground parking garage, we conducted experiments using
our enhanced methodology. Given the absence of ground truth
in the subterranean parking environment, we could only assess
the relative accuracy. In Figure 10, panels a, b, and c represent
the three distinct point cloud datasets from our collected
underground parking scenarios. Panel d depicts a magnified
section within dataset c, where it is distinctly noticeable that
upon the formation of a loop closure, our method successfully
identified the Stable Triangle Descriptors in our self-collected
dataset and accomplished matching between the current frame
and historical frames. Furthermore, it is clearly observed that
our approach results in a substantial correction effect.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W10-2024 
8th International Conference on Smart Data and Smart Cities (SDSC), 4–7 June 2024, Athens, Greece

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W10-2024-183-2024 | © Author(s) 2024. CC BY 4.0 License.

 
187



Figure 10 Experimental results and local details of three
different underground parking garages.

Figure 11 Figure 10c presents the absolute positional errors
from four experimental trials conducted on the subterranean

parking garage dataset.

In the challenging environment of an underground parking
facility where no ground truth data is available, a set of four
controlled experiments was conducted to rigorously evaluate the
reliability and consistency of our localization methodology. The
outcomes of these experimental runs are presented in Figure 11,
which elucidates the performance across six pivotal statistical
metrics. These metrics encompass the maximum and minimum
recorded errors, offering an in-depth understanding of the
performance boundaries. The standard deviation elucidates the
variability within our dataset, and the median value serves as a
metric for central tendency, which is less susceptible to the
influence of outliers as compared to the arithmetic mean. The
mean error is indicative of the average performance level.
Critically, the root mean square error amalgamates a holistic
measure of variance, emphasizing larger deviations.
Remarkably, only one experimental instance indicated a notable
deviation, underscoring the robustness of our approach amidst
the intrinsic challenges associated with an underground setting.

5. Conclusion

This study examines the combined use of Faster-LIO and Stable
Triangle Descriptor (STD) matching, performing numerous
experiments on datasets featuring loop closures, both from
public sources and those meticulously compiled by our research
group. Empirical outcomes indicate that integrating these
methods could improve the refinement process inherent in loop
closure detection and increase the precision of position

identification. Utilizing the geometric consistency provided by
STDs, the approach under investigation shows significant
promise in enhancing the precision of environmental mapping
and navigation within autonomous systems.
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