
Automatic 3D Model Registration for Global Localization based on Publicly Available 
Georeferenced CityGML Data 

 
 

Zhenyu Liu*, Christoph Blut, Jörg Blankenbach 
 

Geodetic Institute and Chair for Computing in Civil Engineering & GIS, RWTH Aachen University, Germany - (zhenyu.liu, 
christoph.blut, blankenbach)@gia.rwth-aachen.de 

 
 
 
 

Keywords: Localization, Registration, CityGML, Point Cloud, Feature Matching. 
 
 
Abstract 
 
Nowadays, there are many publicly available georeferenced data, like 3D CityGML models, that can be used as prior knowledge to 
perform accurate global localization. Iterative Closest Point (ICP) is a promising method for achieving this task, but it requires two 
point clouds that need to be partially overlapping in the initial state for better registration performance. Therefore, we investigated 
different detection and matching methods to automatically pre-register two non-overlapping point clouds based on a 2D overhead 
view and evaluated the registration results produced by an ICP algorithm. We used public data from the city of Aachen, Germany. A 
georeferenced point cloud was derived from the LOD2 CityGML model and a local point cloud was reconstructed from an image 
sequence using Structure from Motion (SFM). The evaluation results show that georeferenced LOD2 CityGML models can 
successfully be used for city-scale sub-meter global localization. 
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1. Introduction 

Extreme weather is more common today as a result of climate 
change. Among the myriad consequences, urban flooding due to 
heavy rainfall is increasingly frequent and poses a significant 
risk to the safety of cities, especially those situated near rivers 
or other water bodies. The safety of residents and the normal 
functioning of cities are seriously threatened. Therefore, the 
development and improvement of response techniques to urban 
flooding has become a high priority at all levels of governance 
(Bosseler et al., 2021).  
 
The rapidly developing mixed reality (MR) technology is 
favored by many disaster management projects due to its 
advantages in spatial visualization, environmental interactivity, 
immersive experience, and ability of team collaboration (Helzel 
et al., 2021). The active project “TeleTHW” aims at connecting 
frontline emergency responders and the disaster command 
center with MR devices to react to the urban flooding problem. 
Flood control experts from the command center will be able to 
access real-time information about the flooded area through the 
MR device, integrate it with the city emergency response 
system to get the best solution, and then guide emergency 
responders without professional backgrounds to execute the 
solution through the interactive and collaborative MR 
environment. For example, the disaster command center will be 
able to view the inundation extent as well as the destruction of 
houses and trees based on real-time environmental information 
of the flooded area captured by the MR devices, and then can 
design a construction plan for temporary flood control facilities 
such as sandbags or walls. The command center can then 
intuitively deploy the plan to the frontline emergency 
responders via MR, and guide them in construction. Frontline 
responders will also be able to see the construction progress in 
the MR environment or be able to report real-time disaster 
information to help the command center revise plans. 
 

One of the key challenges in realizing the TeleTHW project and 
the MR environment global location-based localization and 
pose (position and orientation) tracking system. MR devices 
typically operate in their own local coordinate system, in which 
digital information is placed relative to the user. For TeleTHW, 
a global reference system is mandatory, so that the helpers on-
site and the digital objects, such as sandbags or flood protection 
walls, can be coordinated correctly by the command center. 
While the pose of the digital objects is already provided by 
plans, the pose of the MR device needs to be determined every 
time on startup via a global localization. For outdoor spaces, a 
commonly used method for global localization is a combination 
of global navigation satellite systems (GNSS) and inertial 
measurement units (IMU) (Zangenehnejad & Gao, 2021). 
However, for MR GNSS are often not accurate enough and in 
many cases MR devices do not support GNSS. Due to the 
increasing quality of mobile cameras, as for example in 
smartphones, visual camera-based methods are a promising and 
recently much investigated method for (global) localization. 
One way to achieve visual localization with a simple camera is 
to capture the surrounding environment with it, create a 3D 
model from the images with structure from motion (SFM) 
(Ullman & Brenner, 1997) and register this local 3D model to a 
georeferenced 3D model with an iterative closest point (ICP) 
algorithm (Chetverikov et al., 2002). Nowadays, there are many 
openly accessible city models with global spatial references, 
such as CityGML models (Gröger & Plümer, 2012), that can be 
used as prior knowledge (reference model), but to apply an ICP 
algorithm, the two point clouds need to be roughly aligned 
already to avoid local optima. 
 
In this paper, we evaluate the feasibility of planer feature 
matching algorithms with overhead views of local reconstructed 
point clouds as well as georeferenced CityGML city models for 
use as initial input for an ICP-based fine registration to obtain a 
global georeferenced pose. 
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2. Related work 

2.1 3D model-based global localization  

3D model-based map matching is one of the main approaches to 
achieve global localization of mobile devices in urban 
environments. A typical representative is the 3D point cloud 
model generated by laser scanners utilizing Light Detection and 
Ranging (LiDAR) technique, depth sensor, or multiple view 
geometry (e.g., SFM), which is widely used in 3D map 
matching using methods such as normal distribution transform 
(NDT) (Kan et al., 2021) as well as many Simultaneous 
Localization and Mapping (SLAM) based applications (Yin et 
al., 2020; Xu et al., 2022). Point cloud models perform spatial 
reconstruction with high accuracy and rich details, but their 
representation of space is discrete and requires a large amount 
of storage space as well as computational cost, especially in 
city-scale environments. 
 
To address these drawbacks of point cloud models, Javanmardi 
et al. (2019) extracted 3D vector models from the original point 
cloud as a prior base map for localization to reduce the data 
size. Bureick et al. (2019) and Lucks et al. (2021) used more 
standardized 3D city models, such as CityGML, as prior base 
maps for global localization, which increased the 
generalizability of their localization methods. However, the 
above methods using 3D city models were mainly concerned 
with the correction of low-accuracy GNSS trajectories and the 
solution to the urban canyon problem. It means that they still 
relied on the initial global location provided by the GNSS data 
in order to solve the rough registration between the mobile 
device and the prior 3D model. Therefore, these methods cannot 
be directly applied to MR devices that do not support GNSS 
(Blut et al., 2019; Blut & Blankenbach, 2021). 
 
Several recent studies also used 3D building models to achieve 
localization with purely vision-based methods. Kadosh et al. 
(2021) trained a convolutional neural network (CNN) model 
with textureless projection images of a 3D city model to 
estimate the camera pose. Such approaches need to address the 
cross-domain gap problem between model-rendered images and 
real camera images (Chen et al., 2022). Panek et al. (2023) 
evaluated the localization capabilities of imperfect 3D building 
models from the Internet, such as 3D game model resources. 
Though, they only focused on single buildings and did not 
expand further into larger scale areas.  
 
Overall, there is still a large potential for exploration of 3D 
model-based global localization methods without GNSS 
assistance. Georeferenced CityGML models contain all the 
information necessary for global large-scale localization and, 
thus, can be used as a prior base data. CityGML is a more 
compact implementation of spatial representations than point 
clouds and high-resolution remote sensing images. As a 
standardized 3D city model, CityGML enables easier design of 
localization methods with stronger generalization capabilities 
than other 3D models. A possible solution for getting global 
spatial reference from CityGML to local environment is first 
sampling a point cloud from the prior CityGML model and one 
from the local environment. The registration of these two point 
clouds can be mostly done with methods such as ICP or recent 
deep learning-based methods (Aoki et al., 2019; Lu et al., 
2019). However, there is an important prerequisite to achieve 
good performance using the above-mentioned fine registration 
methods, which is a good initialization, i.e., the rough alignment 

between the two point clouds, otherwise the registration is 
prone to be trapped in a local optima. 
 
2.2 Feature-based image matching  

Image matching aims to geometrically distort a target image 
into the common spatial reference of a source image and align 
their common parts on pixel-level, i.e., image registration (Jiang 
et al., 2021). Feature-based image registration is widely used in 
such tasks due to its robustness as well as generalizability. 
Features are specific semantic structures of an image, like 
corners, blobs, lines, edges, and morphological regions (Zitová 
& Flusser, 2003). Learnable features have received more and 
more attention, including classical learning-based detectors like 
FAST detector (Trajković & Hedley, 1998) and recent deep 
learning-based detectors (Joshi & Patel, 2020).  
 
Traditional image feature matching can be divided into two 
types: The first one is direct matching, which directly 
establishes a mapping between two feature sets through spatial 
geometric relationships, including graph matching and point set 
registration. In comparison, indirect matching first establishes 
an initial matching relationship through the similarity of feature 
points or feature descriptors and distance judging from the 
measuring space, and then removes false matches using 
local/global geometric constraints (Ma et al., 2021). Data-driven 
learning-based approaches also impact the feature matching 
task, which usually use CNNs for information extraction, 
similarity measurement and geometric relationship estimation 
tasks (Kuppala et al., 2020). 
 

3. Methodology 

This section presents our approach to roughly register local 
environment point clouds to CityGML city models using 
overhead view feature point matching. Since point clouds are 
discrete representations of space, it is challenging to directly 
register a local point cloud or vector 3D model to a 
georeferenced point cloud for global localization through 3D 
feature extraction and matching. In contrast, research related to 
feature extraction and matching of images is more mature. 
Therefore, the CityGML model is first sampled as a point cloud 
and then projected as a 2D overhead view image together with 
the local point cloud. An image-based feature point detection 
and matching method is used to obtain the transform matrix of 
the two overhead view images, finally achieving the alignment 
of the local point cloud with the CityGML point cloud in the 
horizontal (xy-) plane. The result of our proposed method can 
provide the initial information for fine registration methods like 
ICP. The whole workflow is demonstrated in Figure 1. 
 
3.1 Project 3D models to overhead raster images 

For both the prior and local models, we focus only on their 
façades. There are two main reasons: The first one is that, for 
the low Level of Detail (LOD) CityGML model, the structure 
and shape of its façade is closer to the real situation compared to 
other components such as the roof. The second reason is that it 
is difficult for most handheld and head-mounted mobile device 
cameras to completely capture the roofs of buildings and 
reconstruct them in the point cloud. 
 
For the prior city model, all its façade components are first 
extracted and sampled as a point cloud P1. Next, the z-
dimension of all points in P1 is removed to project P1 into a 2D 
point cloud. The minimum bounding rectangle (MBR) of this 
2D point cloud is split into a 2D grid I1 with a resolution of 
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0.5m, which is the overhead view of the point cloud P1. Grid 
cells of I1 that contain 2D points are considered occupied and 
painted white, and vice versa in black. However, the current 
binary image I1 includes not only the projections of outer 
façades (outer edges) but also the projections of some inner 
façades (inner edges), such as partition walls between two 
neighboring houses. The inner edges need to be removed as 
they are not observable from the local model. The flood fill 
algorithm finds the connected region for a given seed point. It is 
used to extract the largest parcel in the image, i.e., the ground, 
whose contour is the expected outer edges of all buildings. 
 

 
Figure 1. Workflow. 

 
For local 3D models P2, first noise reduction is performed, then 
planes are detected using the region growing algorithm, which 

can automatically segment a point cloud into several planes 
based on features like normal vector and curvature. Next, all 
planes with normal vectors parallel to the horizontal plane are 
extracted and labelled as façades. Finally, these façades are also 
projected as a 2D overhead raster image I2. 
 
 
3.2 Overhead view feature matching 

Many state-of-the-art image feature detection and matching 
methods are now available to handle abstract images such as 
paintings (further introduced in Section 4.2). They are used to 
match feature points detected in the two overhead view images 
I1 and I2. The 2D affine transformation matrix T from the image 
I2 to the image I1 can be solved from the obtained feature point 
pairs using the Random Sample Consensus (RANSAC) 
optimized least squares. As shown in Eq.1, the 2D 
transformation matrix T can be represented as a 3×3 square 
matrix. a-d denote, in order, the scaling factor in the x-direction, 
the shear factor in the x-direction, the shear factor in the y-
direction, and the scaling factor in the y-direction. tx and ty 
denote the translations along the x-direction and y-direction, 
respectively. The plane scaling factor sxy is defined as the 
average of the x- and y-direction scaling factors. 
 

  (1) 

 
3.3 Global registration for 3D models 

Each point p1i of the point cloud P1 can be transformed to a new 
position p3i by matrix T. Assuming that the scaling factor in the 
z-direction is the same as in the xy-plane, thus sxy is applied to 
the z-value of p3i (Eq.2). The point cloud P3 formed by all 
transformed p3i is the initial registration result, which can 
provide the initial information for fine registration using ICP. 
 

  (2) 

 
4. Evaluation 

4.1 Data preparation 

From the CityGML repository of the OpenGeodata.NRW 
database (IT.NRW, 2017), we extracted data for the city center 
of Aachen, Germany and set it as the prior city model. 
OpenGeodata.NRW provides CityGML models in two LODs, 
LOD1 and LOD2, which differ in the roof parts. However, even 
roofs in LOD2 model are quite different from the real roofs. 
Considering that our evaluation method does not rely on any 
other components of buildings other than the outer façade, we 
only used the LOD2 model during the evaluation phase, while 
our evaluation conclusions are also applicable to the LOD1 
CityGML product of OpenGeodata.NRW. 
 
The Aachen Day-Night dataset (Sattler et al., 2018), which 
includes 14,607 images of Aachen city center taken by mobile 
devices, was used to reconstruct a local 3D model using SFM 
via COLMAP (Schönberger et al., 2016; Schonberger & Frahm, 
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2016). Next, we manually registered the local 3D model to the 
prior city model to obtain the ground truth data. The façade 
point clouds were extracted and projected as overhead views 
with a pixel resolution of 0.5m. 
 
4.2 Feature detection and matching methods 

Four different methods were used to detect and match the 
feature points between the overhead view images of the prior 
city model and the local 3D model during the evaluation phase. 
The first one uses SuperGlue to match features extracted with 
SuperPoint and then filters outliners with a learned matching 
strategy (DeTone et al., 2018; Sarlin et al., 2020). ASLFeat uses 
a combination of deformable convolutional networks, the 
inherent feature hierarchy, and a peakiness measurement to 
improve the shape-awareness of feature points as well as the 
localization accuracy of keypoints (Luo et al., 2020). Patch2Pix 
first obtains patch-level matching proposal and then refines 
them to pixel-level matching results (Zhou et al., 2021). ncnet 
uses a twin structure of convolutions to obtain initial 
correspondences between images, and then optimizes the 
matching results by the neighborhood consensus scoring (Rocco 
et al., 2018).  
 
The rotational invariance of some methods, such as SuperPoint 
+ SuperGlue, is only maintained between approximately 0-45°. 
For extending the rotational invariance of these methods to 
360°, i.e., making it possible for the overhead view image of the 
local model (I2) to match the overhead view image I1 of the 
prior model in any initial orientation, I2 is rotated clockwise 
seven (7) times in steps of 45°. Seven rotated images and one 
original image are matched with I1 respectively, and the one 
with the most pairs of matching feature points is marked as the 
best-matched image. Its feature points are rotated 
counterclockwise in the opposite direction back to its original 
orientation, and then solved with the feature points of I1 to 
derive the transformation matrix T. The whole process is shown 
in Figure 2. 
 

 
Figure 2. Extend rotational invariance. 

 

4.3 Software requirements 

The point cloud preprocessing, overhead view projection, 
transformation matrix solving, initial point cloud registration, 
and error calculation were implemented in a C++ environment 
with the OpenCV (Bradski, 2000) and Eigen (Eigen 
Development Team, 2021) libraries. The software 
CloudCompare (Cloudcompare Development Team, 2024) 
provided point cloud visualization, point sampling for the 
CityGML model, ground truth data alignment, and final point 
cloud (fine) registration (ICP). 
 
4.4 Evaluation method 

 

Figure 3. Feature point matching results. 
 
In the first step, the four methods mentioned in Section 4.2 were 
used to detect and match feature points. The results are shown 
in Figure 3 and Table 1. After obtaining the transformation 
matrix T from the matched feature point pairs, the initial 
registration of the local 3D model was performed. Then the 2D 
error in the xy-plane between the initial registration result and 
the ground truth was calculated (Δ2D). The initial registration 
result was moved along the z-axis to place its center at the same 
height as the center of the prior model point cloud. This step 
achieved the rough overlapping between the prior and local 
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models. Next, the moved initial registration result and the prior 
city model were fine registered using ICP with 50,000 
iterations, was tested to ensure full convergence of final 
registration accuracy in our case. Since the scaling operation 
had already been performed in the initial registration, only the 
translation and rotation were performed in the ICP. The 3D 
error of the finial registration result was marked Δ3D. The 
examples of the final registration results are illustrated in Figure 
4. Neither affine transformation nor ICP changed the order in 
which the points are stored in the point cloud. Thus, Δ2D and 
Δ3D can be calculated by Eq. 3, where p3i, p4i, and pgti are the i-th 
point (i ∈ [1, n]) in initial registration result, final registration 
result, and ground truth data, respectively. The accuracy is listed 
in Table 1. 
 

  (3) 

 

Method Matched Point 
Pairs 

Δ2D 
(m) 

Δ3D 
(m) 

SuperPoint + 
SuperGlue 339 0.578 0.706 

ASLFeat 73 1.805 1.486 
Patch2Pix 65 1.255 1.266 
ncnet 38 2.811 2.186 

Table 1. Evaluation results. 

 

 
Figure 4. Partial illustration of the final registration results (blue 
points) and ground truth data (yellow points) using SuperPoint 

+ SuperGlue (a), ASLFeat (b), Patch2Pix (c) and ncnet (d). 

 
5. Discussion 

All four evaluated methods could successfully detect and match 
the required amount of feature point pairs from the overhead 
view images of the prior model and the local model, for solving 
the transformation matrix for initial registration. ncnet matched 
only 38 pairs of feature points and still achieved a 2D planar 
accuracy Δ2D of 2.811 m in the end. As the number of matched 
feature points increases, the 2D registration accuracy improves. 
SuperPoint + SuperGlue matched a total of 339 pairs of feature 
points and obtained a 2D registration accuracy of 0.578 m, 
which is very close to the pixel resolution (0.5 m) of the 
overhead view image during the evaluation. In addition, with 
our improvements shown in Figure 2, these methods 
demonstrate good rotational invariance, which significantly 
reduces the effect of the initial orientation of the overhead view 

images on the matching results (Figure 5). Methods that have 
more accurate initial registration results also perform better with 
the ICP algorithm. Among the four evaluated methods, 
SuperPoint + SuperGlue performed the best, with a 3D accuracy 
Δ3D of 0.706 m. While ncnet is relatively underperforming, 
resulting in a 3D accuracy Δ3D of 2.186 m. 
 
Overall, evaluation results show that the overhead view features 
of the LOD2 CityGML model can provide sub-meter 
registration capabilities for local 3D models with unknown 
spatial references in city-scale, which can also be a good initial 
relative pose for other accurate registration methods. 
 

 
Figure 5. Feature point matching results with different initial 

image orientations using SuperPoint + SuperGlue (for 
illustration purpose, the number of matching point pairs is 

limited to better view the matching lines). 

 
6. Conclusions 

TeleTHW is an active research project aimed at using MR 
devices to connect frontline emergency responders with the 
disaster command center in response to increasingly frequent 
urban flooding. One of the key tasks is to achieve global 
localization of MR devices. A promising solution is to register 
the local environment information captured by the MR device to 
a georeferenced prior 3D CityGML model to obtain a global 
localization. Therefore, in this paper, we evaluated the 2D 
registration capabilities between local reconstructed point 
clouds and prior LOD2 CityGML format city models using 
feature point matching of overhead view projection images. The 
results show that current state-of-the-art image feature point 
detection and matching methods are proved to be successfully 
applied to overhead images. With our improvements, these 
evaluated methods demonstrate good rotational invariance. The 
2D registration results can provide initial information for 
methods such as ICP for fine registration. In conclusion, the 
georeferenced LOD2 CityGML models can successfully be 
used for city-scale sub-meter global localization as prior 3D 
base map. 
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