
Streaming CityJSON datasets

Hugo Ledoux1∗, Gina Stavropoulou1, Balázs Dukai2

1 Delft University of Technology, the Netherlands—[h.ledoux, g.stavropoulou]@tudelft.nl
2 3DGI, the Netherlands—balazs.dukai@3dgi.nl

Keywords: 3D city modelling, CityJSON, streaming, massive datasets, CityGML

Abstract

We introduce CityJSON Text Sequences (CityJSONSeq in short), a format based on CityJSON and JSON Text Sequences. CityJSON-
Seq was added to the CityJSON specifications version 2.0 to allow us to stream very large 3D city models. The main idea is to
decompose a CityJSON dataset into its individual city objects (each building, each tree, etc.) and create several independent
JSON objects of a newly defined type: CityJSONFeature. We elaborate on the engineering decisions that were taken to develop
CityJSONSeq, we present the open-source software we have developed to convert to and from CityJSONSeq, and we discuss dif-
ferent aspects of the new format, eg filesize, usability, memory footprint, etc. For several use-cases, we consider CityJSONSeq to
be a better format than CityJSON because: (1) once serialised it is about 10% more compact; (2) it takes an order of magnitude less
time to process; and (3) it uses significantly less memory.

1. Introduction

CityJSON is a JSON-based encoding for storing 3D city mod-
els that implements a subset of the CityGML data model ver-
sion 3.0 (OGC, 2021b). As further described in Ledoux et al.
(2019), its development started in 2017 with the aim of offering
an easy-to-use and web-ready alternative to the XML-encoded
CityGML files (OGC, 2023b), which in practice can be rather
verbose, difficult to parse, and complex to manipulate. The first
official release of CityJSON (version 1.0) was a success:

1. its JSON-based files were on average around 7 times more
compact than their CityGML-XML equivalents without
loss of information. See Ledoux et al. (2019) and https:

//www.cityjson.org/filesize/ for details, and also
Praschl and Krauss (2023) for a comparison with standard
computer graphics formats;

2. it was adopted as an OGC Community Standard (OGC,
2021a);

3. it was adopted by the Dutch government as a 3D standard
to distribute nationwide 3D datasets;

4. several implementations and plugins have been developed,
most notably FME.

However, the version 1.0 of CityJSON had one limitation: its
structure for storing the coordinates of the geometries (see Fig-
ure 1) made the streaming of very large datasets complex, if not
impossible. As further defined in Section 3, streaming refers to
the possibility of downloading/transferring/processing a dataset
without having to load it all in memory. Given the increasing
size of datasets of 3D cities, with CityGML-XML files often
exceeding 2GB, the processing of CityJSON files has become a
practical challenge.

We present in this paper CityJSON Text Sequences (henceforth
referred to as CityJSONSeq), a format based on JSON Text
Sequences (Williams, 2015) and CityJSON, and inspired by
∗ corresponding author

{
"type": “CityJSON",
"version": “2.0”,
"metadata": {…},
"transform": {…}
"CityObjects": {
"id-1": {
"type": "Building",
"attributes": {
"owner": “Elvis Presley"

},
"geometry": [
{
"type": “MultiSurface",
"boundaries": [
[[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]]

]
}

]
},
"id-2": {
"type": "Building",
"attributes": {
"owner": “Jan Smit"

},
"geometry": [
{
"type": "MultiSurface",
"boundaries": [
[[21, 24, 32, 16]], [[14, 53, 44, 77]], [[0, 13, 95, 4]]

]
}

]
},
"id-2": {…},
…
"id-2868": {…}

},

"vertices": [
[217989,242969,2494],
[216100,242849,2494],
[217779,238630,2494],
[219649,238840,2494],
[216100,242849,0],
[217989,242969,0],
[219649,238840,0],
[217779,238630,0],
[685389,280840,2320],
[686259,278969,2320],
[691769,281539,2320],
[690909,283400,2320],
[685389,280840,0],
[690909,283400,0],
[691769,281539,0],
[686259,278969,0],
[437607,387571,14595],
[434595,374537,14595],
[441375,372995,14595],
[444399,386119,14595],
[438311,387552,14595],
[437639,387710,14595],
[437639,387710,0],
[444399,386119,0],
[441375,372995,0],
[434595,374537,0],
[437436,386830,14595],
[437436,386830,14435],
[434595,374537,14435],
[438311,387552,0],
[441375,372995,14505],
[444399,386119,14505],
[437607,387571,15200],
[437639,387710,15200],
[437639,387710,15040],
[437607,387571,15040],
[437436,386830,15200],
[437436,386830,15040],
…
]

}

CityJSON file

Figure 1. An example of a CityJSON file. The vertices are
stored in a global list, and the position of the vertices in that list

are used to represent the boundaries of the geometries
(represented by the arrows, many have been left out for clarity).

GeoJSON Text Sequences (Gillies, 2017). CityJSONSeq was
added to the CityJSON version 2.0 standard that was released
in 2023 (and also standardised by the OGC, see OGC (2023a)).
As further described in Section 4, the idea is to decompose a
(often large) CityJSON file into its individual features (eg each
Building, each Bridge, etc.) and create several JSON objects
of a newly defined type CityJSONFeature. These objects are
either serialised into a text file, or streamed from a server to cli-
ent or from one application to another. This allows us to avoid
a large list of vertices that need to be indexed, as it is the case
with CityJSON files (see Section 2 for details).

In Section 5, we describe the open-source software we have de-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-57-2024 | © Author(s) 2024. CC BY 4.0 License.

 
57



veloped to convert between CityJSON and CityJSONSeq files.
We also analyse the filesizes of CityJSON and CityJSONSeq
for several real-world datasets and synthetic datasets we built.
It can be observed that one advantage of CityJSONSeq, be-
sides that files containing several thousands of features can be
streamed, is that it compresses further the CityJSON files by
around 12%, sometimes more. We discuss in Section 5 the reas-
ons for this interesting finding.

2. Structure of a CityJSON file

As shown in Figure 1, a CityJSON object, which is a JSON
object, represents a given geographical area, and it typically
contains the following JSON properties:

1. "type": it must be "CityJSON";

2. "version": "2.0" is the current version;

3. "metadata": different metadata related to the dataset can
be stored. The most important is the definition of the co-
ordinate reference system (CRS).

4. "transform": CityJSON "vertices" are compressed
and stored as integers only. The parameters of this prop-
erty allow us to convert from those integers back to real-
world coordinates.

5. "CityObjects": a dictionary where the properties are
the identifiers of the city objects (IDs), which are
any CityGML city object (for instance a Building, a
BuildingPart, a SolitaryVegetationObject, etc.).
The city objects are listed one after the other, even if some
are "children" of others. As an example, for a Building
containing 2 parts, the 3 objects will be represented at the
same level and linked by their IDs, as shown in Figure 2.
The schema is thus flat and all hierarchies have been re-
moved. Each city object can have a "parents" and/or a
"children" property, and this is how in the snippet the
building "id-1" is linked to its 2 parts. The fact that a
dictionary is used means that developers have direct ac-
cess to the city objects through their IDs (and also in con-
stant time if a hashmap is used to implement the dictionary
while parsing the file).

6. "vertices": The 3D geometric primitives in CityJSON
are those of the CityGML data model, which means that
multi/composite solids with several parts and/or cavities
are supported. A geometric primitive does not list all the
coordinates of its vertices, instead the coordinates of the
vertices are stored in a separate array (the "vertices"

property of the CityJSON object), and the geometric prim-
itives refer to the position of a vertex in that array. This
indexing mechanism has been successfully used for many
years by the computer graphics community in formats as
Wavefront OBJ1. There are several advantages to this ap-
proach. First, the files can be compressed: 3D vertices are
often shared by several surfaces, and repeating them can be
costly, especially if they are very precise (sub-millimetre
precision is often used). Second, this approach increases
the topological relationships that are explicitly stored in
the file, and several operations (eg determining building
adjacency) can be sped up and made more robust. Third,

1 https://en.wikipedia.org/wiki/Wavefront_.obj_file

1 "CityObjects ": {

2 "id -1": {

3 "type": "Building",

4 "attributes ": {...} ,

5 "children ": ["id -2", "id -3"],

6 "geometry ": [{...}]

7 },

8 "id -2": {

9 "type": "BuildingPart",

10 "parents ": ["id -1"],

11 "geometry ": [{...}]

12 ...

13 },

14 "id -3": {

15 "type": "BuildingPart",

16 "parents ": ["id -1"],

17 "geometry ": [{...}]

18 ...

19 }

20 ...

21 "id -77": {}

22 }

Figure 2. CityJSON mechanism to flatten out the schema: the
city objects are stored in a flat list, and they are linked together

with the properties "parents" and "children".

it is very easy to convert all coordinates to a representa-
tion listing; the inverse is not true. However, this list of
vertices is the reason why the streaming of geometries is
problematic, since in practice it can contain several mil-
lions vertices. To be able to reconstruct a single Building,
all the "vertices" need to loaded in memory, which can
mean waiting for millions of unused vertices to be deseri-
alised.

7. "appearances": Both textures and materials for surfaces
are supported. The material of a surface is represen-
ted with the X3D specifications2, and for the textures the
COLLADA specifications3 are reused.

8. "geometry-templates": Geometry templates are geo-
metries defined once and reused by applying a translation,
a rotation, and/or a scaling. They are mostly used for city
objects like trees, bus stops, and lamp posts.

3. Streaming (3D) datasets

In the context of geo-information, a stream is a sequence of data
that is available over a period of time, and “can be thought of
as items on a conveyor belt being processed one at a time rather
than in large batches”4.

For GML-based formats (which are feature-centric), modify-
ing a file for the purpose of streaming is usually a simple task
that involves sending the features in the dataset one-by-one.
However, notice that this is only true for GML files that fol-
low the Simple Feature paradigm (OGC, 2006). For more com-
plex data models like CityGML, where geometry templates and
XLinks are used, streaming often requires a large amount of pre-
processing. XLinks are links between elements in a file (sim-
ilar to pointers in a computer program), a concrete example in
a CityGML file is a cube that lists the geometries of 5 of its

2 https://en.wikipedia.org/wiki/X3D
3 https://www.khronos.org/collada/
4 From https://en.wikipedia.org/wiki/Stream_(computing)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-57-2024 | © Author(s) 2024. CC BY 4.0 License.

 
58



{
"type": “CityJSON",
"version": “2.0”,
"metadata": {…},
"transform": {…}
"CityObjects": {},
"vertices": []

}

metadata + geom templates

{
"type": “CityJSONFeature",
"CityObjects": {

"id-1": {
"id": “id-1",
"type": "Building",
"attributes": {
"owner": “Elvis Presley"

},
"geometry": [
{
"type": "MultiSurface",
"boundaries": [
[[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5, 4]]

]
}

]
}

},
"vertices": [
[231, 23212, 110],
[1111, 3211, 120],
...

]
}

1st Building
{
"type": “CityJSONFeature",

"CityObjects": {
"id-1": {
"id": “id-2”,
"type": "Building",
"attributes": {
"owner": “Jan Smit”

},
"geometry": [
{
"type": "MultiSurface",
"boundaries": [
[[0, 2, 7, 11]], [[4, 15, 6, 7]], [[0, 9, 4, 14]]

]
}

]
}

},
"vertices": [
[432, 232, 231],
[987, 236, 220],
...

]
}

2nd Building

+ +

Figure 3. The CityJSONSeq of a CityJSON dataset with two buildings contains three JSON objects: one for the metadata, plus one for
each building.

surfaces, but its 6th surface is simply a link to another surface
somewhere else in the file (which belongs to another building
for instance). If the linked surface has not be seen in the stream
yet, the receiver cannot process the cube and needs to wait for
that specific 6th surface to appear (eg to calculate its volume).
It is not always possible to (re-)order a CityGML file so that
all the references can be resolved without having to store extra
information until it appears in the stream. However, it is al-
ways possible to resolve the XLinks before streaming a dataset
(that is, in our example, copy the geometry of the 6th surface to
the cube), but this means that the filesize will increase, and that
converting back to the original file will not be possible.

For the GeoJSON format (Butler et al., 2016), which follows
the Simple Feature paradigm, creating a stream is trivial since
each of the features in the dataset becomes one JSON object
serialised to one line (Gillies, 2017). There are no links possible
between features, each JSON object is independent.

For formats that use a global indexing of vertices, such as
CityJSON and most formats used for storing meshes in com-
puter graphics (eg OBJ and STL), the reorganisation of the ele-
ments in a file is more complex but nonetheless possible. Isen-
burg et al. (2003) describe algorithms and tools that interleave
the vertices and faces in a file (instead of having one large list of
vertices at the end) and add simple tags to inform that specific
vertices are not used anymore in the stream (and thus can be
freed from memory). This allows us, in theory, to process/edit/-
manipulate infinitely large meshes, since they never have to be
completely loaded in memory. The idea is exemplified by the
construction of gridded terrains that are gigabytes in size (Is-
enburg et al., 2006). However, this cannot be implemented in
CityJSON directly because all the vertices need to be listed in
the JSON property "vertices".

4. CityJSON Text Sequences

As shown in Figure 3, a CityJSONSeq decomposes a CityJSON
object into its features to create a sequence of several JSON
objects. Those JSON objects are of type CityJSONFeature,
which allows the storage of a single feature, for instance
a Building, together with its “children” objects (eg a
BuildingPart and/or a BuildingInstallation). Each fea-
ture is independent, it has its own list of vertices (which is thus
local to the JSON object, and is usually rather small, see next

1 {

2 "type": "CityJSONFeature",

3 "id": "id -1",

4 "CityObjects ": {

5 "id -1": {

6 "type": "Building",

7 "attributes ": {

8 "roofType ": "gabled roof"

9 },

10 "children ": [" mybalcony "],

11 "geometry ": [...]

12 },

13 "mybalcony ": {

14 "type": "BuildingInstallation",

15 "parents ": ["id -1"],

16 "geometry ": [...]

17 }

18 },

19 "appearance ": {...}

20 "vertices ": [...]

21 }

Figure 4. An example of a CityJSONFeature for a Building
with a balcony referenced in its "children" property.

section for details) and its own textures and materials (if any).
The allowed properties are shown in Figure 4; notice that the
"id" property is used to clearly identity the “parent” of the fea-
ture, in case there are children.

CityJSONSeq follows the specifications of ndjson (newline
delimited JSON)5 and two constraints are added for handling
CityJSON:

1. each JSON Object must conform to the JSON Data Inter-
change Format specifications (Bray, 2017) and be written
as a UTF-8 string;

2. each JSON Object must be followed by a new-line (LF:
"\n") character, and it may be preceded by a carriage-
return (CR: "\r");

3. a JSON Object must not contain the new-line or carriage-
return characters;

4. the first JSON Object must be of type CityJSON;

5 https://github.com/ndjson/ndjson-spec/

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-57-2024 | © Author(s) 2024. CC BY 4.0 License.

 
59



5. the following JSON Objects must be of type
CityJSONFeature.

Note that a CityJSONFeature object does not contain all
the information that is required for reconstructing the feature.
Most commonly, the "transform" property, the CRS, and the
"geometry-templates" must be known in order to correctly
reconstruct and georeference the city objects. The rule #4 en-
sures that those are available. The CityJSON object must con-
tain a "transform" property and eventually the other prop-
erties if needed; "CityObjects" and "vertices" must be
present but they must be empty (to ensure that the JSON ob-
ject is valid).

The CityJSONSeq for Figure 3 is shown in Figure 5.

5. Experiments with real-world datasets

To convert between CityJSON and CityJSONSeq files (and
vice-versa), we have developed the open-source software
cjseq, which is available at https://github.com/cityjson/
cjseq/ under a permissive open-source license. The
command-line program handles the conversion not only of the
geometries, but also of the materials, the textures, and the geo-
metry templates that the dataset could contain. It includes three
sub-commands:

1. cat: CityJSON → CityJSONSeq;

2. collect: CityJSONSeq → CityJSON;

3. filter: to filter city objects in a CityJSONSeq, randomly
or based on a bounding box.

It should be observed that the conversion is an efficient pro-
cess: the rather large dataset Helskinki from Table 1, which
contains more than 77 000 buildings and whose CityJSON file
is 572MB, takes only 4.7 sec to be converted to a CityJSON-
Seq file, and the reverse operation takes 5.7 sec (on a standard
laptop).

5.1 Filesize comparison

We have converted with cjseq several publicly available files,
and Table 1 shows an overview of the files stored both in
CityJSON and CityJSONSeq. The files are available in the re-
producibility repository of the paper6.

First observe that—contrary to intuition—the filesize of a data-
set serialised as a CityJSONSeq file is around 12% compacter
than serialised as a CityJSON file, and in the case of Helsinki
it is 28%. An even larger compression factor is noted in most
datasets whose texture, materials, semantics and attributes have
been removed. The main reason for this is that the indices of the
vertices are low integers for each feature (because the lowest in-
dex in each feature is always “0” and is incremented by 1 until
the total number of vertices), and they do not increase to very
large integers in contrast to the vertices in CityJSON. For in-
stance, the dataset Helsinki contains a total of more than 3 mil-
lions vertices, but its largest feature contains only but 2202 ver-
tices. The fact that many indices are used for representing the
geometries (and the textures) means that if several large num-
bers are used then the filesize will grow; if the maximum vertex

6 https://github.com/cityjson/paper_cjseq

index is around 2000 for each feature then the filesize will be
reduced.

Only one dataset sees its filesize slightly increase, by 4%, when
serialised to a CityJSONSeq file: Rotterdam. The reasons for
the increase (or decrease) are many, and we discuss in the fol-
lowing the 3 most relevant: (1) the total number of vertices; (2)
the number of shared vertices; (3) the presence of textures.

Number of vertices. If a dataset has few vertices, as it is the
case with Rotterdam, then the indices will not be large integers
and this might not be favourable for the compression. As an
experiment, we have created around 100 synthetic CityJSON
datasets containing buildings, and each building is represented
as a simple cube, which is randomly generated. There are no
attributes, no semantics, and no textures/materials. Figure 6a
shows that, as the CityJSON filesize increases, the compres-
sion factor increases. The smallest file contains only 526 build-
ings and its compression factor is -2% (thus CityJSONSeq has
a larger filesize than that of CityJSON), while the largest file
has 3 960 105 buildings, and a compression factor of more than
12%.

Shared vertices. The number of shared vertices between
different city objects also influences the compression factor.
Shared vertices are those used to represent walls incident to two
adjacent buildings. In CityJSON they are conceptually the same
vertices and each of the surfaces refer to them, but in CityJSON-
Seq they have to be listed separately in each of the buildings.
It should be said that most of the datasets have very few ver-
tices that are shared (most have less than 2%, except 2 datasets
have around 20%, Rotterdam being one of them). To under-
stand the correlation between the compression factor and the
percentage of shared vertices in a datasets, we have modified
the script to generate random cuboid buildings: the distribution
of the buildings is not random, we have enforced that several
buildings are adjacent to others (so that they share vertices with
other buildings). The relationship between the compression and
the percentage of shared vertices can be seen in Figure 6b for
around 100 datasets containing exactly 1 000 000 buildings. If
the number of shared vertices is 0% this means that we have
1 000 000 buildings that are disconnected; in this case we ob-
tain a compression factor of around 8% (as was the case in Fig-
ure 6a). If all the buildings are adjacent to another one (thus
nearly 100% of the vertices are shared), then we can see that the
compression factor is about -10% (which means that the size of
the CityJSONSeq file is larger than that of the CityJSON file).

Textures. It should also be noticed that the attributes attached
to city objects, as well as the semantics attached to surfaces,
have no influence on the compression factor since they are local
to each city object. However, we can state that textures have
an influence on the compression factor. See for instance the
dataset Helsinki and its counterpart Helsinki tex (which is the
same the same geometries and attributes, only the textures were
removed). The dataset with textures has a compression of 10%
while the one without 28%. This is explained by the fact that
the "textures" property must be used for each feature, while
in a CityJSON object they are all stored at only one location.
Since textures can be used by several features (all the bricks of
a building could use the same one), this means that often the
same properties for textures are copied to several features.

5.2 Processing speed comparison

We compare the speed and memory footprint of accessing each
city object in a dataset. This operation is common in applica-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-57-2024 | © Author(s) 2024. CC BY 4.0 License.

 
60



1 {"type ":" CityJSON","version ":"2.0" ," transform ": {" scale ":[1.0 ,1.0 ,1.0] ," translate ":[0.0 ,

0.0, 0.0]} ," metadata ":{" referenceSystem ":" https ://www.opengis.net/def/crs/EPSG /0/7415"} ,"

CityObjects ":{}," vertices ":[]}

2 {"type ":" CityJSONFeature ","id":"id -1"," CityObjects ":{...} ," vertices ":[...]}

3 {"type ":" CityJSONFeature ","id":"id -2"," CityObjects ":{...} ," vertices ":[...]}

4

Figure 5. An example of a CityJSONSeq stream containing 3 features.

Table 1. The datasets used for the benchmark.

dataset size of file vertices

CityObjects app.(a) CityJSON CityJSONSeq compr.(b) total largest(c) shared(d)

3DBAG 1110 bldgs 6.7MB 5.9MB 12% 82 509 4112 0.1%
3DBV 71 634misc 378MB 317MB 16% 4 110 319 116 670 21.0%
Helsinki 77 231 bldgs 572MB 412MB 28% 3 038 576 2202 0.0%
Helsinki tex 77 231 bldgs tex 713MB 644MB 10% 3 038 576 2202 0.0%
Ingolstadt 55 bldgs 4.8MB 3.8MB 25% 87 972 12 800 0.0%
Montréal 294 bldgs tex 5.4MB 4.6MB 15% 31 585 3393 2.0%
NYC 23 777 bldgs 105MB 95MB 10% 1 035 804 2608 0.8%
Railway 50misc tex+mat 4.3MB 4.0MB 8% 73 554 14 966 0.4%
Rotterdam 853 bldgs tex 2.6MB 2.7MB -4% 22 246 631 20.0%
Vienna 307 bldgs 5.4MB 4.8MB 11% 47 220 2025 0.0%
Zürich 52 834 bldgs 279MB 247MB 11% 3 472 989 4069 2.6%
(a) appearance: ‘tex’ is textures stored; ‘mat’ is material stored
(b) compression factor is size(CityJSON)−size(CityJSONSeq)

size(CityJSON)
(c) number of vertices in the largest feature of the stream
(d) percentage of vertices that are used to represent different city objects

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of buildings 1e6

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

co
m

pr
es

sio
n 

fa
ct

or

(a)

0.0 0.2 0.4 0.6 0.8 1.0
% shared vertices

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

co
m

pr
es

sio
n 

fa
ct

or

(b)

Figure 6. Compression factor of CityJSONSeq files for different synthetic datasets. (a) Based on the number of buildings; the
buildings are stored as simple cuboids that are randomly generated. (b) Based on the percentage of shared vertices; the same cuboid

buildings are used, but we position them adjacent to each others to create shared vertices.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-57-2024 | © Author(s) 2024. CC BY 4.0 License.

 
61



Table 2. Comparison of the processing time and maximum RAM usage for processing CityJSON and CityJSONSeq files. The resident
set size (RSS) is used, which is the portion of main memory occupied by the Python script.

RAM used (MB) time (s)

CityJSON CityJSONSeq CityJSON CityJSONSeq diff

3DBAG 76.9 16.1 0.10 0.07 1.4X
3DBV 4101.8 123.8 10.95 3.59 3.1X
Helsinki 3743.1 15.0 13.39 2.74 4.9X
Helsinki tex 5004.8 19.1 29.60 4.72 6.3X
Ingolstadt 65.5 21.3 0.08 0.06 1.3X
Montréal 79.3 20.8 0.11 0.07 1.6X
NYC 949.5 16.0 1.78 0.70 2.5X
Railway 69.6 29.6 0.09 0.07 1.3X
Rotterdam 42.4 14.6 0.04 0.04 1.0X
Vienna 60.1 15.7 0.06 0.05 1.2X
Zurich 2793.1 16.3 6.05 2.00 3.0X

tions that manipulate 3D city models.

When a city model is stored in its entirety in one CityJSON
object, we need to deserialise the whole CityJSON object into
memory in order to access the "transform" and "vertices"

properties for instance.

With a CityJSONSeq file, we can read the file line by line, pro-
cessing and discarding the city objects one by one (and thus
never have in memory more than the city object itself and the
first JSON object in the stream). As shown in the experiments
below, this allows for very efficient operations in terms of both
CPU and memory usage.

We have processed all the datasets from Table 1 with two simple
Python scripts that iterate through the city objects and their geo-
metries, and increment a global counter for the geometry type
(Solid or MultiSurface) and report it at the end. This is
just an example of a simple local operation, any other opera-
tion such as calculating the area of the façades or counting the
number of windows could have been performed. The results
for both the maximum memory footprint and the time used are
shown in Table 2. The scripts are available in the reproducibil-
ity repository of the paper7.

Notice that the dataset 3DBV contains not only buildings but
also the terrain, and a few large areas are stored as a triangu-
lation containing a very large amount of vertices; this is the
reason why the maximum memory use is larger than for other
datasets.

The results in Table 2 indicate that there is a significant benefit
to using CityJSONSeq over CityJSON, at least for operations
that do not require analysing or processing city objects that are
close to each other. Operations like calculating volumes, mer-
ging and subsetting files, finding city objects with specific at-
tributes, etc. will all use significantly less memory and will be
significantly faster. Operations like modifying the CRS or up-
dating the metadata would not even require to loop through the
features, just to alter the first object in the file. Operations like
calculating the surface of shared walls (Agugiaro et al., 2022)
are however not suitable for streams.

6. Discussion and future work

While CityJSONSeq was developed mostly for streaming large
3D city datasets, the fact that it has a much lower memory foot-
7 https://github.com/cityjson/paper_cjseq

print and that it takes an order of magnitude less time to process
(for some local operations) makes it an attractive alternative to
CityJSON for several use-cases.

It should be noticed that the CityJSON specification does not
prescribe the storage of CityJSONSeq, only the structure of a
CityJSONSeq stream. In practice, CityJSONSeq can be stored
in a variety of ways, for instance in a single file, each feature in a
separate file, in a database, etc. The optimal storage solution de-
pends on the implementing application. As a concrete example,
CityJSONSeq is used by cjdb (Powałka et al., 2024), an import-
er/exporter tool that stores one feature per row in PostgresSQL.
Additionally, in order to facilitate pagination, CityJSONSeq is
the return format of the 3DBAG API8, which contains all 10
million buildings in the Netherlands with detailed roofs (Peters
et al., 2022).

From the point-of-view of practitioners, we should stress that
CityJSONSeq can easily be processed with Unix pipes (also
called pipelines). Pipelines allow us to chain several processes
together, the output of a process becomes the input of the next
one, and so on. Given 2 processes, the 2nd one can usually start
before the 1st one has finished processing all the data. This
means that, in practice, the processing of a dataset can be per-
formed by writing several programs that perform a few small
tasks; this makes the development and maintenance of code
simpler. Moreover, it allows us to write the code in different
languages. The pipelines used for preparing the datasets used
in this paper were actually a mix of Python (the program cjio
and cjdb) and Rust (cjseq and cjval), and another program writ-
ten in C++ could easy be added.

Finally, because the structure of CityJSONSeq is nearly the
same as that of CityJSON, in practice adding support for
CityJSONSeq requires a minimum amount of effort since most
of the code to parse and/or generate CityJSON objects can be
reused. We have already added support for CityJSONSeq in a
few of the open-source tools9 and we will continue in the future.

8 https://api.3dbag.nl/
9 https://www.cityjson.org/software/

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-57-2024 | © Author(s) 2024. CC BY 4.0 License.

 
62



References

Agugiaro, G., Zwamborn, A., Tigchelaar, C., Matthijssen, E.,
León-Sánchez, C., van der Molen, F., Stoter, J., 2022. On the
influence of party walls for urban energy modelling. The Inter-
national Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XLVIII-4/W5-2022, 9–16.

Bray, T., 2017. The javascript object notation (JSON) data in-
terchange format. Technical Report RFC 8259, Standard from
Internet Engineering Task Force (IETF).

Butler, H., Daly, M., Doyle, A., Gillies, S., Schaub, T., Hagen,
S., 2016. The GeoJSON Format. Technical Report RFC 7946,
Standard from Internet Engineering Task Force (IETF).

Gillies, S., 2017. GeoJSON Text Sequences. Technical Re-
port RFC 8142, Standard from Internet Engineering Task Force
(IETF).

Isenburg, M., Lindstrom, P., Gumhold, S., Snoeyink, J., 2003.
Large mesh simplification using processing sequences. IEEE
Visualization, 2003. VIS 2003., 465–472.

Isenburg, M., Liu, Y., Shewchuk, J. R., Snoeyink, J., Thirion,
T., 2006. Generating raster DEM from mass points via TIN
streaming. Geographic Information Science—GIScience 2006,
Lecture Notes in Computer Science, 4197, Münster, Germany,
186–198.

Ledoux, H., Ohori, K. A., Kumar, K., Dukai, B., Labetski, A.,
Vitalis, S., 2019. CityJSON: a compact and easy-to-use encod-
ing of the CityGML data model. Open Geospatial Data, Soft-
ware and Standards, 4(4).

OGC, 2006. OpenGIS implementation specification for geo-
graphic information—simple feature access. Open Geospatial
Consortium inc. Document 06-103r3.

OGC, 2021a. CityJSON Community Standard 1.0. Open Geo-
spatial Consortium inc. Document 20-072r2, version 1.0.

OGC, 2021b. OGC City Geography Markup Language
(CityGML) Part 1: Conceptual Model Standard. Open Geospa-
tial Consortium inc. Document 20-010, version 3.0.0, available
at https://docs.ogc.org/is/20-010/20-010.html.

OGC, 2023a. CityJSON Community Standard 2.0. Open Geo-
spatial Consortium inc. Document 20-072r5, version 2.0.

OGC, 2023b. OGC City Geography Markup Language
(CityGML) Part 2: GML Encoding Standard. Open Geospatial
Consortium inc. Document 21-006r2, version 3.0.

Peters, R., Dukai, B., Vitalis, S., van Liempt, J., Stoter, J., 2022.
Automated 3D reconstruction of LoD2 and LoD1 models for
all 10 million buildings of the Netherlands. Photogrammetric
Engineering and Remote Sensing, 88(3).

Powałka, L., Poon, C., Xia, Y., Meines, S., Yan, L., Cai,
Y., Stavropoulou, G., Dukai, B., Ledoux, H., 2024. T. Kolbe,
A. Donaubauer, C. Beil (eds), Recent Advances in 3D Geoin-
formation Science (Proceedings of the 18th 3D GeoInfo Con-
ference), Springer, 781–796.

Praschl, C., Krauss, O., 2023. Extending 3D geometric file
formats for geospatial applications. Applied Geomatics, 16(1),
161–180.

Williams, N., 2015. JavaScript Object Notation (JSON) Text
Sequences. Technical Report RFC 7464, Standard from Internet
Engineering Task Force (IETF).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-57-2024 | © Author(s) 2024. CC BY 4.0 License.

 
63




