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ABSTRACT: 

As urbanization accelerates, traffic congestion and frequent accidents have become prominent issues, prompting the development of 

intelligent transportation systems. This paper focuses on the research of vehicle and pedestrian detection algorithms to improve 

detection accuracy in complex traffic environments. Considering the limitations of traditional object detection algorithms in complex 

situations, this study adopts the deep learning-based YOLOv8 algorithm and introduces the Coordinate Attention (CA) module to 

enhance the model's feature extraction and localization capabilities. Experimental results show that the improved YOLOv8 network 

achieves a 1.1% increase in detection accuracy while maintaining its original speed. Furthermore, this paper constructs a vehicle and 

pedestrian dataset suitable for Chinese traffic scenes, providing an effective solution for autonomous driving assistance systems. 

Overall, this study holds significant reference value for vehicle and pedestrian detection in the field of intelligent transportation. 

1. INTRODUCTION

Object detection technology is crucial in computer vision, 

aiming to accurately identify and locate various targets in 

images and determine their categories. Since 2012, the rapid 

advancement of deep learning technology has significantly 

progressed research in this area, making object detection a focus 

of attention (Girshick et al., 2014; Ren et al., 2015). Currently, 

this technology is widely applied in fields such as autonomous 

driving, remote sensing, robot vision, and video surveillance, 

showing great application potential and commercial value. 

In autonomous driving, object detection is key for autonomous 

vehicle driving. It enables the system to identify various road 

targets in real-time and accurately, providing important 

information for autonomous control and safe driving. Compared 

to traditional methods, deep learning-based algorithms have 

higher real-time performance, more accurate recognition 

capabilities, and lower false detection rates (Liu et al., 2016; 

Redmon et al., 2016). 

Traditionally, object detection relied on algorithms suitable only 

for specific scenarios with weak generalization capabilities. 

These algorithms required extensive computation for extracting 

candidate regions, leading to high complexity and lower 

accuracy. The detection process mainly consisted of three stages: 

candidate region selection, feature extraction, and classifier 

classification (Lin et al., 2017). 

In candidate region selection, the sliding window method was 

commonly used, leading to many overlapping boxes and 

increasing computational complexity. For feature extraction, 

manually designed features such as SIFT (Lowe, 2004), HOG 

(Dalal & Triggs, 2005), and SURF (Bay, Tuytelaars, & Van 

Gool, 2006) were used, but designing robust features was 

challenging. In the classifier classification stage, classifiers like 

SVM and AdaBoost were used, with higher requirements for 

speed and accuracy in multi-category detection. 

The robustness of traditional methods was poor due to manually 

designed features in the feature extraction stage and sensitivity 

to environmental factors, resulting in suboptimal detection. 

Figure 1. Steps of Traditional Object Detection Algorithms. 

The detection process of traditional object detection algorithms 

mainly consists of three stages: the candidate region selection 

stage, the feature extraction stage, and the classifier 

classification stage. 

With the rapid development of deep learning, object detection 

methods are mainly divided into two categories: two-stage and 

one-stage detection algorithms, both making significant 

progress (Ren et al., 2015; Liu et al., 2016). Two-stage 

algorithms, like R-CNN, Fast R-CNN, and Faster R-CNN 

(Girshick et al., 2014; Ren et al., 2015), are known for their 

high accuracy but have high computational complexity. One-

stage algorithms, like SSD and the YOLO series (Liu et al., 

2016; Redmon et al., 2016), improve detection efficiency by 

transforming the task into a direct regression problem, suitable 

for real-time detection requirements but with generally lower 

accuracy. 

One-stage and two-stage algorithms each have their advantages 

and limitations. One-stage algorithms are favored for their 

efficiency and real-time performance, while two-stage 

algorithms are renowned for their accuracy. Choosing the 

appropriate algorithm based on needs and scenario 

characteristics is crucial. 

With continuous progress in deep learning, various datasets for 

object detection tasks have emerged. Publicly available datasets 
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include PASCAL VOC, ImageNet, MSCOCO, and Objects365 

(Everingham et al., 2010; Deng et al., 2009; Lin et al., 2014; 

Shao et al., 2019). These datasets provide a foundation for deep 

learning model research, but there are differences compared to 

real-world scenarios. In real road scenarios, the environment is 

complex, and relying solely on general scene datasets, 

algorithms struggle to generalize, failing to meet the road 

detection requirements of intelligent vehicle vision perception 

algorithms. Therefore, high-quality datasets are crucial for 

ensuring algorithm performance and robustness. With 

continuous development, object detection and tracking 

algorithms have achieved a high level in general scenarios, but 

complex and variable environmental factors in real road 

scenarios still pose challenges to model performance, an urgent 

problem for researchers worldwide (Redmon and Farhadi, 2018; 

Bochkovskiy et al., 2020; Tan et al., 2020). 

 

2. DATASET 

Currently, datasets such as KITTI, BDD100K and Cityscapes 

have complex road scene changes, multiple categories of targets, 

and different weather conditions, which make them popular 

datasets among many researchers. For different detection tasks 

in traffic scenes, there are different requirements for the method 

of sample collection, the time period of collection, and the 

collection scene. The quality of dataset collection varies greatly, 

with differences in the number of samples, resolution, and 

image target scale, which also directly affect the testing effect 

and performance of deep learning models. At present, most 

publicly available datasets are open-sourced datasets from 

abroad, and there is a lack of publicly available datasets in 

China. Therefore, this paper uses a self-made dataset for 

pedestrian and vehicle target detection. The self-made dataset 

was captured using an HONOR 70 Pro, and it contains two 

categories: car and person. 

 

2.1 Sample Acquisition of the Dataset 

Currently, the main datasets used for evaluating intelligent 

vehicle environment perception algorithms are open-source 

datasets from abroad. Complex road scene datasets from abroad 

often use autonomous vehicles for collection, but this method 

incurs high costs, and the dataset collection process is fraught 

with difficulties. To align with the research on target detection 

and tracking under the real driving environment in China, a new 

complex road scene dataset has been constructed. Due to the 

diversity of complex scenes, occlusion scenes, and blurry scenes 

are the main scenes in complex road scenarios, so this paper 

mainly focuses on research under these situations. Firstly, the 

samples were obtained by placing the HONOR 70Pro 

smartphone inside the vehicle for shooting, with a video 

resolution of 4K ultra-clear and a frame rate of 30 frames per 

second. The complex road scene dataset constructed in this 

paper consists of two parts. First, videos were shot by using a 

smartphone during long drives in a real driving scenario in a 

certain area of Beijing. The videos include 15 segments, 

covering various traffic scenarios in the real world. The videos 

were manually frame-extracted at a fixed frame rate. Second, to 

further verify the model's generalization ability and robustness, 

some high-quality images from the NEXET-2017 dataset of the 

Kaggle competition were selected, and some sample images 

were obtained from websites such as Baidu and Google. 

Another part is the publicly available dashcam videos 

downloaded, which were shot with dashcams and smartphone 

cameras, including various weather conditions like sunny, foggy, 

rainy, and snowy days, and various driving road conditions like 

highways, congested roads, and sandy roads. To ensure the 

quality of the constructed dataset, the driving videos obtained 

by the first method were processed. First, video segments with 

poor quality during the collection process were filtered out. 

Then, each video segment was frame-extracted to convert the 

video into image samples, with a resolution of 640×640. The 

obtained images were then assigned to the corresponding 

annotators for strict annotation. The filtered-out videos include: 

videos with severe camera shake during driving, videos with no 

moving targets or few moving targets during long drives, and 

videos that are unclear due to strong light. 

 

In summary, based on the two methods of sample acquisition, 

the first method collected 3200 samples, covering various 

complex road scenes, as shown in Figure 5. The second method 

collected 2300 samples, selecting representative samples from 

different time periods, as shown in Figure 6. The dataset is 

named BJCR, with a total of 5500 image samples. Finally, the 

first part of the dataset was expanded through image 

preprocessing methods, laying the foundation for improving the 

generalization ability of the algorithm model and stabilizing the 

training robustness while expanding the number of dataset 

samples. 

          
                      (a)                                                (b) 

          
                       (c)                                               (d) 

Figure 5. Examples of samples from different time periods in 

the first part. (a) Morning, (b) Noon, (c) Afternoon, (d) Evening. 

 

        
                      (a)                                                 (b) 

        
                       (c)                                                 (d) 

Figure 6. Examples of samples from different time periods in 

the second part. (a) Morning, (b) Noon, (c) Afternoon, (d) 

Evening. 
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2.2 Classification Annotation Method 

In the process of constructing a dataset, the collection of data 

samples should be of high quality, and at the same time, the 

annotation of data samples must be strictly carried out. In recent 

years, the technology related to object detection has been 

sufficiently developed, and annotation tools and platforms for 

dataset samples have emerged accordingly. The annotation 

labels can be used for classification, segmentation, object 

detection, and other visual tasks. Currently, annotation tools can 

be divided into manual annotation, semi-automatic annotation, 

and automatic annotation. Each of these three annotation 

methods has certain drawbacks. Given the needs of object 

detection datasets, mainstream image annotation software such 

as Labelme, LabelImg, LabelBee, LabelBox, RectLabel, VoTT, 

and Sprite Annotation Assistant have stood out. Different 

annotation tools should be chosen for different tasks, and the 

annotation results of different tools will have some differences. 

This study selects the LabelImg annotation software to annotate 

the complex road scene dataset accordingly. This software 

supports object detection, image segmentation, and other 

functions and can export labels in YOLO format. The following 

figure is a functional diagram of LabelImg and the YOLO 

format. 

     
                      (a)                                                    (b) 

Figure 7. LabelImg. (a) Functional diagram of LabelImg, (b) 

YOLO format. 

 

3. METHOD 

3.1 YOLOv8 

The YOLO model has achieved great success in the field of 

computer vision. Based on this, researchers have improved the 

method and added new modules, proposing many classic 

models. YOLOv8 is an algorithm released by Ultralytics on 

January 10, 2023. Compared with previous excellent models in 

the YOLO series (such as YOLOv5 and YOLOv7), YOLOv8 is 

an advanced, cutting-edge model that provides higher detection 

accuracy and speed. The network structure of YOLOv8 mainly 

consists of a backbone, neck, and head (Wang et al., 2023). The 

backbone network is responsible for extracting features from the 

image, the neck network further processes the features, and the 

head network is responsible for the final object detection task, 

including classification and localization. See Figure 5 for details. 

 

Figure 5. Structure diagram of YOLOv8. The positions of the 

key components are as follows: The backbone network 

(Backbone) is located in the (a) area, extracting basic features 

for the model; the neck (Neck) part is located in the (b) area, 

used for feature enhancement and fusion; the head (Head) is 

located in the (c) area, performing the final object detection task. 

Specifically, the (d) part corresponds to the Spatial Pyramid 

Pooling Fast (SPPF), (e) represents the Detection (Detect) 

module, (f) is the Cross Stage Partial Network (C2f), and (g) 

refers to the Convolution-Batch Normalization-Activation (CBS) 

unit. 

 

3.1.1 Input：  The input layer of YOLOv8 is not only 

responsible for the preprocessing of image data but also inherits 

and optimizes the mosaic data augmentation strategy from the 

YOLOv4 and YOLOv5 algorithms. This strategy is 

implemented by randomly selecting four images for scaling and 

then randomly stitching them together to expand the diversity of 

the training dataset. This method significantly enhances the 

richness of the dataset on one hand, effectively increasing the 

robustness of the model. On the other hand, it also helps reduce 

the occupancy of GPU storage space during training, thereby 

improving resource utilization efficiency.However, if the 

mosaic data augmentation strategy is continuously enabled 

throughout the entire training process, it may have adverse 

effects on the final training results. Based on this understanding, 

the mosaic data augmentation feature is turned off in the last 10 

epochs of the training in the practice of YOLOv8. This 

adjustment aims to balance data diversity and model learning 

accuracy, ensuring that while enhancing robustness, more 

precise training results can also be obtained. 

 

3.1.2 Backbone: YOLOv8 uses an improved CSPDarknet53 

as its backbone network, performing downsampling five times 

on the input features to obtain five different scale features, 

denoted as B1-B5. The structure of the backbone network is 

shown in Figure 5(a). The original CSP (Cross Stage Partial) 

module in the backbone network is replaced with the C2f 

module. The C2f module adopts gradient parallel connections to 

enrich the information flow of the feature extraction network 

while maintaining a lightweight design. The CBS module 

performs convolution operations on the input information, then 

batch normalization, and finally activates the information flow 

using the SiLU activation function to obtain the output results. 

The backbone network uses the Spatial Pyramid Pooling Fast 

(SPPF) module to pool the input features into a fixed-size 

mapping for adaptive-sized output. Compared to the Spatial 

Pyramid Pooling (SPP) structure, SPPF reduces the 

computational load and has lower latency by sequentially 

connecting three max-pooling layers. The backbone network 

consists of the CBS module, C2f module, and SPPF module. 

 

(1) CBS module: The CBS module includes convolution 

operations (Conv), batch normalization (BN), and the activation 

function (SiLU), which is an improvement over the CBL 

module. Compared to the LeakyReLU activation function in the 

CBL module, the smooth and non-monotonic characteristics of 

the SiLU function can provide better results in deep learning 

training. 

 

(2) C2f module: YOLOv8 introduces a new module, the C2f 

module, to replace the original C3 module in the YOLOv5 

network architecture. Combining the ideas of the C3 module 

and the ELAN module, the C2f module optimizes the module 

structure with gradient bifurcation connections, enriching the 
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information flow of the feature extraction network while 

maintaining a lightweight design, effectively improving the 

overall detection performance of the algorithm. The structure of 

the C2f module is as follows: 

 
Figure 6.C2f structure diagram 

 

(3) SPPF Module: The Spatial Pyramid Pooling Fast (SPPF) 

structure used in YOLOv8 is an optimization of the original 

SPP structure. The SPPF structure replaces the 13×13, 9×9, 5×5, 

and 1×1 convolution kernels in the original SPP structure with 

three 5×5 convolution kernels. By using multiple small 

convolution kernels in series, the computational load of the 

model is reduced, and the detection rate is improved while the 

detection accuracy remains close to the original structure. The 

structure diagram of the SPPF module is as follows: 

 
Figure 7.SPPF structure diagram 

 

3.1.3 Neck: Inspired by PANet, YOLOv8 incorporates the 

PAN-FPN structure in its neck design, as shown in Figure 1b. 

Compared to the neck structure of YOLOv5 and YOLOv7 

models, YOLOv8 removes the convolution operations after 

upsampling in the PAN structure, achieving model lightweight 

while maintaining original performance. We use P4-P5 and N4-

N5 to represent two different scales of features in the PAN 

structure and FPN structure of the YOLOv8 model, respectively. 

The traditional FPN uses a top-down approach to transmit deep 

semantic information. FPN enhances the semantic information 

of features by fusing B4-P4 and B3-P3, but it may lose some 

target location information. To alleviate this problem, PAN-

FPN adds PAN on the basis of FPN. PAN enhances the learning 

of position information by fusing P4-N4 and P5-N5, achieving 

top-down path enhancement. PAN-FPN constructs a top-down 

and bottom-up network structure, and through feature fusion, it 

achieves complementarity of shallow location information and 

deep semantic information, ensuring the diversity and 

completeness of features. The Neck layer of YOLOv8 still uses 

the PANet structure, composed of the Feature Pyramid Network 

(FPN) and Path Aggregation Network (PAN). It constructs a 

top-down and bottom-up network structure, effectively 

complementing shallow location information and deep semantic 

information through feature fusion, maintaining the integrity of 

feature information. 

 

3.1.4 Head: The detection part of YOLOv8 adopts a 

decoupled head structure, as shown in Figure 1e. The decoupled 

head structure uses two independent branches for object 

classification and bounding box regression, with different loss 

functions for these two tasks. For the classification task, binary 

cross-entropy loss (BCE loss) is used. For the bounding box 

regression task, distribution focal loss (DFL) and CIoU are used. 

This detection structure can improve detection accuracy and 

accelerate model convergence. YOLOv8 is an anchor-free 

detection model, which can concisely specify positive and 

negative samples. It also uses a Task-Aligned Assigner to 

dynamically allocate samples, improving the model's detection 

accuracy and robustness. 

 

(1) Decoupled Detection Head: The detection layer of YOLOv8 

adopts a decoupled detection head structure, using two 

independent branches for object classification and bounding 

box regression, and different loss functions for the two tasks. 

On one hand, binary cross-entropy loss (BCE) is used for the 

classification task; on the other hand, distribution focal loss 

(DFL) and CIoU are used for the bounding box regression task. 

The decoupled head structure can improve detection accuracy 

and speed up model convergence. 

 

(2) Anchor-Free: Traditional anchor-based methods rely on 

manually designed anchor frameworks. The size and aspect 

ratio of the anchor framework should be as close as possible to 

the real target, which has poor generality for different datasets 

with large differences in target sizes. The large number of 

anchor frames generated during the detection process not only 

increases the computational load but also reduces training and 

inference speed, and many anchor frames become negative 

samples because they do not achieve a certain IoU with the real 

frames. This leads to the problem of imbalance between positive 

and negative samples. The anchor-free method adopted by 

YOLOv8 can cope with multi-scale target changes and has good 

generalization ability. Since this method is not affected by the 

number and position of anchor frames, it has better robustness 

when dealing with occlusions and dense targets. 

 

3.1.5 Label Assignment Strategy: Although YOLOv5 

designed some functions for automatic clustering of candidate 

boxes, the clustering of candidate boxes depends on the dataset. 

If the dataset is not sufficient and cannot accurately reflect the 

distribution characteristics of the data itself, the clustered 

candidate boxes will also have a large disparity in size ratio 

compared to the real objects. YOLOv8 does not adopt the 

candidate box strategy, so the problem it solves is the multi-

scale distribution of positive and negative sample matching. 

Unlike the SimOTA used by YOLOX, YOLOv8 adopts the 

same TOOD strategy as YOLOv6 for the label assignment 

problem, which is a dynamic label assignment strategy. 

YOLOv8 only uses t arg bboxeset and t arg scoreset , and does not 

include object presence prediction. Therefore, the loss of 

YOLOv8 mainly includes two parts: category loss and location 

loss. For YOLOv8, its classification loss is VFLLoss (Varifocal 

Loss), and its regression loss is in the form of CIoU Loss and 

DFL Loss. Varifocal Loss is defined as follows: 

 

 
      
 

  1 1          0

 1                                    
)

 
,

0
(

 g
V

q qlog p q log p q

p lo p
FL p q

q 


 


   

  


(1) 

 

In the formula, p is the predicted class score, p∈[0,1].q is the 

predicted object score (if it is the true class, then q is the IoU 
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between the prediction and the ground truth; if it is another 

class, q is 0). VFL Loss uses asymmetric parameters to weight 

positive and negative samples, achieving unequal treatment of 

foreground and background contributions to the loss by only 

decaying negative samples. For positive samples, weighting is 

performed using q. If the 
IOUGT  of a positive sample is high, it 

contributes more to the loss, allowing the network to focus on 

high-quality samples, i.e., the training of high-quality positive 

examples contributes more to the improvement of AP than low-

quality ones. For negative samples, down-weighting is applied 

by using p  , reducing the negative samples' contribution to the 

loss. This is because the predicted probability p becomes 

smaller when raised to a power greater than one, thus 

decreasing the overall impact of negative samples on the loss. 

 

3.2 Coordinate Attention 

Coordinate Attention (CA), presented by Qinbin Hou et al. at 

CVPR 2021, is a lightweight attention mechanism designed for 

mobile networks that considers both channel and spatial 

dimensions in parallel. CA addresses two issues: first, the 

SENet attention mechanism, while excellent, focuses only on 

channel-wise information without considering spatial positional 

information; second, the CBAM attention mechanism, despite 

addressing both channel and spatial dimensions, does not solve 

the long-range dependency issue in its spatial attention branch. 

CA improves upon channel-wise attention in SENet by 

incorporating positional information to capture spatial structure, 

making it a lightweight attention approach with lower module 

complexity than both SENet and CBAM. By embedding 

positional information into channel information, it enhances the 

feature representation of mobile networks. It mainly includes 

two steps: coordinate attention embedding and coordinate 

attention generation. The specific process of the CA attention 

mechanism is shown in Figure 8. 

 
Figure 8. Flowchart of CA Attention Generation Process. 

 

The CA attention mechanism primarily includes the following 

three operations: 

(1) Coordinate Information Embedding: For a given input 

feature map, global average pooling is applied separately along 

the horizontal and vertical directions of the feature map to 

obtain two embedded information feature maps. See Figure 9 

for an illustration. 

 
Figure 9. Diagram of CA Information Embedding Operation. 

In the horizontal direction, also known as the X direction, an H

×1 pooling kernel is used to perform global average pooling on 

the H×W×C  input feature map to obtain an H× 1×C 

information feature map, as shown in Equation (2): 

 

     *1*

0 j

1
j, ,W w C W

c c cH
Z h X w Z R

H  
   (2) 

 

In the vertical direction, also known as the Y direction, a 1×W 

pooling kernel is used to perform global average pooling on the 

H×W×C input feature map to obtain a 1×W×C information 

feature map, as shown in Equation (3): 

 

    
 

  *1*

0 j

1
j, ,W w C W

c c cH
Z h X w Z R

H
 (3) 

 

(2) Attention Generation Operation (Coordinate Attention 

Generation): The two information feature maps obtained from 

the previous step, h

c
Z  and W

C
Z  are concatenated along the 

spatial dimension. They are then passed through a 1 × 1 

convolution operation and an activation function. Afterwards, 

the feature map is split along the spatial dimension to obtain 

two separate feature maps, which are then transformed and 

passed through an activation function individually to produce 

two attention vectors, hg  and wg .This process is described by 

Equations (4)-(7). 

 

 
* *1
C
H

h rf R    (4) 

 
*1*
C

w
w rf R   (5) 

  ( (f ))h h
H

g F   (6) 

  ( (f ))w w
W

g F     (7) 

 

(3) Feature Map Calibration Operation (Re-weight): The two 

attention vectors   g 1h C H and   g 1w C W obtained 

from the previous operation are broadcast to match the 

dimensions of  C H W ,the channel dimension of the input 

feature map. They are then element-wise multiplied with the 

input feature map 
cx that has gone through a residual operation. 

This process results in the final attention-modulated feature map. 

The operation is as described in Equation (8). 

 

   h w
c c
y x g g   (8) 

 

The CA (Coordinate Attention) mechanism addresses the long-

range dependency problem through the attention generation 

operation where it concatenates the information feature maps 

c

hZ  and w

cZ  along the spatial dimension. By concatenating the 

global features from the horizontal direction with those from the 

vertical direction into an entire global feature representation, it 

effectively captures dependencies over longer spatial distances 

within the image, thus addressing the issue of long-range 

dependencies to a certain extent. This enables the model to 

better understand the overall context of the scene, which is 

particularly beneficial for tasks requiring an understanding of 

spatial relations and structures across the entire image. 
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3.3 Improved YOLOv8 

To enhance the performance of YOLOv8 in vehicle and 

pedestrian detection tasks, improving detection and the 

accuracy of detecting small targets, while also boosting feature 

expression and generalization capabilities, we incorporated the 

CA (Coordinate Attention) mechanism into the backbone of 

YOLOv8 (Chi et al., 2023). Introducing the lightweight CA 

attention mechanism into the backbone network not only 

strengthens the model's perception of key features and 

contextual information in images but also reduces the model's 

computational complexity through fewer parameters and 

computational operations. This enables YOLOv8 to maintain 

high detection accuracy and also to achieve real-time detection 

on resource-constrained devices. 

 

Incorporating the CA attention mechanism into the backbone of 

YOLOv8 brings several benefits. Firstly, the backbone network 

is responsible for extracting features from the input image in 

YOLOv8. Introducing the CA attention mechanism into the 

backbone can enhance the model's perception of key features 

and contextual information within images. The CA mechanism 

can adaptively adjust attention weights based on image content, 

focusing better on small objects and important features, thus 

improving the accuracy of small object detection. Secondly, the 

choice to add CA to the backbone is based on the pivotal role of 

the backbone network in feature extraction. Located at the front 

end of the model, the backbone network has a decisive impact 

on feature extraction. Introducing the CA attention mechanism 

into the backbone allows the model to utilize attention to model 

the relationship between targets and background at an early 

stage of feature extraction, helping to extract more 

discriminative feature representations. This early attention helps 

the model better differentiate between targets and background, 

increasing the accuracy of object detection. Additionally, the 

backbone is one of the most critical components in YOLOv8, 

playing a key role in the performance and speed of the entire 

detection model. By adding the CA attention mechanism into 

the backbone, the spatial and semantic information in images 

can be fully utilized, enhancing the representational power of 

targets during feature extraction. This helps improve the model's 

generalizability and robustness while reducing dependence on 

other stages. 

 

Therefore, integrating the CA attention mechanism into the bac

kbone of YOLOv8 can improve the model's detection precision 

for small objects and introduce attention mechanisms during the

 feature extraction phase, effectively utilizing key features and c

ontextual information within images. This design choice can im

prove the performance of object detection and provide more acc

urate feature representations for subsequent processing stages, l

eading to better detection results. Furthermore, the adoption of 

a lightweight CA attention mechanism design can further reduce

 the model's computational complexity and parameter count, all

owing YOLOv8 to remain highly performant while also being 

more computationally efficient and compact in size, making it m

ore suitable for deployment and application in resource-constrai

ned environments. 

 
Figure 10. YOLOv8 with Added CA Attention Mechanism. 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Experimental Setup 

The training and testing dataset selected for this paper was the 

BJCR dataset, as it specifically annotates vehicles and 

pedestrians, offering higher applicability compared to other 

datasets. The focus of this research is on the detection of 

vehicles and pedestrians, and other datasets do not provide 

detailed annotations in this regard, hence they do not meet the 

requirements of this study. The BJCR dataset was chosen for 

training and testing because it satisfies the needs of this 

experiment. 

 

For the training and testing phases, the operating system used 

was Windows 10, and the graphics processing unit was an 

NVIDIA GTX1080Ti. The version of Python used was 3.8.18, 

utilizing the Torch 1.12.1 framework, with training and testing 

conducted in a cuda 11.3 accelerated environment. 

 

The choice of operating system, graphics processor, Python 

version, and acceleration environment ensured the reliability of 

the experimental results. 

 

4.2 Parameter Settings and Evaluation Metrics 

The input image size was set to 1280×720 pixels, with the 

optimizer being Adam. The learning rate was set at 0.013, 

momentum at 0.937, and weight decay at 5e-4. The learning 

rate was adjusted using the cosine annealing algorithm, the 

batch size was set at 32, and the training duration was 100 

epochs. 

 

In terms of detection accuracy, the mean Average Precision 

(mAP) was used as the evaluation metric, with the IoU 

threshold set to greater than 0.5, i.e., mAP@0.5. mAP is the 

mean of the Average Precision (AP) across all object categories. 

The mAP value reflects the accuracy of the model on the dataset. 

The specific calculation method for mAP is shown in Equation 

(9): 

 

 


 
( 1)

1 c

i
i

mAP AP
c

  (9) 

 

In the equation,c represents the number of object categories to 

be detected, and  i is the index of each category. The AP 

(Average Precision) value is calculated as the area under the 

curve plotted with precision and recall values, ranging from 0 to 

1. It provides a comprehensive measure of both precision and 

recall for a specific category. The definitions of precision and 

recall are given in Equations (10) and (11), respectively: 

 

 


TP
Precision

TP FP
  (10) 

 


TP
Recall

TP FN
  (11) 

 

In the formulas,TP represents the number of true positives,FP 

represents the number of false positives, and FN represents the 

number of false negatives. Precision reflects the proportion of 

true positives in the positive samples predicted by the model, 

while recall reflects the proportion of positive samples correctly 

predicted by the model out of the total positive samples. 
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For evaluating detection speed, the number of parameters 

(Params) in the model and the number of frames processed per 

second (Frames Per Second, FPS) are used as metrics. 

 

4.3 Ablation Study 

To verify the effectiveness of the improvements made in our 

model, we designed two sets of ablation experiments on the 

BJCR dataset. The results of the ablation study are presented in 

Table 1. 

 

In the table, "√" indicates that the component is included, 

while "" indicates it is not included. From the table above, it can  

 

be seen that in the experiment without the CA attention 

mechanism, the number of parameters is 30.18M, the precision 

is 0.885, the recall rate is 0.83, the average precision is 0.905, 

and the FPS reaches 760, with 8.2 GFLOPs, reflecting the 

consistent approach of the YOLOv8 algorithm, which is to 

improve real-time performance while ensuring a certain level of 

accuracy. From the second row of data, it is found that after 

integrating the CA attention mechanism, the precision and 

average precision increased by 1.7% and 1.1%, respectively, but 

this came with an increase in the number of parameters and a 

decrease in real-time performance, with FPS decreasing from 

48.3 to 47.6. Considering all the data, the method proposed in 

this paper is effective, improving the average precision by 1.1%  

 

 

Table 1. Ablation Study. Group1 is the original algorithm, and Group2 is the algorithm after adding the CA attention mechanism. 

 

and the precision by 1.7% while ensuring real-time performance. 

The experimental results show that the improved algorithm can 

correctly detect vehicles and pedestrians during data inference 

(the data used for inference is randomly selected from the 

BD100K dataset, which did not participate in any training or 

testing phases), and can still correctly identify them under 

interference at different times, without false detections or 

missed detections. 

 

Furthermore, the experimental results show that this 

improvement in accuracy is especially evident in the detection 

of small targets. Figure 11 shows the original algorithm, while 

Figure 12 shows the improved algorithm. 

  
                      (a)                                                (b) 

  
                        (c)                                              (d) 

Figure 11.YOLOv8 

 

  
                      (a)                                                (b) 

  
                        (c)                                               (d) 

Figure 12.Improved YOLOv8 

 

Comparing Figures 11 and 12, it can be observed that the 

improved algorithm in Figure 12 demonstrates enhanced 

detection capabilities. Specifically, Figure 12.a successfully 

detects a car on the right rear side that is missed in Figure 11.a. 

In Figure 12.b, a car that is obscured in Figure 11.b is 

accurately detected. Additionally, Figure 12.c is able to detect a 

distant car that is not detected in Figure 11.c. Moreover, Figure 

11.d fails to detect a distant car and an obscured car, whereas 

Figure 12.d successfully identifies both. These improvements 

indicate that the modifications made in the algorithm for Figure 

12, such as the integration of the CA attention mechanism into 

YOLOv8, have significantly enhanced the model's ability to 

detect vehicles, especially in challenging scenarios involving 

occlusion and distance. 

 

5. CONCLUSION 

In response to the relatively low availability of datasets 

specifically tailored to the unique characteristics of Chinese 

traffic, this paper creates and annotates a vehicle and pedestrian 

dataset from a certain area in Beijing, named BJCP. This dataset 

encompasses images under real-world conditions and aligns 

with actual application scenarios, making it suitable for testing 

various object detection models. To address the challenges 

associated with detecting small objects in images, this paper 

proposes a small object detection algorithm based on the 

YOLOv8 algorithm, enhanced with the integration of the CA 

(Coordinate Attention) attention mechanism. By incorporating 

the CA attention mechanism into the backbone of the model, 

the feature extraction capability for small objects is enhanced, 

thereby improving detection accuracy. Experimental results 

demonstrate that the algorithm proposed in this paper 

outperforms the current state-of-the-art YOLOv8 algorithm in 

Group CA Params(M) Precision(%) Recall(%) mAP@0.5(%) FPS GFLOPs 

1 \ 30.06 0.881 0.813 0.905 48.3 8.2 

2 √ 30.09 0.898 0.830 0.916 47.6 8.2 
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vehicle and pedestrian detection. The algorithm significantly 

enhances detection accuracy while maintaining high-speed 

inference. 

 

In summary, the BJCR dataset and the improved YOLOv8 

algorithm proposed in this paper are of significant reference 

value for vehicle and pedestrian detection in the context of 

autonomous driving technology. They effectively enhance 

detection accuracy while preserving the advantage of high-

speed inference, providing a reliable solution for vehicle and 

pedestrian detection in autonomous driving. 
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