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ABSTRACT:
In the current era of urban construction, smart city management, and digital twinning, three-dimensional reconstruction of urban
buildings is particularly important. Traditional methods have limitations in reconstructing complex geometric scenes, while new
methods such as Nerf focus on using implicit MLP to represent the geometric space of the model, but suffer from slow training and
rendering speeds. To address this issue, this paper proposes the use of 3D Gaussian scatter points for three-dimensional
reconstruction of urban buildings, improving training speed and reconstruction quality through optimized and accelerated rendering
algorithms. This method demonstrates high efficiency and editability, providing a new solution for urban building reconstruction.

1. INTRODUCTION

Grids and points are commonly used methods for representing
three-dimensional scenes due to their explicit, intuitive, and
easily editable characteristics, and they are well-suited for
rasterization based on fast GPU/CUDA. Traditional three-
dimensional reconstruction methods often employ discrete
representations such as triangular meshes or voxel grids, which
can faithfully reproduce scenes with complex geometric shapes
(Ma & Liu, 2018). However, despite the potential of these
techniques to represent complex and high-resolution geometric
shapes, they have thus far been limited to simple shapes and low
geometric complexity, resulting in overly smooth rendering
effects. Particularly when applied to real-world scenes such as
urban buildings with low texture, repetitive texture, weak
texture, reflection, and highlight areas, these methods fail to
represent them with high fidelity.

Furthermore, for the three-dimensional reconstruction of urban
buildings, perspective-related and photo-realistic image
rendering for visualization become especially important.
However, traditional techniques have certain limitations in
obtaining perspective-related rendering and synthesizing high-
quality new viewpoints. Additionally, the reconstruction and
rendering speed of traditional three-dimensional reconstruction
techniques for buildings are also limiting factors.

Recent research has focused on Neural Radiance Fields (Nerf)
(Wang et al., 2021). This method addresses the synthesis of new
viewpoints of objects and three-dimensional reconstruction by
encoding objects and scenes in the weights of Multi-Layer
Perceptrons (MLP), directly mapping 3D spatial positions to
implicit representations of shape. However, achieving high-
quality photo-realistic rendering and three-dimensional
reconstruction of objects requires training and rendering large
MLPs, which may slow down training and rendering speeds.
Even recent methods such as InstantNGP (Müller et al., 2022),
which use hash grids and occupancy grids to accelerate training
and employ smaller MLPs to represent spatial geometric
features, still struggle to strike a balance between training speed
and model rendering quality.

These methods aim to use implicit MLP representations to
display spatial geometry. While large MLPs can store as much
spatial features and texture information as possible, they

significantly slow down the model's training speed. On the other
hand, using smaller MLPs may increase the model's training
speed but may result in the loss of many detailed features, thus
failing to achieve fine representation of the model. Additionally,
this implicit approach makes the model non-editable, whereas
three-dimensional reconstruction of urban buildings requires
appropriate editing or modification. Clearly, implicit
representations and traditional reconstruction methods fail to
meet these requirements.

To address the aforementioned issues, we propose the use of
three-dimensional Gaussian splats (Kerbl et al., 2023) for the
three-dimensional reconstruction of urban buildings. In
traditional building three-dimensional reconstruction, RGB
point clouds are important features for representing the
geometry and color information of the reconstructed object, and
point clouds can be edited in real-time to meet the demands of
editing building models. Three-dimensional Gaussian splats
describe spatial aggregation and texture information of objects
through the use of anisotropic and interleaved three-dimensional
Gaussian point clouds, distinguishing itself from methods that
use implicit MLPs to represent the solid geometry of the model,
thus achieving faster model training and better three-
dimensional reconstruction results. Firstly, we start with sparse
points generated during camera calibration and use three-
dimensional Gaussians to represent urban buildings; secondly,
we interleave and optimize/density-control three-dimensional
Gaussians to achieve accurate representation of buildings;
thirdly, we employ a fast visibility-aware rendering algorithm
supporting anisotropic splats to accelerate training and achieve
real-time rendering. Finally, we develop efficient building
model editing methods, allowing us to edit the model as needed
(Fang et al., 2023).

We experimentally validate the proposed algorithm using
campus datasets. Experimental results on test and evaluation of
the datasets of Beijing Architecture University's library,
gymnasium, and courtyard at the Daxing Campus demonstrate
that the algorithm significantly improves the training speed and
surface texture quality of buildings compared to traditional
building three-dimensional reconstruction methods and Nerf-
based building reconstruction methods.
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In summary, the algorithm enhances the speed and effectiveness
of urban building reconstruction, making the model editable,
and possessing better robustness, scalability, and accuracy than
traditional methods.

2. RELATEDWORK

Currently, datasets such as KITTI, BDD100K and Cityscapes
have complex road scene changes, multiple categories of targets,
and different weather conditions, which make them popular
datasets among many researchers. For different detection tasks
in traffic scenes, there are different requirements for the method
of sample collection, the time period of collection, and the
collection scene. The quality of dataset collection varies greatly,
with differences in the number of samples, resolution, and
image target scale, which also directly affect the testing effect
and performance of deep learning models. At present, most
publicly available datasets are open-sourced datasets from
abroad, and there is a lack of publicly available datasets in
China. Therefore, this paper uses a self-made dataset for
pedestrian and vehicle target detection. The self-made dataset
was captured using an HONOR 70 Pro, and it contains two
categories: car and person.

2.1 Traditional 3D Reconstruction Methods:

Image-based three-dimensional reconstruction is a key
technology in fields such as photogrammetry and computer
vision, where the state of the camera at the time of shooting
(including camera intrinsic and extrinsic parameters) and the
three-dimensional model of the scene (including spatial
structure and texture information) are reconstructed from a set
of images captured from different viewpoints. It has been
widely used in fields such as 3D map surveying, autonomous
driving, and smart cities. Generally, this technology consists of
the following four main processes:

1. Image orientation: Image orientation techniques recover the
camera intrinsic parameters (such as focal length, principal
point coordinates, lens distortion coefficients, etc.), extrinsic
parameters (such as rotation matrices and translation matrices),
and sparse feature points of the photographed scene from a set
of input two-dimensional images. In the field of computer
vision, this task is usually completed by Structure from Motion
(SfM), while in photogrammetry, it is referred to as aerial
triangulation, with the sought camera intrinsic and extrinsic
parameters also known as interior and exterior orientation
elements in photogrammetry.

2. Multi-view dense matching: Multi-view dense matching
techniques obtain pixel-level matching relationships based on
epipolar constraints between image pairs and pixel similarity,
and then use post-processing methods such as graph cuts or
filtering to remove erroneous matches. Dense three-dimensional
point clouds are then computed through bundle adjustment.

3. Mesh reconstruction and optimization: Mesh reconstruction
constructs triangular meshes from dense three-dimensional
point clouds to represent the surface of the scene or object.
Mesh optimization optimizes the triangular mesh model by
adding mesh details and accuracy, such as optimizing the vertex
positions of the mesh through multi-view image consistency
constraints and continuously iterating updates to make the mesh
model closer to reality.

4. Texture mapping: Given the oriented image sequence and the
triangular mesh representing the object's surface, texture
mapping techniques recover texture maps to describe the

appearance of the object's surface. Firstly, the best-view images
for each local triangular face are selected for texture mapping,
generating preliminary texture maps, and establishing
preliminary correspondences between the three-dimensional
mesh model and the texture map. Then, color consistency
optimization of the textures is performed to avoid large color
differences between adjacent texture blocks that may affect
visual effects.

Traditional three-dimensional reconstruction algorithms have
been developed for many years, with mature theoretical
frameworks and commercial software and open-source
resources. Their products have been widely applied in various
fields of society. With the development of deep learning, three-
dimensional reconstruction methods such as MVSNet have
emerged, which have improved the quality of three-dimensional
reconstruction on specific datasets. However, traditional three-
dimensional reconstruction methods have some problems, such
as errors in each step from image orientation to texture mapping,
which may accumulate over time, leading to increasing
deviations from the true values. Additionally, the representation
of three-dimensional meshes with textures has limited accuracy
and cannot represent details well, such as power lines, trees,
moving objects, etc., where problems such as stretching,
distortion, and aliasing may occur. Therefore, how to improve
the quality of three-dimensional reconstruction, research better
representations of three-dimensional scenes, and obtain higher-
quality three-dimensional reconstruction results are important
issues that need to be addressed urgently.

2.2 Neural Radiance Fields (Nerf):

Early deep learning techniques were used for novel view
synthesis. CNNs were used to estimate blending weights or for
texture-space solutions. Most of these methods suffer from
using geometric structures based on Multi-View Stereo (MVS).
Volume representations for novel view synthesis were initially
proposed by Soft3D. Subsequent deep learning techniques
combining volume ray marching have been proposed, based on
continuous differentiable density fields to represent geometric
structures. Using volume ray marching for rendering is
computationally expensive, as it requires a large number of
samples to query the volume. Neural Radiance Fields (NeRFs)
introduced importance sampling and positional encoding to
improve quality but used a large Multi-Layer Perceptron (MLP)
to represent geometry, affecting training and rendering speeds.
The success of NeRF has led to a series of subsequent methods,
often addressing quality and speed issues through the
introduction of regularization strategies; currently, the best
technique for novel view synthesis image quality is Mip-
NeRF360. Although rendering quality is excellent, training and
rendering times remain extremely high; recent methods mainly
focus on faster training and/or rendering, mainly by exploiting
three design choices:

Using spatial data structures to store (neural) features,
interpolation during volume ray marching, and MLP capacity.
Of particular note is InstantNGP, which uses hash grids and
occupancy grids to accelerate computation and employs smaller
MLPs to represent density and appearance; and Plenoxels,
which uses sparse voxel grids to interpolate continuous density
fields and can entirely dispense with neural networks. While
these two methods provide excellent results, they still cannot
effectively represent weak texture areas. Additionally, rendering
quality is largely restricted by the choice of structured grid used
for acceleration. Our use of unstructured, explicit, GPU-friendly
3D Gaussian functions achieves faster rendering speeds and
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better quality.

2.3 3D Gaussian Splatting:

Unlike NeRF, 3D Gaussian Splatting employs an explicit
representation and highly parallelized workflow, facilitating
more efficient computation and rendering. It combines the
advantages of differentiable pipelines and point-based rendering
techniques. By using learnable 3D Gaussians ellipsoid functions
to represent scenes, it preserves the excellent characteristics of
continuous volume radiance fields, which are crucial for high-
quality image synthesis, while avoiding the computational
overhead associated with rendering in empty space, meeting the
demand for faster and more efficient real-time scene
reconstruction and rendering.

There have been many related research works, such as:
representing complex detail scenes and large-scale scenes from
drones requires a large number of 3D Gaussian functions.
However, the huge storage space required by Gaussian
functions not only hinders their application on devices but also
limits rendering speeds. In this context, Lu et al. proposed
Scaffold-GS, which maintains comparable rendering quality and
speed while being memory-efficient. Additionally, Fan et al.
proposed LightGaussian to compress Gaussian functions to
improve memory efficiency, making it possible to train and
render 3DGS for complex scenes and large-scale scenes from
drones in smaller memory conditions and to enhance the
compactness and acceleration of rendering complex large
scenes. To address aliasing problems that commonly occur
during high-quality rendering of complex environmental models,
Yan et al. proposed a multiscale approach to alleviate aliasing
effects in 3D-GS. By representing scenes at different detail
levels and selecting Gaussian functions at appropriate scales,
high- and low-frequency signals are effectively encoded,
improving rendering quality and increasing rendering speed.

However, most of these reconstruction efforts focus on small
object reconstruction, with limited research on urban building
scene reconstruction, which is an underexplored area. Therefore,
this paper focuses on urban building three-dimensional
reconstruction based on 3D Gaussian points rendering
technology, seeking applications of 3D Gaussian in urban
building scenes and providing a faster and more efficient
building reconstruction solution.

3. OVERVIEW

We utilized a set of images of urban buildings obtained from
drones and processed them through Structure from Motion
(SFM) to generate initial sparse point clouds. These point
clouds include the positions (x, y, z) and colors (RGB)
information of the scenes within the buildings. We used this
sparse initial point cloud information as the foundation for 3D
Gaussian reconstruction.

Firstly, we Gaussianized these point clouds in 3D. Specifically,
we used the positions of the point clouds as Gaussian means,
created an initial covariance matrix and opacity, and represented
colors using Spherical Harmonics (SH). We adopted a tile-
based rasterizer that allows non-isotropic Gaussian alpha
blending, enabling rendering of viewpoint-based building
scenes. This method, combined with an adaptive density control
module, optimized the building scenes, achieving fast training
and rendering.

Using the same dataset, we found that the 3D Gaussian-based

building reconstruction method outperformed traditional
algorithms in texture details, reconstruction efficiency, and
reconstruction quality.

4. METHOD

4.1 PointCloud Gaussianization

We employed a novel approach using 3D Gaussian ellipsoids
instead of traditional point clouds to achieve a more refined
representation of building scenes. In contrast to the triangular
faces and point clouds used by traditional methods, our
approach utilizes anisotropic 3D Gaussian point clouds to
represent the scene. These point clouds not only contain color
and opacity information but also include matrices representing
rotation and scaling, allowing these Gaussian point clouds to be
distributed in an interleaved manner, better representing
building scenes and thus producing more realistic scenes during
novel view synthesis.

Our method in this paper utilized initial point clouds obtained
from colamp as input, but unlike traditional point clouds and
triangular faces, we employed 3D Gaussian functions to
characterize complex building scenes. These 3D Gaussian
functions are differentiable and can be easily projected onto 2D
photographs, enabling fast color blending during rendering.
This innovative approach provides a new avenue for the more
refined representation and rendering of building scenes.
The Gaussian we use is defined by a full three-dimensional
covariance matrix centered at a point (mean), as shown in the
following formula:

G � = �−
1
2 �

��−1 �

However, we need to project the three-dimensional Gaussian
onto a two-dimensional space for rendering. Given the view
transformation matrix � , the covariance matrix in camera
coordinates is as follows:

�' = 퐽����퐽�

where 퐽 is the Jacobian of the perspective transformation
approximation. The covariance matrix of the three-dimensional
Gaussian resembles describing the configuration of an ellipsoid.
Given the scaling matrix and the rotation matrix, we can find
the corresponding:

� = 푅���푅�

To independently optimize these two factors, we store them
separately: a three-dimensional vector for scaling and a
quaternion to represent rotation. We can convert them into their
respective matrices and combine them while ensuring
normalization to obtain effective unit quaternions. This
representation of anisotropic covariance is suitable for
optimization, allowing us to optimize the three-dimensional
Gaussian to adapt to different shapes of geometric figures in the
captured scene, thus obtaining a relatively compact
representation.

4.2 Optimization - Adaptive Density Control

The core of our reconstruction algorithm lies in the optimization
step, which involves creating a dense set of three-dimensional
Gaussians that accurately represent the scene for free viewpoint
synthesis. In addition to position P, covariance Σ, and opacityσ,
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we also optimize the spherical harmonic (SH) coefficients
representing the color for each Gaussian to accurately capture
the appearance of the scene as the viewpoint changes. These
parameters' optimization is interleaved with the step of
controlling Gaussian density to better represent the scene.

4.2.1 Iterative Rendering Optimization:

We optimize based on continuous iterative rendering and
compare the generated images with the training views from the
captured dataset. Due to the uncertainty of the three-
dimensional to two-dimensional projection, geometric
placements may occasionally be incorrect. Therefore, our
optimization needs to be able to create and destroy or move
geometric shapes when they are inaccurately positioned. The
quality of the covariance parameters of three-dimensional
Gaussians is crucial for compact representation because a few
anisotropic large Gaussians can capture large homogeneous
areas. We utilize stochastic gradient descent techniques, making
full use of standard GPU acceleration frameworks. Notably, the
fast rasterization we employ is crucial for optimization
efficiency. We use a sigmoid activation function to constrain it
within the [0 - 1) range for smooth gradients; for similar reasons,
we also use an exponential activation function to compute the
scale of covariance.

4.2.2Adaptive Density Control:

We start from the initial sparse point set from SfM and
gradually transform it into a denser set of Gaussians through
adaptive control of Gaussian quantity and density to better
represent the scene. Every 100 iterations, we perform Gaussian
densification and remove barely visible Gaussians. We focus on
filling missing geometric feature areas and over-covered areas
by observing large view space position gradients in both cases.
We de-Gaussianize Gaussians with view space position
gradients higher than a threshold. For small Gaussians in
partially reconstructed areas, we duplicate Gaussians and move
them along the position gradient direction to cover newly
created geometry. Regions with high variance in large
Gaussians need to be partitioned into smaller Gaussians, and we
determine the ratio to divide them using experimental
coefficients. We initialize their positions based on the original
three-dimensional Gaussians as the sampling PDF. We handle
them based on the overall system volume and the demand for
Gaussian quantity, gradually easing the increase in Gaussian

quantity to near-zero after each iteration. Post-optimization, we
increase Gaussian density where needed, while allowing our
culling method to remove Gaussians below a specified density.
This strategy effectively controls the total number of Gaussians
without the need for spatial compression, distortion, or
projection strategies for distant or large Gaussians.

4.3 Fast Rasterization Module

This paper presents a fast, differentiable rendering method
based on 3D Gaussians for synthesizing high-quality new
viewpoint images from given camera poses. Our method draws
inspiration from the ideas of Neural Radiance Fields (NeRF)
and 3D Gaussian Rendering (3D GS), efficiently projecting,
sorting, and rendering 3D Gaussians. Firstly, we partition the
screen into tiles and discard 3D Gaussians based on the frustum
and each tile, retaining only those intersecting the frustum and
with a 99% confidence interval. Then, we instantiate each
Gaussian based on the number of overlapping tiles and sort
them using the GPU. After sorting, we generate a list of
Gaussians for each tile through depth sorting and accumulate
color and opacity during rasterization until the target saturation
is reached. This method succinctly combines projection, sorting,
and rasterization to achieve efficient rendering while
maximizing parallelism gains. With this approach, we
significantly enhance performance during training and rendering
while avoiding visible artifacts in converging scenes.

After sorting the Gaussians, we generate a list for each tile by
identifying the first and last depth-sorted entries that splat into
the given tile. For rasterization, the method launches a thread
block for each tile. Each block collaboratively loads Gaussian
data packets into shared memory and accumulates color and
alpha values for a given pixel by traversing the list from front to
back, maximizing parallelism gains in data loading/sharing and
processing. When a pixel reaches the threshold for target
saturation, the corresponding thread stops. At fixed intervals,
the threads in the tile are queried, and processing for the entire
tile is terminated when all pixels are saturated (i.e., 0 becomes
1). Saturation of color is the sole stopping criterion during
rasterization.

5. EXPERIMENTAL RESULTS AND ANALYSIS

we will discuss some implementation details, showcase results,
and evaluate our algorithm against traditional approaches
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Figure 1
The left image displays the reconstruction of a library scene using the 3D Gaussian method, while the right image showcases the
reconstruction result of the traditional method. Through comparison, we observe that in regions A and C, our method outperforms the
traditional approach significantly in reconstructing trees around the buildings. Additionally, in region B, our method exhibits superior
performance in handling the texture details of repetitive architecture.

Figure 2
This image highlights the texture details of the steel frame grid and glass material at the top of the building. We can clearly see that
our approach better captures the complex texture details of the building, particularly excelling in the reconstruction of special
architectural surfaces like glass.
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Figure 3
In this comparative illustration, the upper portion showcases the three-dimensional reconstruction of buildings using the 3D Gaussian
method, while the lower part presents the results of the traditional approach. It can be observed that, in the traditional method, distant
buildings are often neglected, leading to distortions and artifacts in regions G, I, and J. Additionally, inconsistencies in color around
the buildings' water bodies are evident in the traditional method, as highlighted in regions H and K of the image.

Figure 4
This figure illustrates the comparison of reconstruction results for the quadrangle and library datasets. It is observed that in the
traditional method, the reconstruction of trees and air conditioners within the courtyard is less accurate, as evidenced in regions M, N,
and O of the image, particularly noticeable distortion in the air conditioner in region O. Additionally, in regions Q and P, distortions
are apparent in the glass curtain wall of the gymnasium in the traditional algorithm, and shadows produced by the traditional method
in region P exhibit artifacts, which are not present in our approach.

5.1 Implementation：

Considering that the 3D reconstruction of buildings covers
multiple scenes and diverse architectural features, we
conducted experiments using the campus dataset Cam_datasets
obtained from drones. In the experiments, we compared
traditional building reconstruction methods with our proposed
3D Gaussian-based reconstruction method for campus
buildings. Our data acquisition equipment was the DJI FC330,
with a focal length of 3.59357mm and a sensor size of 6.17mm.
The equipment used for reconstruction includes a computer
equipped with an RTX 3090 graphics card with 24GB of
memory.

We implemented this method using Python and the PyTorch
framework, utilizing CUDA kernel functions for rasterization.
These kernel functions are extensions of previous methods
[Kopanas et al. 2021] and employ NVIDIA CUB sorting
routines for fast radix sorting [Merrill and Grimshaw 2010].
For interactive visualization, we built an interactive viewer
using the open-source SIBR [Bonopera et al. 2020].

We divided the building scenes into three categories: library,
ancient quadrangle, and gymnasium. These scenes not only
contain individual buildings but also include surrounding
environmental information such as trees, water bodies, etc. In
these scenes, we conducted comparative experiments using
both traditional methods and the method proposed in this paper.
Throughout the experiments, we maintained consistent input
data and equipment configurations to ensure a fair comparison
between our proposed method and traditional methods in terms
of 3D building reconstruction.

5.2 Result and Evaluation:

In terms of reconstruction results, we observed that the method
proposed in this paper outperforms traditional methods in
overall building reconstruction. Specifically, our method
performs better in complex texture details, reflective surfaces,
and glass materials. These advantages are demonstrated in
Figures 1 and 2. Additionally, in Figure 3,
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Method Libaray Yard Gym
Ours 28min 25min 35min

Tradition 42min 47min 51mim
we found that traditional methods exhibit distortion and
stretching in the reconstruction of objects around buildings,
whereas our method avoids these issues and more faithfully
reproduces the surrounding environment such as trees. In
special reconstruction areas such as water bodies, the results in
Figure 3 further demonstrate the consistent advantage of our
method over traditional methods.

6. CONCLUSION

This paper introduces an innovative approach to architectural
reconstruction based on 3D Gaussian splatting, utilizing
anisotropic 3D Gaussian ellipsoids to represent scenes. This
approach offers possibilities for high-quality rendering and
training, surpassing traditional methods as well as the point
cloud and MLP used in Nerf. We employ a fast and
differentiable rasterization module, accelerating the entire
training and rendering process with GPU. Notably, our method
outperforms traditional algorithms in both reconstruction speed
and model rendering quality, especially in aspects such as
texture details, water bodies, and specular materials. By
showcasing Gaussian point cloud representations of scenes, we
enable scene editing, providing new insights for the three-
dimensional reconstruction of urban buildings.

This Gaussian-based method accurately captures the
complexity and details of architectural scenes and effectively
handles rendering and synthesis from various perspectives.
Additionally, our method offers greater editability, allowing
users to flexibly modify and optimize scenes. Therefore, we
believe this approach will lead to significant advancements in
the field of three-dimensional reconstruction of urban buildings
and provide new perspectives and methods for related research.
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