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Abstract

In this paper, we present a novel approach for segmenting planar regions in Digital Surface Models (DSMs) by adapting the
Segment Anything Model (SAM), an open-source framework. Our approach specifically tailors SAM to recognize planar regions
within given building footprints, employing the Low-Rank Adaptation (LoRA) technique. This adaptation benefits from a detailed
and realistic synthetic dataset, coupled with a novel labeling strategy for planar regions in our ground truth, enhancing the model’s
effectiveness and reproducibility. Unlike traditional plane detection techniques, our method consistently and accurately identifies
equivalent planar regions across identical DSM inputs. Following the segmentation phase, we introduced a novel plane fitting
algorithm to determine the parameters for each planar region. This enables us to refine the edges of these areas and utilize the
resulting plane equations to construct precise, watertight 3D models of buildings. Despite its training on synthetic data, our model
exhibits remarkable performance on both synthetic and real-world datasets, exemplified by its application to the Zurich dataset.

1 Introduction

Light Detection and Ranging (LiDAR) systems generate point
cloud data, consisting of scattered 3D points, by emitting laser
pulses to capture Earth’s surface elevations (Wang et al., 2018).
On the contrary, a Digital Surface Model (DSM) is formed
by photogrammetry from overlapping aerial images, featuring
elevation values arranged within a structured 2D grid (Zhou,
2017). Note that point clouds can also undergo transforma-
tion into a DSM if needed (Çağdaş Bak et al., 2016). Given
that both approach provide representations of the Earth’s sur-
face, different processing methods are required to transform
these data types for subsequent tasks. Within these techniques,
plane detection and estimation of plane parameters is crucial in
transforming this complex data into planar segments. Detecting
planar regions in facades and roofs from point clouds (Liu et
al., 2024) (see Figure 1a) or DSMs (see Figure 1b) enables the
generation of 3D building models. Such precise yet simple 3D
building models reduce storage and processing demands, while
also enabling applications like flood simulation, noise or air
pollution simulations, and assessment of solar potential (Rot-
tensteiner and Briese, 2002, Li et al., 2005).

(a) Point Cloud (b) DSM (c) 3D Mesh

Figure 1. (a) Scattered 3D Point Cloud versus
(b) Elevations on a Structured DSM Grid.
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Plane detection is crucial for generating 3D building models,
particularly from point cloud and DSM data. Up to now, the
literature has emphasized plane detection from point cloud (Liu
et al., 2024), with less focus on DSM. However, recently, there
has been an increase in algorithms leveraging DSM data for
various tasks (Nar et al., 2018, Aktaş et al., 2018). This trend
aligns with the enhanced availability of high-resolution DSM
data, thanks to the reduced costs of aerial vehicles and superior-
quality affordable cameras.

Point cloud-based methods, have been extensively studied and
applied in plane detection tasks. Among these, the Random
Sample Consensus (RANSAC) (Fischler and Bolles, 1981)
stands out as one of the earliest and most widely adopted
method. It iteratively fits plane parameters to point subsets,
providing a robust estimation of these parameters even in noisy
data with outliers, enhancing method’s popularity. Neverthe-
less, nondeterministic nature of RANSAC poses a significant
drawback by leading to different outcomes with each run, thus
hindering the reproducibility of the results. Another widely
known geometric approach is the Hough Transform (Hough,
1962, Duda and Hart, 1972). Hough Transform employs a
robust voting mechanism to map points onto potential planes
within the parameter space, subsequently detecting clusters in-
dicative of a common plane through the identification of peaks
in the accumulator array. However, its efficient handling of
noise and outliers is overshadowed by limitations in practical
application due to its computational load. To mitigate this limit-
ation, Deschaud and Goulette introduce an efficient plane detec-
tion method (Deschaud and Goulette, 2010), which markedly
improves both speed and accuracy compared to the traditional
approaches. Their proposed algorithm first estimates filtered
normals to reduce noise impact. Then, it computes a local
planarity score for each point and selects the best seed plane
for voxel growing. This method speeds up plane detection by
employing a voxel grid structure. However, there’s a trade-off
between speed and accuracy; increasing voxel size can sacrifice
accuracy for speed. Additionally, the algorithm’s performance
is sensitive to hyper-parameters.
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Statistical methods like Principle Component Analysis
(PCA) (Jolliffe and Cadima, 2016) represent one of the earliest
techniques for plane detection, albeit limited to a single
plane. PCA estimates plane normals by identifying principal
components that capture the most data variance. However, it
is susceptible to noise and can be computationally inefficient
due to singular value decomposition (SVD). Nurunnabi et
al. proposed a robust PCA method (Nurunnabi et al., 2014),
which utilizes the Minimum Covariance Determinant (MCD)
to iteratively estimate a covariance matrix in a manner less
influenced by outliers, albeit at a much slower pace. A
significant limitation of PCA (or SVD)-based plane detection
is its confinement to a single plane.

Plane detection, as a first step in the 3D model reconstruction
pipeline, is a foundational element for numerous 3D model re-
construction studies. In their study, Wonka and Nan presented
an approach for reconstructing piecewise planar objects (Nan
and Wonka, 2017). The approach adopted in this study shows
the importance of having accurate planes for generating 3D
models. This method efficiently crafts a lightweight polygonal
surface model by carefully selecting candidate faces, to cre-
ate detailed 3D meshes through binary linear programming.
Thereby, it ensures compliance with manifold and watertight
constraints while preserving the sharp features of the objects.
The method’s efficacy relies on the precise detection and accur-
ate parameter estimation of plane candidates, underscoring the
pivotal role that robust plane detection techniques play in the
reconstruction process. Similarly, the approach by Ochmann et
al. for automating the reconstruction of building layouts from
point cloud data emphasizes the importance of accurate wall
candidate generation (Ochmann et al., 2016). This generation
process, crucial for encapsulating building layouts, entails fit-
ting parallel lines to support point sets derived from overlap-
ping line segments. Facilitated by precise plane detection, the
optimization of layouts through these candidates is key to en-
abling automated reconstruction.

While traditional methods often rely on handcrafted features,
predefined rules, heuristics, or optimization techniques for
plane detection, our proposed approach embraces the profound
capabilities of deep learning (DL). Thus, we propose leveraging
the Segment Anything Model (SAM) (Kirillov et al., 2023), as
it excels in capturing the deep data semantics while effectively
encompassing context and spatial dependencies. Subsequently,
we fine-tuned SAM with Low-Rank Adaptation (LoRA) (Hu
et al., 2021) using a novel planar region labeling scheme on
top of our realistically looking synthetic dataset. Following, we
used a custom developed robust fitting algorithm to estimate
plane parameters for the regions generated by SAM. Hence, our
method efficiently generates multiple planes from a given DSM
and building footprint in a reproducible manner, setting it apart
from many widely used methods. Lastly, segmented planar re-
gions are refined using the estimated plane equations, leading to
the construction of a simplified yet accurate LOD2.2 building
model. Thus, our research explores utilizing DSM for plane de-
tection, a departure from the predominant focus on point cloud
utilization in prior studies. Utilizing DSM enables us to harness
inherent spatial structure, facilitating the development of an ac-
curate and efficient plane detection approach. Note that, high-
resolution DSMs are increasingly accessible since drones and
high-quality cameras become more affordable. On the other
hand, point cloud can be easily converted into a DSM using
tools available in commercial software like Esri ArcGIS Pro or
using ready algorithms (Çağdaş Bak et al., 2016).

2 Proposed Method

Our approach consists of two phases: training and generation.

In the training phase, we fine-tuned SAM (Kirillov et al., 2023)
architecture with Low-Rank Adaptation (LoRA) (Hu et al.,
2021) using an extensive and realistic synthetic training set
(refer to Section3.1). Here, SAM is fine-tuned to identify planar
regions for given DSM data for specified building footprints.
Details of the ground truth labeling schema and fine-tuning with
LoRA are provided in Section 2.3.

SAM & 

LoRA

Fine-tuning

Figure 2. Training Phase.

In the generation phase, we first perform inference using the
fine-tuned SAM on a given DSM and building footprint. Then,
we apply robust plane fitting to estimate the parameters of each
planar region identified by the SAM segmentation results within
the building footprint (refer to Section 2.4). Finally, the planar
regions obtained through SAM are refined, and accurate and
simplified 3D building model is generated using the DSM data,
building footprint, refined planar regions, and estimated plane
equations (refer to Section 2.5).

3D Building 

Generation
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Fine-tuning
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Parameters 
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Figure 3. Generation Phase.

2.1 Segment Anything Model (SAM)

Segment Anything Model (SAM), is a foundational model
in computer vision, aimed at enhancing image segmentation
through promptable instructions (Kirillov et al., 2023). The
Vision Transformer (ViT), a core component, revolutionizes the
way images are processed. SAM is available in three versions:
ViT-B (base), ViT-L (large), and ViT-H (huge), each differing
in scale and capacity to handle complex segmentation tasks.

Basically, SAM integrates three core components:

• Image encoder: Extracts and transforms images into a feature
space for segmentation by encoding key visual details.
• Prompt encoder: Processes given textual prompts to define
segmentation tasks in natural language. This component links
textual commands with visual information, ensuring alignment
between user instructions and image content.
• Mask decoder: Combines both encoder outputs in order to
generate accurate segmentation masks. Then it integrates visual
and textual information to accurately delineate target areas in
images following user prompts.
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2.2 Low-Rank Adaptation (LoRA)

SAM shows promise in general segmentation tasks but it still
requires fine-tuning for targeted applications, which can be
data-intensive and costly. This requirement has rendered such
processes impractical for individuals and small organizations,
leading to the rise of parameter-efficient fine-tuning (PEFT)
techniques. PEFT approaches, such as Low Rank Adaptation
(LoRA), focuses on optimizing a minimal set of parameters in
large models, reducing data needs and costs significantly. This
approach has gained interest, evidenced by numerous studies
on LoRA-based fine-tuning.

Low-Rank Adaptation (LoRA) enables the efficient training of
certain dense layers in a neural network by focusing on the
optimization of rank decomposition matrices. It targets the
modifications within the dense layers during adaptation, while
maintaining the pre-trained weights in a frozen state (Hu et al.,
2021). Diagram given in Figure 4 shows how LoRA works for
fine tuning a large-scale pre-trained model.
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Figure 4. LoRA Diagram.

In above Figure 4, the pre-trained weight matrix is denoted as
W ∈ Rd×k. Consider B ∈ Rd×r and A ∈ Rr×k matrices
to be the low-rank decomposition matrices. Note that, the rank
r ≪ min(d, k) signifies that r is much less than the minimum
of d and k. During training, W remains frozen, while A and B
are updated. The composition of A and B defines the resultant
weight matrix, as specified in Equation 1.

∆W = BA

Wmerged = W +∆W (1)

where W is the frozen weight matrix of the pretrained model,
A and B denote the low-rank matrices, ∆W corresponds to
the weights adjusted during fine-tuning, and Wmerged is the
resultant weight matrix after merging.

We can apply multiplication to both W and ∆W with the input
vector x. The aggregate of these products yields the resultant
output vector h, as delineated by Equation 2.

h = Wx+∆Wx (2)

where x is input vector, and h is output vector.

As suggested by Hu et al. (Hu et al., 2021), initializing A with
random Gaussian values and B with zeros is a viable strategy.
Consequently, ∆W starts as zero at the onset of training. This
change in weight, ∆W, can be adjusted by scaling it with α

r
,

where α represents a constant and r denotes rank. By setting
α to match the initial rank r value and maintaining it constant
throughout training, it becomes possible to minimize the loss
for adjusting hyperparameters.

2.3 SAM with LoRA for Roof Segmentation

Given its efficacy in adapting Large Language Models (LLMs)
through PEFT, the LoRA can also be used for fine-tuning SAM.
We inspired from (Zhang and Liu, 2023) for this study. LoRA
layers are added to the ViT blocks in the SAM image encoder.
Although the image encoder itself is frozen these additional
LoRA layers are trainable and can be used for fine-tuning SAM
to our customized segmentation. Default embeddings are used
in prompt encoder, so no prompt engineering is needed for the
inferencing. The simplified diagram of the implementation of
LoRA layers into the SAM is shown in Figure 5.
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Figure 5. SAM+LoRA Diagram.

Incorporating LoRA into the projection layers of query (q), key
(k), or value (v) uses the multi-head self-attention mechanism’s
use of cosine similarity to refine attention scores. In our case,
LoRA is specifically utilized within the projection layers for q
and v. Finally, applying Equation 3 to these layers results in the
following equations:

Q = Wqx+BqAqx

K = Wkx (3)
V = Vvx = Wvx+BvAvx

where Wq, Wk, and Wv represent the frozen projection
matrices in SAM, whereas Aq, Bq, Av, and Bv are the
matrices trained as LoRA parameters. The variable x denotes
the input vector, and q, k, v correspond to the output vectors.

We classified roof planes into semantic classes by aspect angles,
focusing on flat, gable, and hip roofs (Figure 6). Class 1 to 4
are assigned for sloped roofs. Class 1 encompasses roof planes
with aspect angles less than 45◦ or equal to or greater than
315◦, indicating a Northwest-to-Northeast (NW-NE) orienta-
tion. Class 2 includes planes with aspect angles ranging from
45◦ (inclusive) to less than 135◦, corresponding to a Northeast-
to-Southeast (NE-SE) orientation. Planes within Class 3 have
aspect angles from 135◦ (inclusive) to less than 225◦, repres-
enting a Southeast-to-Southwest (SE-SW) orientation. Finally,
Class 4 consists of planes with aspect angles from 225◦ (in-
clusive) to less than 315◦, denoting a Southwest-to-Northwest
(SW-NW) orientation. Flat roofs are identified with consistent
aspect angles across the plane, classified under Class 5.

Figure 6. Semantic classification.
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Similar to SAM, our method also predicts multiple segment-
ation masks (instances) each corresponding to a unique roof
plane region class. We denote C as the set of roof plane region
instances, for which we have established 50 distinct instances.
Our objective is to generate a segmentation map where each
pixel belongs to a class in the set C = c0, c1, c2, . . . , ck. Here,
c0 is designated for the background, while ci, for i ∈ 1, . . . , k,
represents the 50 predefined instances. It is assumed that every
roof plane region assigned to the same semantic class may have
10 different instances on the same building, both in training and
in inference. For a class z where 1 ≤ z ≤ 5, plane regions are
labeled from 100z+1 to 100z+10. For instance, Class 1 plane
regions are labeled from 101 to 110 (Table 1). At training time,
the planes are sorted by area, with instance labels assigned from
largest to smallest within each semantic class, ranging from 1
to 50 and then remapped to the original values for inference.

Class Class Definition Labels
1 315 ≤ γ ≤ 315 + 90 101, 102, . . . , 110
2 45 ≤ γ < 45 + 90 201, 202, . . . , 210
3 135 ≤ γ < 135 + 90 301, 302, . . . , 310
4 225 ≤ γ < 225 + 90 401, 402, . . . , 410
5 Flats 501, 502, . . . , 510

Table 1. Semantic classes and labels (γ = aspect angle).

In our study, the DSM raster in the training dataset undergoes
per-building per-tile normalization, scaling values to the range
between 0 and 1 via the min-max method. Figure 7 shows
sample tiles of the image and label data used in training. Fig-
ure 7(a) represents the normalized DSM tile, while Figure 7(b)
depicts its corresponding label tile. The numbers on the label
tile shows the labels of the roof plane regions. The numbers in
parenthesis shows the mapped labels used during the training.

Figure 7. A training sample: normalized DSM tile (one with
shaded relief symbology), and the matching ground-truth labels.

We used 7520 buildings in TrainVille and 108 buildings in
TestVille, all synthetic (Section 3.1.1), for training and testing,
respectively. Roof plane vector data served as labels, with DSM
images as inputs, assuming building footprints are given for
DSM masking. Resolutions of DSM and label rasters were 10
cm, with tiles sized 1024×1024 pixels. As in (Razuvayevskaya
et al., 2023), we utilize a dynamic batch processing strategy
to enhance GPU efficiency and accelerate training. We set the
Cross-Entropy weight to 0.2 and the Dice loss weight to 0.8.
The initial learning rate is 10−4, with a warmup period of 250
epochs, and a maximum of 500 epochs with an early stop at 160
epochs. Parameters β1, β2, and weight decay for the AdamW
optimizer are 0.9, 0.999, and 0.1, following (Zhang and Liu,
2023). We don’t use rotation and flip data augmentations, given
the rotation-sensitive nature of our labeling and the ample avail-
ability of synthetically generated data. We adopt LoRA to fine-
tune the frozen q and v projection layers of the transformer
blocks. Starting with a rank value of 4 for the ViT-B back-
bone, we sequentially increased it through 5, 6, 7, to 8, where
a significant improvement was noted, establishing 8 as the base
rank value. Training experiments and comparisons were then
extended to rank values of 16, 32, 64, 128, 256, and 512.

2.4 Robust Single Plane Fitting

The SAM, fine-tuned using LoRA, outputs planar regions as
its segmentation result. However, these results are provided
as mask images, which do not include the parameters of the
planes. Consequently, it becomes necessary to estimate the
plane parameters for each segmented region. Given that these
regions may contain noise and outliers, the plane fitting method
employed must be robust against such imperfections. Thus, we
devised a plane fitting methodology that leverages the L1-norm,
known for its robustness to outliers. Also, we developed an
efficient numerical minimization strategy for the cost function
specifically tailored to robust single plane fitting.

Let us define robust plane fitting as minimization of the cost
function J(.) with respect to the plane parameter p = [d, a, b]⊤,
where ri = ẑi−zi = g⊤

i p−zi is the residual for the input data
gi = [1, xi, yi]

⊤ and elevation zi, and vi is the weight factor.
Weight factor of ith residual is computed as vi = e

− ri
median(r)+ϵ

where vi gets closer to zero for large residuals, such as outliers.
At last, the cost function is given by:

J(p) =
1

n

n∑
i=1

vi|ri| (4)

with respect to the plane parameter p = [d, a, b]⊤.

First, we need to approximate the non-differentiable absolute
function (Ozcan et al., 2016) as below:

vi|ri| ≈ vi
(g⊤

i p− zi)
2

|g⊤
i p̃− zi|+ ϵ

= hi(g
⊤
i p− zi)

2 (5)

where

hi =
vi

|g⊤
i p̃− zi|+ ϵ

=
e
− r̃i

median(r̃)+ϵ

|g⊤
i p̃− zi|+ ϵ

(6)

Note that, weight vi for ith data is computed using the median

of the residuals where vi = e
− r̃i

median(r̃)+ϵ and r̃ is proxy constant
for the residuals.

Finally, cost function becomes:

J(k)(p) ≈ 1

n

n∑
i=1

hi(g
⊤
i p− zi)

2 (7)

=
1

n
(Gp− z)⊤H(Gp− z) (8)

where G is the data matrix composed of gi values and z is the
vector form of zi values.

Taking the derivative of the cost function J(k)(p) with respect
to p and equalizing it to zero leads to an iterative solution where
k is the iteration index:

∂J(k)(p)

∂p
=

1

n
2G⊤H(Gp− z) = 0 (9)

G⊤HGp−G⊤Hz = 0 (10)

G⊤HGp = G⊤Hz (11)
Ap = b (12)

where A = G⊤HG and b = G⊤Hz.
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2.5 3D Building Model Generation

Our objective is to produceLOD2.2 building models (Biljecki
et al., 2016). Prior to estimating plane equations and 3D extru-
sion, it is essential to undertake several preprocessing steps to
clean the data. These steps are enumerated as follows:
• The output from the segmentation process, planar regions, is
transformed into vector polygons. For this task, we utilize the
Raster to Polygon tool available in the ArcGIS Pro.
• Vertices of the obtained polygons are processed through the
Simplify Shared Edges tool in the ArcGIS Pro where the Retain
Effective Areas (Visvalingam-Whyatt) algorithm is applied.
• Polygons with an area smaller than the threshold value of 0.1
square meters are removed.
• The Fill Gaps tool in the ArcGIS Pro is employed to close the
spaces left by the removal of the polygons.
• Next, the vertices of the polygons are simplified again using
the Simplify Shared Edges tool in the ArcGIS Pro using the Re-
tain Critical Points (Douglas-Peucker) algorithm.

After obtaining the simplified polygons using refined regions,
the plane parameters for each planar region are estimated. The
exterior vertices of the plane polygons are projected onto the
building footprint vector, and superfluous vertices are elimin-
ated. Surface normals for the planes are computed, and adjacent
polygons with similar orientations are combined. Finally, the
planes undergo triangulation, and the building walls are formed
by extending the roof planes downward to the ground level.

3 Experiments

For all training and testing tasks, a Linux-based machine
equipped with a GV-100 graphics card with 32GB of vRAM
was utilized. This system comprises an Intel® Xeon® W-2123
CPU with 4 hardware cores and 8 threads, operating at 3.60
GHz, with 64 GB of RAM.

3.1 Training and Test Data

Deep learning architectures rely heavily on extensive labeled
datasets. However, collecting and annotating these datasets is
resource-intensive. Utilizing synthetic data in machine learning
offers several advantages such as reducing costs, improving ac-
curacy, enabling scalability, and easing licensing restrictions.
• Cost-effectiveness: It is a cost-effective alternative to real-
world data acquisition, reducing the need for time-consuming
and expensive manual collection and annotation.
• Accuracy enhancement: It offers the ability to tailor and gen-
erate diverse datasets, capturing a broad spectrum of scenarios,
including rare events difficult to obtain in real-world data.
• Scalability: Synthetic data generation is scalable, enabling
quick and efficient production of large data volumes, ideal for
areas with limited labeled data or needing frequent updates.
• Licensing constraints: Using real-world datasets can involve
complex licensing, privacy laws, and data-sharing limits. Syn-
thetic data bypasses these issues, avoiding privacy and intellec-
tual property concerns.

3.1.1 Synthetic Data Generation Pipeline

A synthetic data production pipeline was developed, wherein
the synthetically generated data is utilized as input for both
training and testing phases. First, training and test datasets
were procedurally created through Esri’s ArcGIS CityEngine,
utilizing Computer-Generated Architecture (CGA) rules. Arc-
GIS CityEngine is a sophisticated 3D modeling tool that em-
ploys procedural modeling to craft extensive, interactive, and
immersive urban landscapes more efficiently compared to tra-
ditional modeling methods. The procedural modeling language
employed in CityEngine, known as CGA, facilitates the genera-
tion of 3D urban settings and architectural structures. Buildings
were produced featuring a mix of three roof types: flat, gable,
and hip, as depicted in Figure 8. The procedural generation en-
sures that buildings exhibit features typical of four categories:
high-rise, commercial, apartment, and residential.

Figure 8. Procedurally generated roof types.

Two synthetic cities, TrainVille and TestVille (see Figure 9),
with around 25, 000 and 12, 000 buildings respectively, were
created using CityEngine and exported as multipatch geometry.

Figure 9. Synthetic cities (TrainVille & TestVille).

The Esri ArcGIS Pro Data Interoperability Extension, known
as FME Software, was utilized to extract roof planes and con-
struct as separate vector layers. Therefore, FME Software was
utilized to extract roof planes and construct as separate vector
layers (see Figure 10). At this stage, all necessary attributes
(e.g., aspect angle, surface normals) were calculated, and an ID
was assigned to the planes of each building.

Figure 10. Extracted roof planes (red) and roof prints (black)
with calculated attributes from multipatches (left image).
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3.1.2 Real-world Data

Real-world test data were selected from Zurich1, where a DSM
with a 10 cm resolution for the test area was generated using
photogrammetric methods from drone imagery. There are 756
buildings, each with its associated footprint vectors. A sample
of this real-world test data is presented in Figure 11.

Figure 11. Real-world test data: City of Zurich.

3.2 Quantitative Results

We tried different rank values to determine the best one for our
study. We fine-tuned pre-trained SAM models: ViT-B (around
367 MB) and Vit-L (around 1.2 GB). The inferencing times for
these 2 pre-trained backbone SAM models for one tile are re-
spectively 0.5 seconds and 1 seconds. We don’t use ViT-H (ap-
proximately 2.5 GB) for further experiments because it is too
large and inferencing process time takes longer than the other
two models (2 seconds).

To evaluate the performance of each trained model, we compute
F1-score, precision, recall, and accuracy metrics for two dif-
ferent epochs: 160 and 500, respectively. These metrics were
calculated using the synthetic TestVille data, which contained
ground truth labels. We also assess the performance of planar
region segmentation using the Jaccard Index, Intersection over
Union (IoU), which is computed as IoU(A,B) = |A∩B|

|A∪B| where
A represents the ground truth labels, and B is the predicted
planar segmentation masks.

We assess our method’s planar region detection against the
RANSAC algorithm using 108 synthetic buildings in TestVille
(see example results in Figure 12). The process involves ex-
tracting unique labels from the ground truth and predicted
masks, then calculating the IoU for each ground truth label
against its predicted counterpart by finding the intersection and
union of pixels for each label pair. The aggregated IoU scores
provide a measure of the overall agreement between the ground
truth and predicted masks for planar regions. RANSAC’s in-
herent randomness produced variations between different runs
as illustrated in Figure 13, which shows consecutive RANSAC
trials. Its effectiveness also depends significantly on chosen hy-
perparameters. In our setup, we’ve configured RANSAC with
a maximum of 750 iterations and a distance threshold of 0.6,
using the L1 distance metric to calculate distances between
ground truth and predicted z values. Our SAM-LoRA based
method significantly outperforms the RANSAC approach in
segmenting planar regions, achieving a Jaccard Index of 0.96
compared to RANSAC’s 0.66.
1 Data courtesy of Wingtra

(a) Groundtruth segmentation (b) Groundtruth planes

(c) RANSAC segmentation (d) RANSAC planes

(e) SAM-LoRA segmentation (f) SAM-LoRA planes

Figure 12. Test sample results: RANSAC and SAM-LoRA

As seen in Figure 13, results of the RANSAC method exhibit
variation across different executions, underscoring its intrinsic
randomness. This randomness arises from the approach of
RANSAC, which involves the random selection of subsets from
the dataset for iterative model fitting. This random selection
process, while enabling RANSAC to robustly handle outliers,
introduces variability in the results.

(a) RANSAC planes, first run (b) RANSAC planes, second run

(c) RANSAC planes, third run (d) Groundtruth planes

Figure 13. Results of multiple RANSAC runs.
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The performance metrics for 160 and 500 epochs, during fine-
tuning with LoRA across various ranks for ViT-L and ViT-BB,
are given in Table 2. Higher rank values correspond to larger
LoRA models. Additionally, the predicted instance numbers
per class detail some missing instances, primarily due to their
scarce or small area presence in the ground truth. LoRA model
sizes substantially increases at higher ranks (256, 512) when
using the ViT-L pretrained model. The analysis suggests that
the rank 128 LoRA model trained for 500 epochs with the Vit-
L pretrained SAM model achieves the best performance.

Table 2. Comparison of fine-tuning SAM with different ranks.

Classes / 
Instances

Predicted
Instances f1 Precision Recall Accuracy

Classes / 
Instances

Predicted
Instances f1 Precision Recall Accuracy

1/4 3 0.9661 0.9429 0.9905 0.9345 1/4 4 0.9703 0.9501 0.9914 0.9424
2/6 3 0.9804 0.9889 0.9721 0.9616 2/6 3 0.9837 0.9879 0.9795 0.9679
3/4 3 0.9661 0.9827 0.9500 0.9344 3/4 3 0.9704 0.9879 0.9535 0.9425
4/4 3 0.9826 0.9825 0.9827 0.9658 4/4 3 0.9856 0.9860 0.9851 0.9716
5/6 5 0.9961 0.9982 0.9940 0.9923 5/6 5 0.9964 0.9983 0.9945 0.9928

Total = 24 All = 17 0.9783 0.9790 0.9779 0.9577 Total = 24 All = 18 0.9813 0.9820 0.9808 0.9634
1/4 3 0.9691 0.9491 0.9900 0.9401 1/4 3 0.9728 0.9550 0.9911 0.9469
2/6 3 0.9827 0.9889 0.9766 0.9660 2/6 3 0.9860 0.9891 0.9829 0.9723
3/4 3 0.9696 0.9840 0.9555 0.9409 3/4 3 0.9724 0.9876 0.9577 0.9464
4/4 3 0.9864 0.9868 0.9860 0.9732 4/4 3 0.9882 0.9898 0.9866 0.9766
5/6 5 0.9958 0.9985 0.9930 0.9916 5/6 5 0.9948 0.9984 0.9911 0.9896

Total = 24 All = 17 0.9807 0.9815 0.9802 0.9624 Total = 24 All = 17 0.9828 0.9840 0.9819 0.9664
1/4 3 0.9728 0.9584 0.9877 0.9470 1/4 4 0.9751 0.9590 0.9918 0.9515
2/6 3 0.9847 0.9888 0.9806 0.9699 2/6 3 0.9859 0.9863 0.9855 0.9722
3/4 3 0.9719 0.9867 0.9576 0.9454 3/4 3 0.9739 0.9893 0.9589 0.9491
4/4 3 0.9874 0.9867 0.9880 0.9750 4/4 3 0.9878 0.9910 0.9845 0.9758
5/6 5 0.9959 0.9984 0.9934 0.9919 5/6 5 0.9963 0.9981 0.9944 0.9925

Total = 24 All = 17 0.9825 0.9838 0.9814 0.9658 Total = 24 All = 18 0.9838 0.9848 0.9830 0.9682
1/4 3 0.9667 0.9449 0.9895 0.9355 1/4 4 0.9723 0.9546 0.9908 0.9462
2/6 3 0.9720 0.9857 0.9586 0.9454 2/6 3 0.9778 0.9883 0.9674 0.9565
3/4 3 0.9679 0.9857 0.9508 0.9378 3/4 3 0.9722 0.9841 0.9606 0.9459
4/4 3 0.9866 0.9891 0.9841 0.9736 4/4 3 0.9887 0.9905 0.9870 0.9777
5/6 5 0.9948 0.9959 0.9938 0.9897 5/6 5 0.9953 0.9964 0.9941 0.9906

Total = 24 All = 17 0.9776 0.9802 0.9754 0.9564 Total = 24 All = 18 0.9813 0.9828 0.9800 0.9634
1/4 4 0.9671 0.9439 0.9915 0.9363 1/4 4 0.9751 0.9578 0.9930 0.9514
2/6 3 0.9816 0.9840 0.9792 0.9639 2/6 3 0.9877 0.9892 0.9861 0.9757
3/4 3 0.9684 0.9887 0.9490 0.9388 3/4 3 0.9759 0.9908 0.9614 0.9529
4/4 3 0.9863 0.9914 0.9813 0.9729 4/4 3 0.9890 0.9915 0.9864 0.9782
5/6 5 0.9955 0.9975 0.9934 0.9910 5/6 5 0.9966 0.9981 0.9950 0.9931

Total = 24 All = 18 0.9798 0.9811 0.9789 0.9606 Total = 24 All = 18 0.9848 0.9855 0.9844 0.9703
1/4 3 0.9702 0.9535 0.9876 0.9422 1/4 4 0.9724 0.9533 0.9924 0.9464
2/6 3 0.9843 0.9816 0.9870 0.9691 2/6 3 0.9867 0.9871 0.9863 0.9738
3/4 3 0.9693 0.9908 0.9486 0.9403 3/4 3 0.9726 0.9908 0.9551 0.9467
4/4 3 0.9864 0.9891 0.9837 0.9732 4/4 3 0.9878 0.9901 0.9854 0.9758
5/6 5 0.9961 0.9981 0.9942 0.9923 5/6 5 0.9960 0.9984 0.9937 0.9920

Total = 24 All = 17 0.9813 0.9826 0.9802 0.9634 Total = 24 All = 18 0.9831 0.9839 0.9826 0.9669
1/4 3 0.9714 0.9525 0.9911 0.9445 1/4 4 0.9728 0.9535 0.9929 0.9471
2/6 3 0.9854 0.9890 0.9817 0.9711 2/6 3 0.9860 0.9856 0.9863 0.9723
3/4 3 0.9694 0.9903 0.9494 0.9406 3/4 3 0.9729 0.9905 0.9560 0.9473
4/4 3 0.9870 0.9857 0.9883 0.9743 4/4 3 0.9871 0.9905 0.9836 0.9745
5/6 5 0.9935 0.9984 0.9887 0.9871 5/6 5 0.9948 0.9982 0.9914 0.9896

Total = 24 All = 17 0.9813 0.9832 0.9798 0.9635 Total = 24 All = 18 0.9827 0.9837 0.9821 0.9662

Epochs = 160 Epochs = 500Rank ( r )
 

File size (ViT-L)

r = 256

140118 KB

r = 512

238422 KB

r = 8

44885 KB

r = 16

47957 KB

128

90966 KB

r = 32

54101 KB

r = 64

66390 KB

Vit-L SAM model fine-tuned with different ranks.

Classes / 
Instances

Predicted
Instances f1 Precision Recall Accuracy

Classes / 
Instances

Predicted
Instances f1 Precision Recall Accuracy

1/4 3 0.9487 0.9242 0.9745 0.9024 1/4 3 0.9641 0.9388 0.9908 0.9307
2/6 3 0.9713 0.9851 0.9580 0.9442 2/6 3 0.9820 0.9857 0.9783 0.9646
3/4 3 0.9536 0.9878 0.9217 0.9113 3/4 3 0.9634 0.9888 0.9393 0.9294
4/4 3 0.9814 0.9815 0.9813 0.9635 4/4 3 0.9839 0.9842 0.9836 0.9683
5/6 5 0.9924 0.9953 0.9895 0.9848 5/6 5 0.9952 0.9984 0.9920 0.9904

Total = 24 All = 17 0.9695 0.9748 0.9650 0.9412 Total = 24 All = 17 0.9777 0.9792 0.9768 0.9567
1/4 3 0.9578 0.9294 0.9880 0.9190 1/4 3 0.9654 0.9421 0.9899 0.9331
2/6 3 0.9782 0.9779 0.9786 0.9574 2/6 3 0.9821 0.9816 0.9826 0.9648
3/4 3 0.9502 0.9895 0.9139 0.9051 3/4 3 0.9638 0.9890 0.9398 0.9301
4/4 3 0.9816 0.9830 0.9802 0.9638 4/4 3 0.9847 0.9873 0.9821 0.9699
5/6 5 0.9949 0.9985 0.9913 0.9898 5/6 5 0.9959 0.9982 0.9936 0.9918

Total = 24 All = 17 0.9725 0.9757 0.9704 0.9470 Total = 24 All = 17 0.9784 0.9796 0.9776 0.9579
1/4 3 0.9657 0.9406 0.9920 0.9336 1/4 3 0.9634 0.9375 0.9907 0.9293
2/6 2 0.9750 0.9877 0.9626 0.9512 2/6 3 0.9775 0.9854 0.9697 0.9560
3/4 3 0.9657 0.9873 0.9451 0.9337 3/4 3 0.9662 0.9856 0.9476 0.9346
4/4 3 0.9849 0.9881 0.9818 0.9703 4/4 3 0.9874 0.9899 0.9850 0.9752
5/6 5 0.9913 0.9962 0.9864 0.9827 5/6 5 0.9954 0.9976 0.9932 0.9908

Total = 24 All = 16 0.9765 0.9800 0.9736 0.9543 Total = 24 All = 17 0.9780 0.9792 0.9772 0.9572
1/4 3 0.9716 0.9570 0.9866 0.9448 1/4 4 0.9621 0.9343 0.9916 0.9269
2/6 3 0.9839 0.9843 0.9835 0.9683 2/6 3 0.9805 0.9849 0.9761 0.9617
3/4 3 0.9668 0.9868 0.9477 0.9358 3/4 3 0.9684 0.9889 0.9487 0.9387
4/4 3 0.9851 0.9862 0.9840 0.9707 4/4 3 0.9859 0.9892 0.9827 0.9723
5/6 5 0.9951 0.9982 0.9920 0.9902 5/6 5 0.9955 0.9982 0.9927 0.9910

Total = 24 All = 17 0.9805 0.9825 0.9788 0.9620 Total = 24 All = 18 0.9785 0.9791 0.9784 0.9581
1/4 3 0.9700 0.9496 0.9914 0.9418 1/4 3 0.9716 0.9517 0.9924 0.9448
2/6 3 0.9841 0.9832 0.9849 0.9686 2/6 3 0.9858 0.9862 0.9855 0.9721
3/4 3 0.9670 0.9890 0.9460 0.9362 3/4 3 0.9717 0.9921 0.9520 0.9449
4/4 2 0.9854 0.9898 0.9810 0.9712 4/4 3 0.9867 0.9889 0.9845 0.9738
5/6 5 0.9962 0.9982 0.9941 0.9923 5/6 5 0.9964 0.9982 0.9946 0.9928

Total = 24 All = 16 0.9805 0.9795 0.9795 0.9620 Total = 24 All = 17 0.9824 0.9834 0.9818 0.9657
1/4 3 0.9721 0.9614 0.9830 0.9457 1/4 3 0.9703 0.9489 0.9926 0.9423
2/6 3 0.9828 0.9759 0.9898 0.9661 2/6 3 0.9865 0.9872 0.9857 0.9733
3/4 3 0.9699 0.9912 0.9496 0.9416 3/4 3 0.9720 0.9909 0.9538 0.9455
4/4 3 0.9853 0.9884 0.9823 0.9711 4/4 3 0.9879 0.9914 0.9845 0.9761
5/6 5 0.9962 0.9981 0.9942 0.9924 5/6 5 0.9946 0.9984 0.9907 0.9892

Total = 24 All = 17 0.9813 0.9830 0.9798 0.9634 Total = 24 All = 17 0.9822 0.9834 0.9815 0.9653
1/4 3 0.9681 0.9459 0.9913 0.9381 1/4 3 0.9720 0.9522 0.9927 0.9456
2/6 3 0.9842 0.9816 0.9868 0.9689 2/6 3 0.9857 0.9848 0.9866 0.9719
3/4 3 0.9679 0.9912 0.9457 0.9378 3/4 3 0.9723 0.9917 0.9537 0.9461
4/4 3 0.9857 0.9920 0.9795 0.9718 4/4 3 0.9869 0.9913 0.9826 0.9742
5/6 5 0.9948 0.9985 0.9911 0.9896 5/6 5 0.9919 0.9982 0.9856 0.9839

Total = 24 All = 17 0.9801 0.9819 0.9789 0.9612 Total = 24 All = 17 0.9818 0.9836 0.9802 0.9643

Epochs = 160 Epochs = 500

r = 8

42950 KB

r = 16

44102 KB

r = 32

46406 KB

r = 64

51014 KB

128

60230 KB

r = 256

78662 KB

r = 512

115526 KB

Rank ( r )
 

File size (ViT-B)

Vit-B SAM model fine-tuned with different ranks.

We compare constructed 3D buildings (for ViT-L, Rank 128,
500 epochs) on synthetic TestVille and real Zurich test sites.
Random checkpoints ranging from 30 to 100 are generated on
these 3D buildings. An initial blunder test eliminates outlier
checkpoints before calculating RMSE, mean error, and me-
dian value for height discrepancies. These calculated values
are presented in Table 3. Despite the model’s training on syn-
thetic data without real-world noise, height errors are minimal
for both the synthetic and the real-world Zurich datasets.

Test Data RMSE (m) Mean (m) Median (m)
TestVille 0.103 0.0006 2.2× 10−12

Zurich 0.67 0.0002 0.002

Table 3. Generated 3D building heights versus DSM heights.

3.3 Qualitative Results

Our approach generates LOD2 building models through planar
region detection and robust plane fitting, followed by construct-
ing 3D models from these roof planes (Figure 14).

Figure 14. A constructed 3D model from synthetic TestVille.

Testing on noisy real-world Zurich dataset also validates our
algorithm’s proficiency in addressing real-world complexities
effectively (Figure 15 and Figure 16). Although the 3D models
could be further improved by post-processing the segmentation
mask of planar regions, our approach already reliably yields
accurate LOD2.2 representations of buildings.

Figure 15. 3D building reconstructions of a piece of Zurich city.

Performance of the proposed method for a small piece of Zurich
city is illustrated in Figure 15. Also, a more detailed view of a
building within this area is shown in Figure 16.

Figure 16. A constructed 3D model from the city of Zurich.
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4 Conclusion

In this paper, we introduce a novel method for mapping planar
regions within given DSM and building footprint, utilizing a
fine-tuned SAM. We apply the LoRA for fine-tuning the SAM,
which enables precise detection of planar areas within given
building boundaries. Furthermore, we have crafted a robust
plane fitting method that employs the L1-norm to estimate the
plane parameters of the planar regions produced by the fine-
tuned SAM. Our experiments show that our approach surpasses
conventional RANSAC-based approaches in segmenting planar
regions on building footprints from DSMs. This superiority is
reflected through a higher Jaccard index along with providing
consistent and replicable outcomes. Our approach mitigates the
inherent randomness of RANSAC by leveraging a SAM variant
enhanced with LoRA and a unique labeling technique, ensur-
ing precise and uniform results for the same DSM inputs. Even
though trained on synthetic data, our approach’s effectiveness
has also been confirmed with real-world Zurich dataset, show-
casing significant results.

In future research, we aim to enhance our model’s training by
integrating both noisy synthetic and diverse real-world datasets.
We will also explore reorienting the buildings to align with the
standard canonical axis, aiming to enhance the effectiveness
of our labeling schema. We also plan to increase segmenta-
tion precision by merging adjacent planar regions with similar
plane equations and dividing regions that require differentiation
into multiple planes. This approach aims to better capture the
complexities of real-world structures. Additionally, we will fo-
cus on refining the delineation of planar regions through an
optimization-based method that considers plane intersections,
aiming for a higher fidelity to the original data and more ac-
curate physical world representations. Furthermore, we plan to
employ computational geometry libraries to support the gener-
ation of simpler, yet more precise, 3D building models.
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Aktaş, G., Nar, F., Vural, F. T. Y., 2018. Correlation-based vari-
ational change detection for elevation models. IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS),
1930–1933.

Biljecki, F., Ledoux, H., Stoter, J., 2016. An improved LOD
specification for 3D building models. Computers, Environment
and Urban Systems, 59, 25-37.

Deschaud, J.-E., Goulette, F., 2010. A fast and accurate plane
detection algorithm for large noisy point clouds using filtered
normals and voxel growing.

Duda, R. O., Hart, P. E., 1972. Use of the Hough Transforma-
tion to Detect Lines and Curves in Pictures. Communications of
the ACM, 15(1), 11-15.

Fischler, M. A., Bolles, R. C., 1981. Random sample con-
sensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Communications of
the ACM, 24(6), 381-395.

Hough, P. V. C., 1962. Method and means for recognizing com-
plex patterns. U.S. Patent 3,069,654.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S.,
Wang, L., Chen, W., 2021. Lora: Low-rank adaptation of large
language models.

Jolliffe, I. T., Cadima, J., 2016. Principal component analysis:
a review and recent developments. Philos Trans A Math Phys
Eng Sci., 374(2065), 303-309.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gust-
afson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y.,
Dollár, P., Girshick, R., 2023. Segment anything.

Li, Y., Gong, P., Babu, M., 2005. Automated 3D building geo-
metrical moeling from DSM.

Liu, Y., Obukhov, A., Wegner, J. D., Schindler, K., 2024.
Point2Building: Reconstructing buildings from airborne lidar
point clouds.

Nan, L., Wonka, P., 2017. Polyfit: Polygonal surface recon-
struction from point clouds. Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2353–2361.

Nar, F., Yilmaz, E., Camps-Valls, G., 2018. Sparsity-driven
digital terrain model extraction. 2018 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), 1316–
1319.

Nurunnabi, A., Belton, D., West, G., 2014. Robust statistical
approaches for local planar surface fitting in 3D laser scanning
data. ISPRS Journal of Photogrammetry and Remote Sensing,
96, 106-122.

Ochmann, S., Vock, R., Wessel, R., Klein, R., 2016. Automatic
reconstruction of parametric building models from indoor point
clouds. Computers & Graphics, 54, 94-103.

Ozcan, C., Sen, B., Nar, F., 2016. Sparsity-Driven Despeckling
for SAR Images. IEEE Geoscience and Remote Sensing Letters,
13(1), 115-119.

Razuvayevskaya, O., Wu, B., Leite, J., Heppell, F., Srba,
I., Scarton, C., Bontcheva, K., Song, X., 2023. Comparison
between parameter-efficient techniques and full fine-tuning: A
case study on multilingual news article classification.

Rottensteiner, F., Briese, C., 2002. A new method for building
extraction in urban areas from high-resolution LiDAR data. The
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, 34.

Wang, R., Peethambaran, J., Chen, D., 2018. LiDAR Point
Clouds to 3-D Urban Models: A Review. IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote Sens-
ing, 11(2), 606-627.

Zhang, K., Liu, D., 2023. Customized segment anything model
for medical image segmentation.

Zhou, Q., 2017. Digital Elevation Model and Digital Surface
Model. John Wiley Sons, Ltd, 1–17.
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