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Abstract 

 

GeoAI combines artificial intelligence (AI) with geospatial data, science, and technologies. In this paper, a successful case in 

utilizing GeoAI to improve the data quality in the national topographic database (TDB) of Finland was introduced. The project 

employed a GeoAI model to identify buildings from the input data of true orthophotos, digital elevation model (DTM), and digital 

surface model (DSM). The GeoAI-derived buildings served as reference data, enabling a comparison with building polygons from 

the topographic database (TDB) to reveal TDB building location deviations, missing structures, and demolished buildings. 

Throughout the project, algorithms were developed to match the TDB building vectors to the GeoAI-derived building polygons. The 

challenges include i) the differences between the GeoAI-derived building outlines and the TDB build footprints; ii) the reliability of 

the GeoAI model across data over different environments: urban, suburban, rural, and forest areas. Throughout the project, the 

GeoAI model was continuously improved by training massive new datasets: corrected vectors from the model prediction. Testing 

was conducted on datasets from twelve areas of Finland, covering 2204 km2 and including hundreds of thousands of buildings. The 

test areas covered urban, suburban, rural, and forest areas. The evaluation was conducted by the mapping team in the organization. 

The results showed that our methods greatly enhanced the quality of the TDB building footprints. The challenges and lessons of the 

project were addressed in the paper. 

 

 

1. Introduction 

In recent years, the GeoAI application has been paid high 

attention. The availability of high-resolution geographic data 

and high-performance computing techniques together with deep 

learning fuel progress in fast and accurate object detection 

(Janowicz et al., 2020). VoPham et al. (2018) gave an overview 

of GeoAI technologies for exposure modeling in environmental 

epidemiology, including the capability to incorporate large 

amounts of spatial big data of high spatial and/or temporal 

resolution; computational efficiency regarding time and 

resources; flexibility in accommodating important features of 

spatial (environmental) processes. Liu & Biljecki (2022) 

reviewed spatially-explicit GeoAI in Urban Geography 

including Urban Dynamics, Social Differentiation of Urban 

Areas, and Social Sensing. The authors revealed that although 

GeoAI was a trending topic in geography and the applications 

of deep neural network-based methods were proliferating, the 

development of spatially-explicit GeoAI models was still in 

their early phase. This paper will address a new application: 

GeoAI for improving topographic building data accuracy. 

The growth of the urban population has accelerated building 

and other infrastructure construction as well as the number of 

built-up areas. Although the information in the national 

topographic database (TDB) updates yearly, owing to historical 

factors, the vectors may contain inaccuracies. For instance, 

considering the building vectors—decades ago, analog 

photogrammetric instruments were used to measure buildings 

from film-derived stereo images. The evolution to digital 

photogrammetry workstations and subsequent advancements in 

digital cameras drastically improved aerial image resolution, 

accompanied by robust software and hardware facilitating 

precise calculations. Yet, revisiting earlier measurements across 

different periods proved impractical. Consequently, early-stage 

building footprints might harbor a degree of error. The errors of 

TDB building footprints have been evidenced in some projects 

in the National Land Survey of Finland (NLS) when they 

overlapped with Lidar point clouds. The errors included 

deviations in building locations, instances of missed buildings, 

and cases of demolished structures.  

Furthermore, the national topographic database has served the 

public as open data for over a decade. Its data quality and 

accuracy have considerably influenced on research and 

development of academies and industry sectors. Under such 

contexts, the AI4TDB project was launched. ‘AI4TDB’ was the 

abbreviation of 'Artificial Intelligence for Topographic 

Database Accuracy Enhancement'. The project aimed to 

leverage artificial intelligence to improve the precision of the 

Topographic Database and ensure the up-to-dateness of spatial 

data within the NLS TDB. The project focused on two types of 

objects: buildings and watercourses. In this paper, we focus on 

the buildings. 

Prior to the AI4TDB project, we developed a deep learning 

solution, utilizing UNet++ for precise building detection from 

the training datasets of true orthophotos, building vectors, 

LidarDTM, and LidarDSM, yielding good accuracy levels 

evaluated by the NLS expert. The AI4TDB project capitalized 

on these advancements by using GeoAI-derived buildings as 

references to rectify errors in TDB building footprints. 

Additionally, the GeoAI model for building detection, initially 

trained by the former project, underwent further refinement 

during the AI4TDB project. This involved training the model 

with 2023 datasets sourced from multiple production areas, 

resulting in notable enhancements in the performance of the 

GeoAI model. 

 

2. Literature Review 

The AI4TDB project employed a UNet++ model, which has 

been developed and trained for building detection from previous 

project. Although the method will be reported with details in a 

separate paper, an overview of the state of the art in building 

detection will be introduced in the following paragraphs 

regarding the use of datasets and the development of methods.  

The datasets for building detection mainly include imagery, 

point cloud, and their fusion. Building detection from imagery 

included using satellite imagery (Sirko et al., 2021), aerial 

imagery (Saito & Aoki, 2015), orthophotos (Dornaika et al., 

2016), true orthophotos (Buyukdemircioglu et al., 2022), UAV 

imagery (Ham et al., 2018; Boonpook et al., 2018), and 

terrestrial imagery (Chaloeivoot & Phiphobmongkol, 2016). 
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Building detection from point clouds included using airborne 

Lidar (Sun & Salvaggio, 2013), terrestrial laser scanning (Jiang 

et al., 2018), mobile laser scanning (Li et al., 2016), or 

photogrammetric point cloud (Malihi et al., 2016). Examples of 

building detection using the fusion of imagery and point cloud 

can be found in Gilani et al. (2016), Nahhas et al.(2018), and 

Ghasemian et al. (2022). They all employed Lidar data and 

orthophotos. Lidar data and imagery possess complementary 

characteristics. While imagery typically includes shadows and is 

presented in a 2D raster format, it indicates smooth building 

edges. Conversely, Lidar data lacks shadows but may omit 

certain buildings due to factors like reflective roof materials, 

humidity, or variables related to scanning angles, flight height, 

etc. Furthermore, while Lidar data may present buildings with 

zigzagged edges, it facilitates the recognition of planar features 

and offers an advantage in detecting small buildings within 

forested areas. Integrating imagery and Lidar data maximizes 

their strengths while minimizing their limitations.  

The methods of building detection typically include 

unsupervised methods and supervised methods. Unsupervised 

methods typically utilize various features such as shapes, sizes, 

colors, texture patterns, etc. However, deep neural networks 

possess the remarkable ability to autonomously extract intricate, 

high-level features in a hierarchical fashion, leveraging massive 

training data. Supervised methods in this paper mainly focus on 

supervised deep neural networks. Most popular deep neural 

networks for building detection include VGG-16 (Simonyan & 

Zisserman, 2014), R-CNN (Girshick et al., 2014), DeepLab 

(Chen et al., 2014), UNet (Ronneberger et al., 2015), ResNet 

(He et al., 2016), YOLO (Redmon et al., 2016), etc. Thanks to 

the open sources,  these neural networks were continuously 

developed as a family of networks, from VGG16 to VGG19,  

from R-CNN to Fast R-CNN (Girshick, 2015), Faster R-CNN 

(Ren et al., 2017) and its extension version: Mask R-CNN (He 

et al., 2017), from DeepLab to DeepLabv3+ (Chen et al., 2018), 

from UNet to UNet++ (Zhou et al., 2018) and  UNet3+ (Huang 

et al., 2020), from YOLO to YOLOv8 (Jocher et al., 2023) and 

YOLO-v9 (Wang et al., 2024). ResNet was developed in five 

types of architectures with different numbers of neural network 

layers: ResNet18, ResNet34, ResNet50, ResNet101, and 

ResNet152. Their performances were not proportional to the 

depths of the layers. ResNet50's performance has been widely 

acknowledged among these models. In recent years, vision 

transformers have been paid high attention due to their 

capability to capture global relationships in images, be flexible 

to the sizes of input data, and their architecture containing the 

self-attention mechanism. For such model architecture, there is 

potential for greater generalization to new data. Examples 

included the Cswin Transformer (Dong et al., 2022) and 

Omnivec (Srivastava & Sharma, 2024). These models 

outperformed the convolutionall neural networks (CNN). 

However, according to Moutik et al. (2023), the hybrid method 

with the combination of the CNN and vision transformers is 

more efficient and cost-effective. Regardless of neural network 

architectures, prediction accuracy and inference time are two 

important aspects in evaluating their performance. Nevertheless, 

model prediction accuracy relies on the model architecture and 

the types and quality of input data. The selection of the input 

data and the architecture of the model need to be considered in 

the practical applications.  

  

3. Materials 

 Materials used in the project included the datasets of true 

orthophotos, LidarDTM, and LidarDSM, with 25cm spatial 

resolution, TDB building footprints, and a trained UNet++ 

model. The study areas covered twelve areas including 

southern, middle, and northern Finland. The experiment 

environment included urban and suburban areas (Oulu, 

Jyväskylä, Kuopio, Savonlinna, and Lahti in Finland), rural and 

forest areas (Uusikaarlepyy, Uusikaupunki, Nystad, Ylitornio,  

Parainen, Riihimäki, and Ylivieska in Finland). The datasets 

were stored in the NLS standard map sheet: 3000m x 3000m, 

with the format of GeoTIFF and the TDB building footprints 

were in .shp format. Python was the programming language. 

The trained UNet++ model was in .pth format. The model was 

run with PyTorch in the Spyder platform. GeoAI-derived 

building vectors were in a .shp format. QGIS was the open-

sourced software used for quality control. The corrected TDB 

buildings were overlapped with true orthophotos and TDB 

vectors in the QGIS software to be inspected. The computations 

were carried out within the CSC, a high-performance computing 

environment provided by the Finnish IT Center for Science, 

owned by the Finnish state and higher education institutions 

(CSC, 2024). The CSC platform was used when the UNet++ 

model was trained with the new dataset. The new datasets were 

from the manually corrected GeoAI-derived building vectors. 

The correction was conducted by overlapping the building 

prediction with true orthophotos. Figure 1 shows the examples 

of datasets.  
 

 

Figure 1. Examples of datasets. 

From left to right: true orthophotos, DSM, DTM, GeoAI-

derived building vectors. 

 

4. Methods 

Typically, there are five types of errors in geospatial data. They 

are related to positional accuracy, attribute accuracy, temporal 

accuracy, topological consistency, and data completeness. In the 

AI4DB project, the focus was on improving the positional 

accuracy and data completeness of TDB building vectors. The 

project leveraged the GeoAI model to identify buildings from 

the input data of true orthophotos, DTM, and DSM. The GeoAI-

derived buildings served as reference data, enabling a 

comparison with building polygons from the TDB to recognize 

location deviations, missing structures, and demolished 

buildings. Fig. 2 shows the workflow of identifying the TDB 

building errors. The red text ‘Algorithms’ is described 

separately in Fig. 3. 

The process began by generating true orthophotos and DSMs. 

This involved utilizing aerial images, their orientation data, 

waterbodies, and Lidar point clouds within SURE software 

(Esri) to produce high-resolution (25cm) true orthophotos. The 

subsequent step involved leveraging these true orthophotos, 

DTMs, and DSMs in the UNet++ model, for building 

prediction. The UNet++ model has been trained with high-

quality datasets from a diversity of environments: urban, 

suburban, rural, or forest areas, covering one-third of Finland.  
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The accuracy of the predicted buildings was evaluated by the 

experts in the organization and it received up to 97% accuracy 

at the object level when compared to different types of reference 

data. In this article, the predicted buildings are also called 

‘GeoAI-derived buildings’. The GeoAI-derived vectors served 

as reference data for TDB building vectors, allowing the 

identification and rectification of location errors present within 

the TDB building vectors. The computations were carried out 

within the CSC.  

 

4.1 Data preparation  

While orthophotos stood as the standard products for the NLS, 

our choice leaned towards true orthophotos. In an orthophoto, 

buildings, and structures may appear skewed, but in a true 

orthophoto, photogrammetry software corrects these elements, 

presenting an accurate vertical perspective. Comparing 

orthophotos from different years might reveal discrepancies in 

building projections, whereas true orthophotos consistently 

maintain building locations regardless of the timeframe. True 

orthophotos can be generated from aerial images with 

orientation parameters, including water bodies, with or without 

Lidar data. The production of true orthophotos requires at least 

30/60 aerial image overlaps. 

 

4.2 GeoAI model prediction 

The GeoAI model for building detection underwent its initial 

training phase within the scope of the ATMU project (the 

preceding AI project). The training dataset encompassed true 

orthophotos, building vectors, DSMs, and DTMs, all at a 25cm 

spatial resolution. Upon generating buildings from a GeoAI 

model that had been pre-trained, utilizing true orthophotos, 

DSMs, and DTMs was sufficient. These data were prepared in 

QGIS software: to select the same coverage of the area, to have 

the same spatial resolution, and to store them in GeoTIFF 

format, etc. Following data preparation, these data were input 

into the GeoAI model. The model's output consisted of detected 

buildings represented in a binary image format. To derive 

building vectors, a vectorization process was essential. 

However, these outlines initially retained numerous points. 

Implementing a building regularization process in ArcGIS Pro 

was necessary to streamline the building shapes and maintain 

their rectangular forms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Accuracy control of GeoAI-derived buildings 

Firstly, neither humans nor machines can achieve flawless 

results. Humans might make mistakes due to their carelessness 

or lack of experience. Machines might yield false detections, 

presenting false positives (indicating a detection where no 

building exists) or false negatives (failing to detect an existing 

building). The complexities causing false detection are 

multifaceted, with data quality and AI algorithms playing 

pivotal roles. Factors such as the radiation quality of aerial 

images, the accuracy of DSMs, and the resampling of DSMs 

and DTMs significantly impact the resulting accuracy. 

Maximizing result accuracy involves the collaboration between 

machines and humans. The detected building results underwent 

careful examination and rectification to ensure their accuracy. 

Within this project, building correction served dual purposes: 

ensuring accuracy for reference in correcting TDB building 

locations and retraining the GeoAI model.   

 

4.4 To train the GeoAI model with corrected buildings 

The quantity, quality, and diversity of training data significantly 

influence the predictive accuracy of the GeoAI model. 

Throughout the project, continuous enhancements were made to 

our GeoAI model. Following building correction, the model 

underwent training using all designated test areas. Test data in 

this project were organized in map sheets. Each map sheet 

covers 36 km2. Most of the test areas were selected in full map 

sheets. At the beginning of the project, a few test areas were 

focused on the densely built areas, for example, the test data 

from Kuopio covered only 2km2 and the Ylitornio test area 

covered 6km2. Over the project duration, a total of 12 test areas, 

covering 2204km² (see Table 1), were trained in the model. To 

date, the GeoAI model has been trained using datasets from 35 

production areas, covering approximately one-third of Finland. 

 

4.5 To identify and correct the TDB building errors 

‘Algorithms‘ in Figure 2 are illustrated with details in Figure 3.  

It includes three functions: i) to identify and correct the TDB 

building polygon location errors, ii) to recognize the TDB 

missed buildings, and iii) to find the TDB demolished buildings.  

When the offset of TDB building locations was significant, it 

was corrected. If there was a rotation greater than three degrees 

between them, the TDB building polygon was rotated.   

 

a) Input data: 

           Two sets of building vectors: GeoAI-derived buildings &    
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Figure 2. An overview of the workflow in the AI4TDB project 
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           TDB buildings 

 

b) Matching process: 

• For each vector in the first set, the closest TDB 

vectors are searched. 

• The intersection area is calculated for each closest 

TDB vector and the vector from the GeoAI-derived.  

• The closest TDB vector is dropped if the intersection 

area is too small (10% of the GeoAI-derived polygon) 

or too large (97% of the AI-derived polygon),  

• The closest TDB polygon is dropped because it might 

not represent the same building or the TDB polygon is 

either in a good position already or it is larger than the 

GeoAI-derived polygon. 

• If there are multiple closest TDB polygons and the 

closest TDB polygons share a vector, the vectors are 

combined as one, otherwise, the polygons are 

dropped, because there is one GeoAI-derived polygon 

and multiple different TDB polygons. 

 

c) Correct the TDB building polygon location errors 

Spatial adjustment: Move the TDB building to 

minimize the area difference between the AI building 

and the TDB building and rotate the moved TDB 

building to achieve optimal alignment. 

• The area sizes of the GeoAI-derived polygon and the 

closest TDB polygon are compared. If the difference 

between the areas is more than 25% of the GeoAI-

derived polygon, the polygons are dropped because 

the polygons significantly differ from each other. 

• The algorithm searches for the optimal position for the 

TDB polygon by maximizing the shared area and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

minimizing the area difference between the TDB 

polygon and the GeoAI-derived polygon and moving 

the TDB polygon to the optimal position. 

• The TDB polygon is rotated to match the GeoAI-

derived polygon by getting the minimum rotated 

rectangle of each polygon finding the corresponding 

sides of each rectangle with minimum angle 

difference and rotating the TDB polygon by that 

amount if the angle is larger than the minimum 

allowed rotation (3 degrees). 

• The polygon is rotated and then, finally, the rotated 

TDB polygon and non-rotated TDB polygon are 

compared to the GeoAI-derived polygon. The rotation 

is kept if the rotated polygon intersects a larger area of 

the GeoAI-derived polygon than the non-rotated 

polygon. 

 

d) Identify missed buildings: 

One in the AI-derived building, but no corresponding 

building in the TDB  

 

e)  Recognize demolished buildings: 

             One in the TDB building, not in the AI-derived building 

 

f) Quality assurance: 

            Assess the impact of the spatial adjustment between the                 

            AI and TDB buildings by checking the corrected TDB   

            vectors with true orthophotos 

 

g) Output: 

− The corrected TDB polygons  

− The distance that the TDB polygon moved 

− Rotation angle 

− Identified missed buildings 

− Identified demolished buildings 

− Coverage of the area 

− Number of total buildings  

− Number of municipality buildings 

− Number of corrected municipality buildings 

− Number of corrected non-municipality buildings 

− Number of GeoAI-derived buildings 

− The number of ignored TDB Polygons  

− No Nearest TDB buildings 

− Number of TDB buildings within the accuracy 

− Number of one-to-many cases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Results and evaluation 

Throughout the project, datasets from twelve regions have been 

tested for identifying and correcting the TDB building locations 

including moving and rotation operations, covering a total area 

of 2204 km2 (Table 2). Additionally, within the area of 1008 

km2, the missed and demolished buildings were recognized 

from the TDB vectors. The mapping team in the organization 

played the role of examining the results and giving feedback so 

that the algorithms could be continuously improved.  

For the final assessment, five areas—Riihimäki (Southern 

Finland, 144 km2), Jyväskylä1 (Middle of Finland, 144 km2), 
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buildings 
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­ Number of TDB Polygons were 
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Figure 3. The algorithms include TDB building location correction, TDB missed and demolished buildings. 
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Jyväskylä2 (Middle of Finland, 288 km2), Oulu (Northern 

Finland, 144 km2), and Ylivieska (Middle of Finland, 288km2) 

—were conducted. Overall information can be obtained from 

Table 1. In the Riihimäki area, 1104 out of 11333 building 

locations were corrected. 175 missed buildings and 1003 

demolished buildings were recognized. In the Oulu area, 2041 

out of 24276 buildings were corrected. 209 missed buildings 

and 3261 demolished buildings were identified. In the 

Jyväskylä1 area, 425 missed buildings and 2253 demolished 

buildings were found while 1929 out of 22081 buildings were 

corrected. The resulting percentages in Table 2 showed that 

urban areas with dense buildings appeared to have fewer errors 

when compared to the areas with a large coverage of forest. In 

Ylivieska, there were only 7701 buildings in an area of 288 

km2. The area was mostly covered by forests. The result was the 

worst among the others. When we compare Jyväskylä1 to 

Jyväskylä2, Jyväskylä1is located in urban area: 22081 buildings 

in an area of 144km2. Errors were raised in rural or forest areas: 

19.6% of the total buildings in Jyväskylä2 were assigned to the 

demolished buildings. With the GeoAI model, typically, forest 

areas encounter more false detection. TDB vector measurement 

from stereo images in forest areas might also be a challenge. 

Additionally, image quality, operator’s experience, etc. affected 

the measurement.  

Fig. 4 shows an example of the results in Jyväskylä test area. 

The left one demonstrated the GeoAI-derived buildings on the 

true orthophoto. The following one was the TDB missed 

buildings marked as Magenta. Then the next exhibits the 

differences between GeoAI-derived buildings and TDB 

buildings. The last one was the demolished buildings. It 

indicates that from the latest aerial image, the buildings did not 

exist, but they remained in TDB vectors. 

 

 

  

 

 

 

 

 

 

Table 2. The test areas for the TDB building vector location 

correction 

 

 
 

Figure 4. The test results were in Jyväskylä, Finland. 

From left to right, up to down: a). GeoAI-derived buildings 

(Red), b). TDB missed buildings (magenta), c). buildings with 

location correction (red: TDB, yellow: AI, blue: corrected one), 

d). TDB buildings with location error (red: AI, green: TDB), e). 

Special case (AI vs. TDB): one polygon corresponding to two 

polygons, f). Demolished buildings (red) 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, essential information of each test area was 

estimated, including ‘area’, ‘number of buildings’, ‘corrected 

buildings’, ‘one-to-one moved/rotated cases’, ‘buildings with 

significant differences in polygon areas’, ‘absence of nearest 

TDB buildings’, ‘one-to-many cases’, etc. Such information 

offers insights into the overall status of TDB buildings and aids 

future decision-making processes. 

Evaluation of the results was conducted by the mapping team in 

the organization. TDB building vectors were overlapped with 

the true orthophotos from the year 2023. Feedbacks from the 

sampled areas were delivered, mainly including i) the results 

were evidenced to be very useful, especially for those poor-

quality areas, where good hints were provided; ii) Errors in the 

TDB building geometry or the AI prediction might cause the 

problems in the process of matching and correction. For 

instance, there are two separate buildings predicted by the 

GeoAI model while only one building polygon in the TDB data, 

or the other way around. iii) Small buildings surrounded by 

Area Name Oulu Jyväskylä1 Riihimäki Jyväskylä2 Ylivieska 

Coverage (km2 )   144 144 144 288 288 

Mapsheets R4414L N4324L L4232R N4323 Q4233 

Total buildings: TDB 28642 22081 11546 11840 7701 

Number of  Missed Buildings 209 425 175 581 271 

Number of Demolished Buildings 3261 2253 1003 2317 2291 

 

Percentage of Missed Buildings 0.7% 1.9% 1.5% 4.9% 

 

3.5% 

Percentage of Demolished Buildings 11.4% 10.2% 8.7% 19.6% 

 

29.7% 

Name of area Map sheet Area (km2) 

Kuopio P5114D 2 

Savolinna N5311A 54 

Lahti  L4424 288 

Vaala R4334 288 

Uusikaarlepyy P3442 288 

Uusikaupunki Nystad Q3331EFG 54 

Ylitornio T4114H 6 

Parainen L3323L 216 

Riihimäki L4232R 144 

Jyväskylä N4324L, N4323 432 

Oulu R4414L 144 

Ylivieska Q4233 288 

Table 1. A summary of the TDB missed and demolished buildings in test areas. 
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trees might be missing from the AI detection; iv) Temporary 

buildings in construction areas might be detected as buildings; 

v) Underground buildings might be missed from the AI 

prediction; vi) Overall, GeoAI-derived buildings were 

beneficial for the TDB missed buildings and demolished 

buildings. However, in some cases, the demolished buildings 

after aerial imaging time (being removed from the TDB vectors) 

might be detected as missed buildings. 

Based on the feedback received, it can be concluded that the use 

of AI methods was beneficial for improving data accuracy. 

However, some issues need humans to interact with. The 

collaboration between AI and humans will be the solution for 

the future.    

 

6. Challenges 

Throughout the AI4TDB project, we conducted a thorough 

analysis of the TDB building vectors and tested the 

functionality of the GeoAI model in real-world applications. 

From an AI methodology perspective, numerous factors 

influenced the model's predictions, including the types and 

quality of data sources, the environmental context (urban or 

forested areas), and the GeoAI model's robustness and 

adaptability to new datasets. The GeoAI model used in this 

project was the UNet++. With the rapid development of deep 

neural networks, more and more new deep network 

architectures surpassed the previous ones. An updating of the 

UNet++ model is needed. For example, in recent years, visual 

transformers with attention mechanisms outperformed CNN and 

became popular. The hybrid models of CNN and vision 

transformers are even better.  

In addition, there existed a difference between GeoAI-derived 

building polygons and TDB-building polygons. The GeoAI-

derived building polygons were obtained from true orthophotos, 

which removed building tilting, in a nadir-view. These building 

vectors were delineated from the building roofs while the TDB 

building footprints were measured either from the bases of 

buildings or the roofs according to the visibility from the aerial 

image stereo models. The differences measured from the 

building roofs and the bases were obvious. Some terraces were 

typically hanging on the top, joined as a part of roofs but not the 

part of the building bases. It makes the task even more 

challenging. These details have been considered during the 

algorithm development.   

Furthermore, in the project, we employed intelligent strategies, 

yet a significant portion of the work necessitated manual 

intervention in quality assurance. To ensure result accuracy, the 

two-phase quality control process was implemented. All GeoAI-

derived buildings underwent inspection against true 

orthophotos. Following the algorithm's identification of 

relocated or rotated buildings, these alterations were cross-

checked against the TDB building vectors. Furthermore, 

GeoAI-derived buildings underwent manual correction and 

were utilized to train the GeoAI model. 

Some issues with the GeoAI method were revealed by the 

mapping teams in the organization. For instance, temporary 

buildings in construction areas were detected as buildings, 

underground buildings might be missed from the AI prediction, 

the image cropping edges might cause problems in AI detection, 

etc. 

 

7. Lessons 

During the project duration, numerous tests were conducted to 

enhance building detection methodologies. For instance, we 

replaced aerial images' DSM with Lidar DSM and exclusively 

trained a distinct 3D UNet model utilizing Lidar data. Direct 

utilization of a 25cm DTM derived from Lidar data replaced the 

resamples from 2m DTM. Valuable insights were gained from 

these experiments. Notably, in forested areas, the AI model 

using true orthophotos and image DSMs proved suboptimal as it 

failed to detect many small buildings. Improved results were 

observed with the implementation of Lidar DSM. Additionally, 

the advantages of employing a 0.25m LidarDTM were evident. 

However, relying solely on Lidar data for the 3D UNet model 

presented challenges as its strengths and weaknesses neutralized 

each other. The Lidar data's limitations, such as missing 

buildings due to strong reflections or high moisture levels on 

roofs, affected the outcomes. From these tests, a conclusive 

insight emerged—leveraging both true orthophotos and Lidar 

data presents the most viable solution for future endeavors. 

 

8.  Summary 

The AI4TDB project showcased the practical application of 

GeoAI, specifically highlighting its effectiveness in utilizing the 

UNet++ with a set of input data consisting of true orthophotos, 

DSMs, and DTMs for predicting building vectors. These 

GeoAI-derived buildings were employed as reference data to be 

compared with the TDB building vectors. The errors of the 

TDB buildings in location deviation, structure missing, and 

redundancy were identified and corrected by the proposed 

algorithms. The experiment has been conducted in 2204 km2  

coverage with twelve test areas. During the experiment, the 

algorithm was continuously improved.  

Final evaluation was carried out in five areas in Finland: 

Jyväskylä1, Jyväskylä2, Oulu, Riihimäki, and Ylivieska, with 

1008km2 in total. For instance, in the Jyväskylä1 area, the 

evaluation revealed 425 missed buildings and 2253 demolished 

structures, with corrections applied to 1929 out of 22081 

buildings. The results revealed that urban areas emerged with 

fewer errors than rural or forest areas. The reason for this might 

be from more false detections appearing in forest areas, the data 

quality, the visibility of buildings on images, etc. Nevertheless, 

the project garnered positive feedback from the organization's 

mapping teams, endorsing its effectiveness in improving data 

accuracy. Mappers found value in the project as it significantly 

reduced manual workload by utilizing GeoAI-derived buildings 

as guiding references.  

Despite encountering challenges, the project proved 

instrumental in garnering valuable insights and lessons for the 

future. Emphasizing a collaborative approach between humans 

and AI, the project advocates for a symbiotic relationship in 

production processes. Looking ahead, this collaborative model 

is posited as the optimal solution, acknowledging the strengths 

of both human expertise and AI capabilities. 
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