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Abstract:  

Transport infrastructures (TIs) play a crucial role for facilitating transportation and enhancing mobility. Nevertheless, they face 

significant risks from forest fires mainly due to climate change. Developing accurate fire risk maps is essential for planning vegetation 

maintenance, predicting fire-prone areas, and assessing potential damage levels. Risk maps often rely on field data, which are difficult 

to update promptly for effective management. This paper introduces an approach to identify and continuously monitor road sections 

at high risk of forest fires using Random Forest (RF) models along with satellite images. Multiple models were trained using different 

risk predictors, all achieving test accuracies exceeding 79% and good agreement in the kappa coefficient. Additionally, the key 

predictors in each model were analyzed. As a result, these models offer a dynamic updating mechanism for risk maps over time. The 

methodology also enables the integration and fusion of multi-source datasets to pinpoint areas with the highest risk associated with TIs 

and forest fires. These insights facilitate the delineation and timely update of critical TI areas, thereby enhancing overall risk 

management. 

 

1. Introduction 

The Sustainable Development Goals (SDGs) are a global 

initiative to eliminate poverty, preserve the environment, and 

enhance the well-being and future prospects of individuals 

worldwide. Constructing safe, sustainable, and resilient 

infrastructure, including regional and cross-border infrastructure, 

is essential to achieve territorial structuring, social cohesion, and 

equal opportunities. 

 

Transport infrastructures (TIs) are currently a fundamental factor 

for the development of countries. Its conservation and the 

preservation of an optimal condition is necessary to guarantee the 

correct running of transport and economy. Nevertheless, the 

correct conservation and operation of this type of infrastructure 

is a challenge, since it is subject to a series of associated risks that 

jeopardize the safety of people on roads and the infrastructure 

itself (Rúa et al., 2022). One of the risks with the highest 

relevance is related to forest fires. Although it is not the only one, 

it has become more relevant in recent years due to the effects of 

climate change (Gajendiran et al., 2024). 

 

The rising density of road networks near forested, shrubland, and 

grassland areas has significantly influenced the patterns of fire 

disturbance (Ricotta et al., 2018). These roads offer access that 

has both expanded the scope and efficiency of fire suppression 

efforts and established fire breaks that influence the spread of 

fires (Narayanaraj & Wimberly, 2011). However, the advantages 

that roads provide for fire prevention and management also come 

with associated risks, as increased road access has led to a higher 

frequency of human-caused ignitions in certain regions (Zambon 

et al., 2019).  

 

The risk is defined as “(1) the hazard of a latent damaging event 

to the infrastructure, (2) the susceptibility of the elements and the 

environment, and (3) the values of the elements susceptible to 

loss” (Jactel et al., 2012). Therefore, creating fire risk maps is 

crucial for strategizing vegetation maintenance actions. The 

process of susceptibility mapping involves identifying areas 

where a forest fire is probable to happen, while the vulnerability 

mapping process assesses the potential level of damage that could 

result from forest fire (Chuvieco et al., 2023). Nevertheless, these 

maps often incorporate data taken in the field, which provide 

detailed information but cannot be easily updated (Domingo et 

al., 2020; Novo et al., 2020a). 

 

Regular updates to forest fire risk maps are essential for effective 

management, as one of the primary contributors to fire ignition 

and spread is the surrounding vegetation (Molina et al., 2017), 

which undergoes significant changes over time (García-Cimarras 

et al., 2021). Both the condition and spatial distribution of 

vegetation play critical roles in defining fuel patterns (Abdollahi 

& Yebra, 2023), influencing risk assessment. Additionally, to 

fully grasp the potential hazard of an area, it is crucial to consider 

additional factors such as topography, meteorological conditions, 

and fire history (Abedi Gheshlaghi, 2019; Kayet et al., 2020; 

Novo et al., 2020b). Integrating these elements provides a 

comprehensive understanding of the forest fire risks, allowing for 

more accurate planning of preventive and response measures. 

 

Remote Sensing (RS) technologies are extensively utilized as a 

method to assess vegetation health and safety (Van Pham et al., 

2023), to identify alterations in land cover (De Luca et al., 2022; 

Nicolau et al., 2021; Seyam et al., 2023), to categorize fuel types 

(Domingo et al., 2020), and to identify forest fires (Suárez-

Fernández et al., 2023). On the one hand, LiDAR (Light 

Detection and Ranging) is an active RS technology that proves 

invaluable in describing terrain and forest geometry (Aragoneses 

et al., 2024). It offers both horizontal and vertical information at 

exceptionally high spatial resolutions and accuracies (Castaño-

Díaz et al., 2017). Nevertheless, the low temporal resolution 

prevents continuous follow-up over time and across years 

(Pirotti, 2011). On the other hand, satellite images from Landsat 

or Sentinel missions enable continuous and prolonged 

monitoring over time (Cartus & Santoro, 2019).  Although, they 

also encounter constraints. These include the requirement for 

clear skies for multispectral images (Tian et al., 2023) or 

restricted capability to penetrate dense vegetation canopies for 

both multispectral and SAR images (Santoro et al., 2019, 2021).   

As a result, this study aims to identify and monitor road sections 

with the highest risk of forest fires. The risks associated with the 

physical environment and vegetation during a specific period will 

be characterized using publicly available data, such as LiDAR-

PNOA and satellite technology. The resulting maps will be used 

to train Random Forest (RF) models, linking risks to satellite 

images. The main novelty lies in the generation of these risk maps 
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using only satellite technology over road infrastructures, which 

will allow continuous monitoring and update of the stretches over 

time. 

   

2. Study Area and Materials 

The study area is located in Northwest Spain, specifically in 

Pontevedra province, and covers four municipalities, as shown in 

Figure 1. This location is selected since it was classified as a 

critical area in terms of fire and landslides by Rúa et al. (2022). 

Among TIs analyzed include the Rías Baíxas A-52 highway, as 

well as the state routes N-120 and N-559. 

 

Regarding materials, they are either freely available or in the 

public domain. The LiDAR data used in this study is sourced 

from the Spanish National Center for Geographic Information, 

dated July 2015, with a density of 0.5 points per square meter. As 

for satellite images, a combination of data from Landsat and 

Sentinel missions is utilized. Sentinel-1 provides images in the 

C-band of the Radar spectrum, while Sentinel-2 offers high-

resolution optical images. The Landsat mission also provides 

optical images, but with lower spatial resolution than Sentinel-2. 

However, these satellites include a thermal band in the infrared 

spectrum. Both Sentinel-1 and Landsat thermal images are 

acquired using Google Earth Engine (GEE) platform 

(https://earthengine.google.com/), selecting the mean value for 

the last year prior to the dates of the Sentinel-2 images. Sentinel-

2 images are downloaded from Copernicus Open Access Hub site 

(https://dataspace.copernicus.eu/), specifically selecting Level-

2A data for both April 30, 2016, corresponding to the next spring 

season relative to the LiDAR-PNOA acquisition, and for April 

18, 2024, representing the most recent spring season. For 

remaining data, Digital Terrain Model (DTM) and anthropogenic 

infrastructure data are sourced from the Spanish National Center 

for Geographic Information  

(https://centrodedescargas.cnig.es/CentroDescargas/index.jsp). 

Weather-related information includes the Historical Fire Weather 

Index (FWI) from NASA's Center for Climate Simulation 

(https://www.nccs.nasa.gov/) and Historical Fire Regimes from 

Suárez-Fernández et al. (2023). 

 

 
 

Figure 1. Study Area Overview. a) Main Transport Infrastructures to Study (coordinate system EPSG: 25829). b) Location of Galicia 

in the Spanish Territory. c) Study Area Location within Provinces. 

 

3. Methodology  

The overall methodology adopted to achieve the objective of 

this study is illustrated in Figure 2, which consists of four 

phases: Firstly, a pre-processing of LiDAR data. Secondly, the 

generation of layers for each parameter with associated risks 

in relation to forest fires issues. Thirdly, risk classification for 

each of these layers, followed by their fusion and integration 

to obtain general risks. Lastly, updating the maps generated to 

present-days, and verification and visualization of these 

resulting layers. 

 

The pre-processing of LiDAR data involves the generation of 

several digital models necessary for the characterization of 

variables mainly related to vegetation. During the generation 

of layers, those parameters that have an inherent risk 

associated with forest fires issues are selected, followed by the 

obtention of their spatial distribution. This stage encompasses 

the consideration of vegetation-related variables, such as 

continuity, as well as fuel types, which are extracted from 

previously processed LiDAR data. Elements from the physical 

environment—such as geomorphology, meteorology, and 

human settlements—are taken into account, alongside 

historical fire data, the Fire Weather Index (FWI), and land use 

due to their significance in forest fire risk issues.  

 

In the third phase, each layer is classified with a risk index 

ranging from 1 (very low) to 5 (very high). After creating the 

aforementioned layers, the hierarchy process is computed to 

determine the impact of each variable on the comprehensive 

risk map of the study area, using a vector of weights from 

Novo et al. (2020b). Subsequently, the preceding layer is 

integrated with the risk areas proximate to TIs, considering 

vegetation presence and continuity as a fundamental factor and 

its distance from roads, in compliance with current legislation 

(Xunta de Galicia, 2007). This integration results in the 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-121-2024 | © Author(s) 2024. CC BY 4.0 License.

 
122

https://earthengine.google.com/
https://dataspace.copernicus.eu/
https://centrodedescargas.cnig.es/CentroDescargas/index.jsp
https://www.nccs.nasa.gov/


 

production of the final fire risk map for TIs in the acquisition 

year of the LiDAR data. 

 

Finally, an update of these risk maps is performed by training 

RF models that allows tracking of parameters with high 

temporal variability, such as vegetation. This phase allows 

bridging the time gap between the LiDAR-PNOA data and the 

present day. A verification of results is also carried out. 

 

 

3.1 LiDAR-PNOA Data Pre-processing  

A local data processing is developed using FUSION / LDV 

(version 4.41), which was developed by the US Forest Service 

for the analysis of LIDAR data. In this section, the LiDAR data 

are prepared to obtain statistics and to filter, describe and 

analyze the different types of vegetation in the study area. 

 

Firstly, the Digital Elevation Model of Vegetation is obtained. 

The height of the ground at each return point is extracted using 

the DTM. As a result, the model of the height of each return 

point above ground is acquired. Valid points belonging to 

vegetation are then filtered out, excluding human settlements, 

roads, or any anthropogenic infrastructure. 

 

Subsequently, a 30x30m grid is created, and statistics are 

calculated for each of them, stratifying the statistics according 

to the type of vegetation as shown in Table 1. The grid size is 

crucial since a very small value would result in a loss of 

returns, increasing the error due to inconsistency and 

unreliability. In contrast, a very large grid size would reduce 

the accuracy in the relationship between statistics and terrain, 

as well as being subject to the edge effect, resulting in lower 

accuracy. 

 

Vegetation layer Height Range 

 Minimum Maximum 

Medium Vegetation 0.5m 2m 

Medium-High Vegetation 2m 4m 

High Vegetation 4m 55m 

Total Vegetation 0.5m 55m 

Table 1. Vegetation Layer Classification 

 

Figure 2. Workflow of Methodology. 

 

3.2 Obtaining Predictors 

The various variables that influence risk, both for the total area 

and for the main TIs, are quantified, classified, and 

normalized. These variables are divided into two main groups. 

The first group involves collecting and extracting the 

necessary variables to create a cartography showing forest fire 

risk throughout the study area. This includes historical 

analyses, settlement distances, geomorphology, forest fuels, 

Normalized Difference Vegetation Index (NDVI) and 

meteorological indices, as detailed in Abedi Gheshlaghi, 

(2019) and Kayet et al. (2020). The second group focuses on 

vegetation continuity and compliance with minimum safety 

distances on national transportation routes, as shown Novo et 

al., 2020a). The combination of these groups will allow for the 

identification of the most critical road section within the 

selected location. 

 

3.2.1 Vegetation  

Vegetation classification is carried out by characterizing the 

fuel models, following the Prometheus system, adapted from 

the Northern Forest Fire Laboratory (NFFL) for Mediterranean 

conditions (Albini, 1976; Domingo et al., 2020). This process 

is performed according to Table 2, which provides statistics to 

determine the coverage of the different strata and the average 

heights in each grid cell. The Fractional Green Canopy Cover 

(FGCC), which is equivalent to the percentage of first returns 

of the point cloud, is calculated along with the average height. 

 

Assessing the state and condition of vegetation is essential.  

The NDVI, which provides valuable insights into its health is 

used for that. This parameter is derived from Sentinel-2 files, 

synchronized with the season of LiDAR data acquisition. 
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Fuel 

Type 
Cover 

Shrub 

Height 
Shrubs/

Trees 

FT1 >60% grass   

FT2 

>60% shrubs and <50% trees 

0.3-0.6m  

FT3 0.6-2.0m  

FT4 2.0-4.0m  

FT5 <30% shrubs and >50% trees   

FT6 
>30% shrubs and >50% trees 

 >0.5m 

FT7  <0.5m 

Table 2. Fuel types defined by the Prometheus classification. 

Extracted from Domingo et al. (2020) 

 

3.2.2 Topography 

The terrain geomorphology is characterized by three main 

variables: elevation, aspect, and slope. Elevation corresponds 

to the DTM data itself, while aspect and slope are derived 

using the GDAL library in QGIS software (version 3.16.9). 

The files are then adjusted to match the 30m grid cells, 

simplifying their integration and analysis with other variables. 

 

3.2.3 Meteorological Conditions 

The Historical Fire Weather Index (FWI) is utilized, 

comprising six sub-indices, with the FWI serving as the final 

index. This index considers the humidity of dead fuels in the 

soil and subsoil, as well as the wind effect, to produce an 

indicator estimating fire spread intensity. A total of 420 files 

containing FWI data at a global level are obtained, and their 

arithmetic mean is calculated. This yields the average value of 

this index for the summer period over the last 35 years. 

 

3.2.4 Anthropogenic Infrastructures and Forest Fires 

Record  

Using data from roads and population settlement, various areas 

of influence are determined using a buffer tool in QGIS 

software. This process categorizes areas based on the type of 

structure, distinguishing between linear infrastructure (roads) 

and other structures (settlements). Concerning forest fire 

history, both the recurrence and the time elapsed since the last 

recorded fire (TSF) are obtained from the fire database. 

 

3.2.5 Vegetation Continuity  

The FGCC is defined as the degree of plot coverage by vertical 

projection of the tree canopy onto it. For this study, 

considering a grid size of 30x30m, the FGCC is determined as 

the percentage of LiDAR first returns captured by vegetation 

within the analyzed height range and the specified strata (as 

section 3.2.1), which defines the horizontal continuity.  

 

As for vertical continuity, it pertains to the presence of 

vegetation distributed vertically in a continuous and uniform 

manner. To describe this continuity in the study area, the 

Canopy Relief-Ratio (CRR) ratio (Parker & Russ, 2004), as 

defined by Equation 1, is utilized. The CRR is calculated as a 

statistic that relates to the free canopy length of the stand based 

on height observations. This parameter ranges from 0 to 1, 

with values below 0.5 indicating that most of the biomass is in 

the lower parts, while values above 0.5 indicate that most of 

the biomass is in the canopy. 

 

𝐶𝑅𝑅 =  
𝐻𝑒𝑖𝑔ℎ𝑡𝑚𝑒𝑎𝑛−𝐻𝑒𝑖𝑔ℎ𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝐻𝑒𝑖𝑔ℎ𝑡𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝐻𝑒𝑖𝑔ℎ𝑡𝑚𝑖𝑛𝑖𝑚𝑢𝑚
      (1) 

 

3.3 Risk Map for Input Data  

The predictors are then normalized by assigning values 

ranging from 1 (very low) to 5 (very high), according to 

established classes. Subsequently, they are grouped to 

determine the total risk of the study area on the same scale 

from 1 to 5. For both processes, the weightings and ranges 

developed by Novo et al. (2020b) for the region of Galicia are 

used, resulting in the total fire risk (FR). 

 

The areas that affect or have a greater influence on the TIs are 

also delimited. This is achieved by detecting areas that do not 

comply with applicable legislation on forest fire prevention 

(Xunta de Galicia, 2007), which establishes a horizontal 

vegetation clearance of 4m or 10m, depending on the type of 

species. The most restrictive limitation (10m) is used to 

identify tree species. 

 

Finally, CRR values between 0.33 and 0.66 are selected, which 

indicate a homogeneous distribution of biomass. To identify 

the kilometer points with the highest vulnerability, the areas 

with vertical continuity are combined with those that do not 

comply with the required safety distances, and these are 

intersected with the areas with the highest FR (> 4). What it 

boils down to is that the most critical points or areas are 

determined by combining factors from the physical and 

vegetation environment, enabling an evaluation of the overall 

risk of the location. The identification of areas with extreme 

risk, along with cells that present vertical continuity and those 

that lack safety distance, allows for the delineation of critical 

areas and the determination of the points with the greatest risk 

to TIs. 

 

3.4 Random Forest Model Training and Testing 

The map update is essential due to considerable temporal 

discontinuity in the LiDAR data provided by the PNOA, 

dating back to 2015. Possible variations among the data, maps 

obtained, and the current situation could be significant, 

especially due to changes in the vegetation for natural or 

anthropogenic reasons. Therefore, Sentinel satellite images 

from 2015 (see Section 2) are used to train RF models, 

incorporating vegetation indices or proxy variables detailed in 

Table 3. These models aim to identify and classify the several 

risks presented by maps obtained previously, such as FR, CRR 

and species identification. 

  

For both FR and CRR, the 30m grid tiles previously obtained 

are used as training and validation data, adjusting the pixel size 

of the satellite image, for which the mean value is used. In 

contrast, to identify trees in the safety buffer areas, a grid cell 

size matching the Sentinel bands of higher resolution (10m) is 

used, assigning the presence or absence of trees according to 

the height of the LiDAR points. 

 

The RF models are trained using RStudio/2022.12.0 (R 

language version 4.1.3), splitting the data with an 80/20 

partition. The models are then evaluated using both the 

confusion matrix and the Kappa coefficient. The Kappa 

coefficient measures the agreement between predictions and 

observations, adjusting model performance relative to random 

expectations. Importance measures of the variables are also 

incorporated to assess their significance, helping to identify the 

most influential variables in the classification. 

 

Finally, the trained models are applied to the current satellite 

image to identify critical sections of TIs. These sections are 

then visually evaluated in the field to confirm the accuracy of 

the identification. 
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Index or 

Proxy 
Equation 

NDVI 
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

EVI 
2.5 ∗ (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 6 ∗ 𝑅𝐸𝐷 − 7.5 ∗ 𝐵𝐿𝑈𝐸) + 1
 

SAVI 
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
∗ (1 + 𝐿)       𝐿 = 0.5 

ARVI 
𝑁𝐼𝑅 − 2 ∗ 𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅 + 2 ∗ 𝑅𝐸𝐷 + 𝐵𝐿𝑈𝐸 
 

GCI 
𝑁𝐼𝑅

𝐺𝑅𝐸𝐸𝑁
− 1 

SIPI 
𝑁𝐼𝑅 − 𝐵𝐿𝑈𝐸

𝑁𝐼𝑅 − 𝑅𝐸𝐷
 

NBR 
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

VIN 
𝑁𝐼𝑅 

𝑅𝐸𝐷
 

WDRVI 
0.1 ∗ 𝑁𝐼𝑅 − 𝑅𝐸𝐷

0.1 ∗ 𝑁𝐼𝑅 + 𝑅𝐸𝐷 
 

SI1 𝑉𝐻 + 𝑉𝑉 

SI2 𝑉𝑉 − 𝑉𝐻 

SI3 𝑉𝐻 − 𝑉𝑉 

SI4 𝑉𝐻 ∗ 𝑉𝑉 

SI5 𝑉𝐻/𝑉𝑉 

SI6 𝑉𝑉/𝑉𝐻 

SI7 
𝑉𝑉 + 𝑉𝐻

2
 

SI8 √𝑉𝑉 − 𝑉𝐻 

Table 3. Sentinel-2 vegetation indices and Sentinel-1 proxy 

variables derived as predictors. 

 

4. Results 

This section presents key results derived from LiDAR 

processing, data analysis, and modeling, leading to the creation 

of current risk maps. The results are organized according to the 

methodology, starting from the generation of LiDAR-PNOA 

risk maps, followed by RF models training and assessment, 

and concluding with the generation of the current risk map. 

 

4.1 Risk Map as Input Data 

The generation of the base maps required calculating and 

normalizing a set of biophysical variables. In relation to 

meteorological conditions, variations within the study area 

were not deemed relevant. Therefore, a constant and 

normalized value of 3 was assigned to the FWI, obtained from 

the corresponding historical data (see Section 3.2.3). Finally, 

each map was transformed to a scale from 0 to 1, as shown in 

Figure 3, based on the established criteria (see Section 3.3), 

where a value of 1 was assigned to the cells with the highest 

associated risk. 

 

4.2 RF Models 

The three RF models for updating risk maps demonstrated 

different levels of performance in each case. For the overall 

risk maps, which encompass both vegetation-related biotic 

variables and physical variables of the environment, an 

accuracy of 80.27% was achieved in the test, with a 95% 

confidence interval (CI) ranging from 79.49% to 81.03%. The 

kappa coefficient was 0.4991. As for the second model, 

designed to identify vertical continuity from the CRR, the 

accuracy decreased slightly, reaching 79.74% in the test, with 

a CI ranging from 78.96% to 80.51%. The kappa value 

increased significantly to 0.5767. Finally, in the vegetation 

detection model, where a grid size of 10m was used to increase 

the spatial resolution, an accuracy of 90.14% was obtained in 

the test, with a CI ranging from 89.46% to 90.80%. The kappa 

value for this model also increased to 0.8017, reaching an 

almost perfect concordance. Regarding the ROC curves, all 

three models showed an area under the curve (AUC) greater 

than 85%, as depicted in Figure 4.  

 

 
Figure 3. Risk Maps for Input Data (coordinate system 

EPSG: 25829). a) Highest Fire Risk Map b) Homogeneous 

Vertical Distribution of Biomass Map. c) High Vegetation 

Presence Map. d) Sentinel Infrared Visualization  

 

 

The importance of the predictors was assessed using Mean 

Decrease Accuracy and the Mean Decrease Gini. Figure 5 

shows the results of Mean Decrease Accuracy for the 25 most 

important predictors in each model. In the fire risk RF model, 

the first five predictors comprise mainly factors related to the 

physical environment, such as altitude, aspect, and distances 

to anthropogenic infrastructure, along with the thermal band. 

In the vertical continuity model, the top five predictors include 

exclusively satellite bands from both Sentinel-1 and Sentinel-

2, while for the vegetation identification model, the five most 

important variables are oriented towards a combination of 

bands with proxy variables from both satellite sources. 

 

4.3 Final Current Maps 

Finally, using the trained models and the year 2024 Sentinel 

multispectral image (see section 2), together with the 

corresponding Landsat and Sentinel-1 mean value images 

from the prior year, the updated risk maps were generated, as 

shown in Figure 6. These areas were then surveyed in the field. 
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Figure 4. ROC Curves. a) For Fires Risk Model. b) For 

Vertical Distribution Model. c) For High Vegetation 

Presence Model. 

 

 
Figure 5. Importance of main predictors for each model.  

 

5. Discussion 

Different risk maps were obtained from open LiDAR-PNOA 

data to train several RF models using satellite images. As a 

result, different models were acquired. These models allowed 

the identification of tiles with a higher vulnerability level, 

caused by both continuity in vegetation and high FR. This 

facilitated the update of the maps for identifying critical 

sections. Therefore, this section analyzes and discusses the 

results obtained using the methodology developed. 

 

In relation to the FR maps used as input to the models, they 

have been obtained through a methodology extensively used 

by several authors, such as Kayet et al. (2020) and Abedi 

Gheshlaghi (2019), emphasizing the weights of variables for 

our specific case study. The weights were those established by 

Novo et al. (2020b) for a place located in the same region. 

Regarding using LiDAR data as a basis for training models, 

this approach has been applied by Cartus & Santoro (2019) or 

Aragoneses et al. (2024), who from LiDAR-derived metrics, 

generated biomass maps. These maps were subsequently used 

to calibrate the models that allowed defining that variable from 

reflectance or backscattering values. In this study, this 

approach was adopted, using several LiDAR-derived metrics 

to obtain the critical tiles required to adjust the RF models. 

 

Concerning limitations in this approach, they were mainly 

characterized by two key factors. The first factor was the low 

density of point clouds provided by LiDAR-PNOA (0.5 

pts/m²), which often results in a scarcity of points. Even though 

these low densities can estimate structural attributes, as shown 

in Castaño-Díaz et al. (2017), the lack of points could hinder 

an accurate characterization of forest stands, which was 

demonstrated by Estornell et al. (2011). The second limitation 

was the temporal discontinuity of LiDAR-PNOA data, dating 

back to 2015 (the last available coverage). Although models 

have been developed to address this limitation, periodic 

updating of LiDAR is essential to detect subtle changes in the 

physical and biological environment that may not be evident 

in satellite images, as illustrated in Rada et al. (2022). 

 

It is crucial to highlight the influence and predictive capacity 

of certain satellite sensors, depending on the response 

analyzed. This relevance was determined by the weights of the 

predictors in the RF models, as depicted in Figure 5. Unlike 

Kayet et al. (2020) or Seyam et al. (2023), which relied 

exclusively on multispectral satellite images, or Santoro et al.  

(2021), which used SAR technology, this study integrated 

several satellite imaging technologies to analyze the state of 

vegetation, following the approach shown by Van Pham et al. 

(2023). Both multispectral and SAR images from Sentinel and 

Landsat missions were used to identify vulnerable tiles and, as 

a result, critical stretches on the TIs. In the RF model for the 

FR, the combination of predictors covering biotic and physical 

variables was highlighted, in line with the methodologies that 

supported the obtaining of these maps. Regarding the CRR 

model, the most relevant predictors included the combination 

of multispectral and SAR images, taking advantage of SAR’s 

canopy penetration capability. In contrast to the findings of 

Santoro et al. (2019), where the suitability of Sentinel-1 C-

band for quantifying log volume was questioned, our study 

demonstrated the suitability of that band for estimating CRR. 

Finally, in terms of predictors for tree identification, the 

combination of multispectral bands with Sentinel-1 proxies 

stood out. This agrees with Nicolau et al. (2021), who 

concluded that the use of dual polarimetric SAR indices (VV 

and VH), improve spectral separability among cover classes. 

Nevertheless, De Luca et al. (2022) found that the contribution 

of backscattering in the C-band is not as decisive as that in 

some optical bands. Consequently, this approach should be 

validated in different study areas. 

  

Therefore, training and implementation of the RF models 

using satellite images enabled the modeling of the spectral 

response of various factors that increase risk or vulnerability. 

As a result, this process significantly facilitated the update of 

the tiles and, consequently, of the critical sections, since the 

models are applicable to satellite images obtained in any given 

year. 
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Figure 6. Critical Road Sections Over Transport Infrastructure for the Current Year (coordinate system EPSG: 25829). 

 

6. Conclusions 

This study presented a methodology for identifying and 

updating road sections with the highest risk of forest fires. 

Based on the LiDAR statistics, forest fire risk maps were 

generated. Despite technical limitations, such as low density 

of points or temporal discontinuity, the generated maps 

allowed identifying vulnerable sections.  Integrating multi-

sensor satellite images with these risk maps achieved 

significant accuracies in risk detection using RF models. 

Therefore, the methodology allowed for the integration and 

fusion of multi-source datasets. This enabled the 

identification, in a cost-effective and straightforward manner, 

of sections with the highest associated risk concerning TIs and 

forest fires. These findings facilitate the delineation and update 

of critical TI areas, improving risk management. Thus, future 

research should focus on the identified road segments, with an 

emphasis on capturing denser point clouds and assessing the 

applicability of the C-band in other regions. This approach 

could provide a more accurate description of forest stands. 
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