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Abstract

Intertidal macroalgae play a vital role in marine ecosystems, necessitating effective monitoring of their coverage and diversity.
Traditional monitoring methods are labour-intensive and costly, prompting exploration of the use of unmanned aerial vehicles
(UAVs) to characterize intertidal ecosystems. We propose an alternative process integrating UAV red-green-blue (RGB) imagery
and topographic indexes to classify complex intertidal macroalgae assemblages automatically. We studied two intertidal areas
capturing eight flights between May and September 2023. Orthoimages and Digital Elevation Models (DEMs) were generated.
Manual segmentations for 24 classes were cropped into images of individual labels. Additional channels with five topographic
indices were added to the RGB images. The resulting dataset of 6412 images was then used to train a Convolutional Neural
Network (CNN). We tested the benefit of the additional topographic indices by training the CNN with and without the topographic
channels. The best results were given by the inclusion of the Analytical hillshade to the RGB images, showing a relative 11.3%
increase in classification accuracy. This indicates that 3D data can enhance the performance of macroalgae classification models.
However, there was no significant improvement when using more than one topographic index to train the CNN. Our workflow offers
a cost-effective and robust solution for intertidal macroalgae monitoring, contributing to ecological conservation efforts.

1. Introduction

Intertidal marine ecosystems have been widely monitored due
to their biodiversity and ecological importance. Being a dy-
namic transition between marine and terrestrial ecosystems,
they have been used as control ecosystems in ecological pro-
cesses (Pessarrodona et al., 2023).

Macroalgae assemblages play a crucial role in intertidal ecosys-
tems by providing essential functions such as food, and shel-
ter, and serving as a nursery area for various faunal popula-
tions (Borg et al., 1997; Cacabelos et al., 2010; Lorentsen et
al., 2004). Additionally, they contribute significantly to mar-
ine primary production and have the potential to act as a sink
for anthropogenic CO2. Given their ecological importance, it
is imperative to monitor their coverage and diversity. Conven-
tional monitoring of intertidal macroalgal assemblages consists
of manually assessing several transects in an area (Casal et al.,
2013), using hand-held cameras to photograph several quad-
rats in each transect or extracting the macroalgae found in those
quadrats. However, this method is time-consuming and requires
the input of large amounts of materials and human resources.
More so, covering large areas is not viable because of the het-
erogeneous nature of intertidal areas and the small size of the
transects (Livore et al., 2021). Furthermore, Manual labelling
is a labour-intensive job that requires an expert in the field to
segment each image, thus newer methods for automatic seg-
mentation are being pursued (Bravo et al., 2021).

The application of remote sensing techniques to monitor mar-
ine coastal areas could provide a more scalable solution. They
would also improve the spatial, spectral, and temporal resol-
ution of the data (Tait et al., 2021). However, not all remote
sensing techniques prove suitable for monitoring intertidal mac-
roalgal assemblages, as they often form diverse mosaics of

species in highly heterogeneous areas. The challenge arises
in cases where pixel resolution is too low to accurately seg-
ment diverse species of macroalgae, such as the case of satel-
lite imagery (Wilson et al., 2019). The availability of commer-
cially unmanned aerial vehicles (UAVs) has made remote sens-
ing a valuable tool for mapping intertidal habitats (Duffy et al.,
2018). UAVs have been widely used for evaluating remotely
different types of ecosystems. Their use in maritime landscapes
has been normalized for assessing the evolution and character-
ization of biodiversity, both with Red Green Blue (RGB) and
multispectral cameras (Tait et al., 2019).

Structure-from-motion (SfM) photogrammetry layers addi-
tional topological information on the UAV acquired images, al-
lowing for the creation of orthoimages and Digital Elevation
Models (DEMs). These tools are a key enabler in characterizing
demographic characteristics in dynamic rocky shores (Gomes et
al., 2018) and have been used to characterize intertidal ecosys-
tems, such mudflats (Brunier et al., 2022), mussel populations
(Gomes et al., 2018) and oyster reefs (Lecours and Espriella,
2020).

Our primary goal was to develop an alternative process for auto-
matically classifying complex, multi-species intertidal macroal-
gae assemblages. In this study, we investigate whether layering
topographic indexes on the RGB images can yield significant
performance improvements in the classification task. For that,
we calculated five topographic indexes and combined them with
the RGB orthomosaics to create a dataset of macroalgae spe-
cies. The dataset was used to train a Convolutional Neural Net-
work (CNN) six times, one for the RGB images only and five
with the RGB images and each of the topographic indexes. To
assess whether the combination of topographic indexes would
improve classification tasks, the topographic index with the best
Test accuracy was used in combination with the other four in-
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Figure 1. Areas of study.

dexes to train four new instances of the CNN. The effective-
ness of this approach heavily relies on the feasibility of ac-
curately classifying macroalgae images captured by the UAV.
This process significantly reduces the costs associated with in-
tertidal zone monitoring by combining UAV imagery and ma-
chine learning methods.

2. Methodology

2.1 Areas of study

Two areas of interest were studied in Galicia (NW Spain): Illa
de Arousa, and Baiona (Figure 1). The shore in Baiona, with an
area of 2.3 ha, was predominantly covered by Bifurcaria bifurc-
ata, Ericaria selaginoides, Sachorriza polyschides and Undaria
pinnatifida. The study area in Illa de Arousa is situated in the
middle part of the Rı́a de Arousa. This area is a rocky plat-
form of 2 ha, located close to mussel rafts of special interest
to the aquaculture industry. It harbours an abundant population
of the harvestable macroalga Himanthalia elongata, which is
experiencing range contraction along the Atlantic coast of the
Iberian Peninsula (Casado-Amezua et al., 2019). On that shore,
the most abundant species are Himanthalia elongata and Sa-
chorriza polyschides, whereas Fucus spp., Sargassum muticum,
Bifurcaria bifurcata and Ulva spp., are less abundant.

2.2 UAV survey

In total, eight flights were performed between May and Septem-
ber 2023 at 12 m of altitude using a DJI Mavic 3E. Another,
smaller flight at 15 m of altitude was performed using a DJI
Mavic 300RTK over Baiona in July 2023. After each flight, sev-
eral targets distributed over the study areas were used as control
ground points (CGPs) to georeference the images and generate
orthoimages shown in Figure 1. The size of the study area in Illa
de Arousa required seven targets while only four were needed
in Baiona. The geospatial coordinates of the centre of each tar-
get were measured with the GNSS receiver GPS Leica GS15
VIVA. During data acquisition, the forward overlap and side
overlap (80%-70%) were established between the RGB images
for the further conversion of orthoimages. Table 1 summarizes
the main information of each flight.

2.3 Processing workflow

Figure 2 explains the workflow of the study. After creating the
orthomosaic and the Digital Elevation Model (DEM) of each
flight, the orthoimages were manually segmented and labelled

by experts, cataloguing 24 classes. The DEM of each orthoim-
age was used to calculate topographic indexes described in Sec-
tion 2.5. These indexes were resampled to the orthoimage’s
resolution and added as image channels. Then, each manual
segmentation was individually saved, creating the dataset. Us-
ing this dataset, we trained six instances of the same CNN: one
for the baseline model, with only the RGB images, and one for
each topographic index. We then trained another four times,
combining the RGB images and the topographic index with the
highest Test accuracy with the rest of the indexes.

Figure 2. Workflow.

2.4 Manual labelling

The RGB images acquired with the UAVs were converted into
orthoimages using the software Agisoft Metashape and geore-
ferenced using the GCPs using Quantum Geographic Inform-
ation Systems 3.16 open access software QGIS (QGIS Devel-
opment Team, 2024). The coordinate reference system used
was ETRS89/UTM zone 29N (ESPG 25829). Then, an expert
manually labelled the images using QGIS, which were saved in
a vectorial shapefile.
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UAV Model DJI Mavic 3E DJI Mavic 3E DJI Matrice 300 RTK
Location Illa de Arousa Baiona Baiona
Area [ha] 2 1.3 0.7
Number of CGP 7 4 4
Forward Overlap [%] 80 80 80
Side Overlap [%] 70 70 70
Flight Height [m] 12 12 15
GSD [cm/pix] 0.32 0.32 0.52
DEM GSD [cm/pix] 0.77 0.77 1.02
Flight Duration [min] 33.4 28.6 4.7

Table 1. UAV characteristics for the flights.

Figure 3. Manual labellings created over Baiona (detailed) and
Arousa (sparse and detailed).

All the ortophotographs, except for the one created with the
DJI Matrice 300 RTK flight, were sparsely labelled. The sparse
labelling consisted of random shapes over easily identifiable
classes of the orthoimage. Detailed labels were created for one
orthomosaic per site, and tried to simulate semantic segmenta-
tion. The detailed labelling was done for the DJI Matrice 300
RTK Baiona flight made in July 2023 and a part of the Illa
de Arousa flight made in July 2023 (Figure 3). The vectorial
shapefile was generated for each flight and each segmentation
was labelled with the class IDs found in Table 2.

2.5 Topographic indexes

In total, five topographic indexes were calculated: All topo-
graphic indexes have been calculated in QGIS with Geospatial
Data Abstraction Library (GDAL) and SAGA 9.3.2 (Conrad et
al., 2015). The topographic indexes used are:

– Topographic position index (TPI) (Guisan et al., 1999): it
measures the elevation of a pixel relative to the mean el-
evation of the surrounding pixels within a defined neigh-
bourhood. It is calculated by:

TPI = int
(
DEM − fm + 0.5

)
,

where DEM is the Digital Elevation Model value at the
given pixel,

fm = focalmean(DEM, annulus, irad, orad) ,

and focalmean calculates the focal mean of the DEM
within a specified annulus (ring-shaped neighbourhood)
with inner radius (irad) and outer radius (orad).

ID Class Phylum
2 Rock -
3 Sand -
4 Ericaria selaginoides Ochrophyta
5 Sargassum muticum Ochrophyta
6 Saccorhiza polyschides Ochrophyta
7 Colpomenia peregrina Ochrophyta
8 Codium spp. Chlorophyta
9 Ulva spp. Chlorophyta
10 Bifucaria bifurcata Ochrophyta
11 Stypocaulon scoparium Ochrophyta
12 Corallina officinalis Rhodophyta
13 Asparagopsis armata Rhodophyta
14 Litophyllum incrustans Rhodophyta
15 Ceramium rubrum Rhodophyta
17 Fucus spp. Ochrophyta
18 Himanthalia elongata Ochrophyta
19 Caulacathus ustulatus Rhodophyta

23 Rock with heterogeneous
mixture of algae -

24 Unclassified -
25 Paracentrotus lividus Echinodermata
26 Anemonia spp. -
27 Filiform algae -
28 Pelvetia canaliculata Ochrophyta
29 Rivularia bullata Chlorophyta

Table 2. Classes found in the dataset and their respective IDs.

– Topographic roughness index (TRI) is a measure used to
quantify the variability or ruggedness of a terrain surface
and calculates the mean difference between a pixel and its
neighbours (Riley et al., 1999).

– Topographic wetness index (TWI): It was calculated using
the ’Saga Topographic Water Index’, which uses a modi-
fied catchment area that does not assume the water flow as
a thin film. The TWI is defined as

TWI = ln

(
SCAM

tanβ

)
,

where the Modified Catchment Area is calculated as

SCAM = SCAMax

(
1

15

)βexp(15β)

for SCAM < SCAMax

(
1
15

)βexp(15β), being SCAMax

the neighbouring maximum specific catchment area and β
the slope angle (Böhner and Selige, 2002).

– Analytical Hillshade: it calculates the angle at which light
hits the terrain’s surface and provides a visual representa-
tion of the terrain, with brighter areas indicating higher il-
lumination and darker areas indicating lower illumination
(Tarini et al., 2006).
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– Slope: generates a map containing the inclination angle
to the horizontal, using a neighbourhood of 3x3 pixels for
each pixel value. The formula used to calculate the Slope
was Horn’s equation (Horn, 1981):

Slope = arctan

√(
dz

dx

)2

+

(
dz

dy

)2
 ,

where dz
dx

and dz
dy

are the elevation change rate in both the
x and y directions, respectively.

2.6 Preproccessing

After the images were georeferenced and converted to ortho-
photos, the Digital Elevation Model (DEM) of each flight was
also calculated.

Before calculating the topographic indexes, each DEM was cor-
rected by filling the sinks, using the GDAL tool Fill no data.
The TPI, TRI and slope were calculated from the DEMs us-
ing GDAL in QGIS with their default parameters. The AH was
calculated using the lightning module of SAGA using the date
and hour of the flight, which was always set to noon. The TWI
was calculated using the SAGA Wetness Index of the Terrain
analysis-Hydrology module, also with the predefined values.
The manual segmentations were saved as vectorial shape files,
then rasterized using the function Rasterize in QGIS.

Because of the large filesize, the orthoimages were divided into
3 or 4 files, depending on the flight. We divided both the manual
segmentations and topographic indexes into several files, with
the extent of each of their corresponding orthoimages files.

2.7 Dataset creation

The topographic indexes were added to each subsection of
the orthoimages as image channels. Then, the rasterized
manual segmentations were intersected to the orthoimages to
crop each region of interest (ROI). Each ROI was separated
from the rest of the orthoimage, and a bounding box of zeros
was created around it (Figure 4) and was saved as a numpy
(.npy) file into a training or validation folder. Each file has a
unique coded name of the form AreaHeight-yymmdd-subarea-
datetime-class. Therefore, a file named AR12m-230705-0-1-
20240405111514class3.npy would contain an occurrence of
sand in the 0-1 subpart or the orthoimage originated from the
flight made in Arousa at 12 m of flight height, the fifth of May
2023. The file name also includes the date and creation time
to ensure uniqueness for each class occurrence. To minimize
over-training and data leaking, the ROIs saved into the valid-
ation folder were from a designated area of each orthoimage,
which was not used to generate training ROIs. The division
was made as follows:

– Train dataset: 0-1, 1-1, 1-2 orthoimages’ subparts and
Baiona flight done with the DJI Matrice 300 RTK.

– Validation and Test dataset: 0-0, 1-0 orthoimages’ sub-
parts.

2.8 Training and classification

The ROI data was used to train a Machine Learning classi-
fication model. The architecture chosen was a Convolutional

Rock

Bifurcaria bifurcataSaccorhiza polyschides

Himanthalia elongata

Figure 4. Examples of the images found in the dataset.

Neural Network (CNN), as customary in image classification
tasks. Before training the CNN, classes with less than 100
sample images were erased and images with less than 70x70
pixels were eliminated. This step reduced the number of classes
from 24 to 11, from which 7 are macroalgae. The classes used
for training the neural network are:

– Inert classes: Rock, Sand, Rock with heterogeneus mix of
algae, Unclassified

– Macroalgae classes: Ericaria selaginoides, Sargassum
muticum, Sacorriza polyschides, Bifurcaria bifurcata,
Fucus spp., Himanthalia Elongata, Ulva spp..

We trained multiple CNN instances to compare the performance
advantages of including topographic indexes. One example was
trained using exclusively the RGB channels, while the rest used
RGB channels plus each of the topographic indexes described
in section 2.5. These CNNs were evaluated using the test data-
set.

The Validation dataset was divided into validation and test data-
sets, resulting in 80% of the data used to train and validate and
20% of the data used to test the model. In total, 6412 images
were used, 4347 for training, 1033 for validation and 1032 for
testing. Before training, images were resized to 340x340 px.
The CNN was developed in TensorFlow and consisted of the
following layers:

– 2 data augmentation layers (random flip and random rota-
tion).

– 3 blocks of Convolutional 2D, MaxPooling 2D and dro-
pout.

– 3 last layers of Convolutional 2D, Global average pooling
2D and a dense layer.
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The CNN was run with Adam as the optimizer, the sparse cat-
egorical cross entropy as the loss and ‘L2’ regularization. The
number of epochs used was 25 and each batch contained 24 im-
ages. The model was run on a laptop computer (CPU AMD
Ryzen 9 6900HX with Radeon Graphics, GPU NVIDIA® Ge-
Force RTX 3.30 GHz and RAM 32 GB DDR5). We also applied
early stopping and learning rate reduction.

After each training, the overall accuracy (Acc) of the Train, Val-
idation and Test dataset was calculated. Precision, recall, f-1
score and Cohen’s Kappa coefficient were also calculated for
the model with the best Test accuracy. Precision measures the
proportion of actual positive cases that were correctly identified
by the model while Recall measures proportion of positive cases
that were correctly identified by the model out of all instances
that the model classified as positive. Precision and Recall are
given by:

Precision =
tp

tp + fp

Recall =
tp

tp + fn

where tp is true positives, fp is false positives and fn is false
negatives while the f1-score is the harmonic mean between pre-
cision and recall. Values range from 0 to 1, with overall per-
formance increasing with the value calculated. The Kappa coef-
ficient compares the degree of agreement between two or more
raters to the agreement expected by chance. The values range
from -1 to 1, with a total agreement for κ=1, strong agreement
for 0.61< κ <0.80, moderate agreement for 0.41< κ <0.60,
good agreement for 0.21< κ <0.40, and low agreement for
0.01< κ <0.20. Values less than 0 imply that the raters did not
agree.

3. Results

Figure 5 shows the accuracy per dataset for each of the six mod-
els trained. The baseline model, which used only the RGB im-
ages, obtained Train, Validation and Test accuracies of 71.69%,
67.73% and 68.31%, respectively. Two of the models per-
formed better than the reference model. The best Test accuracy,
76.06 %, was achieved for the AH adjoined to the RGB images
followed by the model with the TRI (Test Acc=74.77%). The
rest of the models performed slightly worse than the baseline
model, with the worst test accuracy achieved for the Slope and
RGB model (Acctest = 40.11%). An example of the topo-
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Figure 5. Train, validation and test accuracy achieved by each
model.

graphic indexes rasters calculated for this study can be found in

Figure 6. As can be seen, the TPI raster is extremely noisy, not
following the nature of the terrain. TWI, AH and Slope create
similar cell-like blobs in the underwater macroalgae, which do
not correspond to the nature of the terrain in that area. From
these three indexes, AH shows the smoothest raster and har-
bours less noise. It is also the raster with a wider range of val-
ues. The index that better represented the intertidal area shown
in the figure and contained less noise was the TRI. However, its
range of values (0.01-0.1) can be considered negligible.

RGB orthoimage Topographic Roughness Index

Topographic Position Index Topographic Wetness Index

Analytical Hillshading Slope

0.01

0.1

-9.01

11.15

0

89.80

-0.1

0.1

0.01

114.26

Figure 6. RGB and topographic indexes for a section of a Baiona
orthoimage.

Precision, recall and F1-score for the model trained with the
RGB and AH images can be found in table 3. The best-
predicted class was Ulva spp., with a f-score of 0.95. Two
classes, Rock with heterogeneous mixture of algae and Unclas-
sified had a null f1-score, probably because of their low num-
ber of occurrences in the dataset (1 and 2, respectively). Both
classes are complex to classify, as they capture the parts of the
orthomosaics that the manual labellers weren’t able to input into
other classes. For the rest of the classes, all but two classes (S.
muticum and H. elongata) achieved an f1-score above 0.6.

The Cohen’s Kappa coefficient calculated was 0.72, showing
substantial agreement between predicted and true labels. Figure
7 shows the confusion matrix for the model.
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Class Precision Recall f1-score Support
Rock 0.69 0.74 0.71 68
Sand 0.78 0.91 0.84 55
Ericaria selaginoides 0.91 0.73 0.81 222
Sargassum muticum 0.80 0.34 0.48 96
Saccorhiza polyschides 0.72 0.87 0.79 161
Ulva spp. 0.97 0.93 0.95 119
Bifurcaria bifurcata 0.78 0.88 0.83 93
Fucus spp. 0.64 0.89 0.74 117
Himanthalia elongata 0.56 0.54 0.55 98
Rock with heterogeneous mixture of algae 0.00 0.00 0.00 1
Unclassified 0.00 0.00 0.00 2
Accuracy 0.76 1032
Macro average 0.62 0.62 0.61 1032
Weighted average 0.78 0.76 0.75 1032

Table 3. Precission, Recall and f1-score for the RGB+TRI model calculated with the Test dataset.
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Figure 7. Confusion matrix for the RGB+AH model normalized
over the true labels of each class.

As expected, the rock and sand get confused together. All oc-
currences of Rock with heterogeneous mixture of algae and Un-
classified have been classified as sand. Ulva spp. is the best-
predicted class and, in some instances, has been wrongly pre-
dicted as sand because of the colour similarities between Ulva
spp. assemblages and underwater sand. The worst predicted
class is S. muticum. It has been predominantly predicted as S.
polyschides, probably because both belong to the same Phylum
(Ochrophyta) and when underwater they have both colour and
texture similarities (Figure 8).

There was a slight improvement when combining the other to-
pographic indexes with the RGB channels and the AH (Table
4). However, no combination surpasses the accuracy achieved
by the AH or TRI combined with the RGB images. When com-
bining the best topographic indexes (AH and TRI), the accur-
acy decreases from 76.06% (AH) and 74.77% (TRI) to 72.23%.
Adding the AH to the other indexes slightly improved their clas-
sification accuracy, but the accuracy values are still lower than
using only RGB images as the neural network input.

Sand Ulva spp.

Saccorhiza polyschides Sargassum muticum

Figure 8. Above: Examples of underwater sand and Ulva spp.
occurences. Below: Examples of underwater S. polyschides and

S. muticum.

Input data Validation accuracy Test accuracy
RGB+AH+TRI 71.77 72.23
RGB+AH+TPI 53.99 44.57
RGB+AH+TWI 69.96 69.47
RGB+AH+SL 45.25 45.73

Table 4. Accuracy and loss for models with a combination of
AH and the other indexes.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-73-2024 | © Author(s) 2024. CC BY 4.0 License.

 
78



4. Discussion

We’ve devised a workflow to automatically classify inter-
tidal macroalgae using high-resolution RGB imagery and to-
pographic indexes acquired from UAV data. Similar initiatives
for autonomous ecosystem monitoring include the creation of
extensive datasets, like the one in (Langlois et al., 2023), with
7,440 subtidal quadrat images for seagrass detection and classi-
fication, and a public dataset spanning 23 countries’ coral reef
imagery from 2012-2018 (Ramirez et al., 2020). Such data-
sets facilitate ecosystem health monitoring, temporal analysis
of study areas, and machine learning model benchmarking. In
this study we created a dataset containing 6412 images to clas-
sify intertidal macroalgae from RGB UAV imagery.

It’s noteworthy that while previous studies have delved into ap-
plying topographic indexes in intertidal ecosystems, they have
not been applied to classifying complex and heterogeneous
macroalgae assemblages such as the areas used in our study.
These earlier endeavours primarily focused on broader ecolo-
gical analyses, often characterized by lower spatial resolutions
and broader coverage areas (Brunier et al., 2022; Gomes et al.,
2018; Espriella and Lecours, 2022). Instead, our study created
a high-resolution intertidal macroalgae dataset with manually
labelled orthoimages and topographic indexes of individually
labelled macroalgal ensembles.

One of the principal research questions we addressed was the
usefulness of topographic indices in this context. The indexes
used in this study have been chosen to represent morphometry,
lighting and hydrology topographic indexes. Both areas of
study represent rocky shores, full of water ridges, channels and
rock crevices. Due to the nature of the terrain and the high resol-
ution of the DEM, as (Brunier et al., 2022) noted in their study,
some parts of the DEM haven’t been accurately reconstructed,
inducing quantification errors in the topographic indexes. In
addition, the water’s surface is always moving and some mac-
roalgae species, like S. polyschides, break through the water
surface, creating a ripple effect in the DEM. As these indexes
were meant for longer terrain extensions, some of them are un-
suitable for characterizing our study areas. It is possible that,
as the GSD in our DEMs is so small, the indexes calculated
provide more noise than useful information. In fact, (Espriella
and Lecours, 2022) resampled derived orthomosaics and DEMs
of the Gulf of Mexico from 3 cm to 31 cm and found that very
fine resolutions may not be suitable for intertidal habitat map-
ping. Here, we have found that the TPI rasters created for our
areas of study are formed by noise, which worsens the classi-
fication accuracy.

The best accuracy results have been shown for RGB + AH
(Acctest = 76.06%), while the worst have been for RGB
+ Slope (Acctest = 40.11%). This indicates that not all
3D information is useful for macroalgae classification models.
Moreover, the TWI rasters often provided negative values in
ridges and higher values in rocks above water level, which is
inconsistent with the definition of TWI. Therefore, we do not
recommend the TWI at our scales in intertidal areas. The AH
and Slope showed similar values’ distribution in their rasters,
probably due to the high correlation between them. However,
the distribution of the values in the AH raster was smoother and
showed an increase of 91% in accuracy concerning the model
trained with the Slope. Given the dissimilarity in accuracy val-
ues between models using AH or Slope, we recommend using
only AH for tasks as shown in this study.

The model which provided the best results (RGB + AH) showed
clear confusion between inert classes. Due to their similarity in
colour and texture, Sand and Rock classes were predicted as
each other several times. Rock with heterogeneous mixture of
algae and Unclassified was only predicted as Sand. Macroalgae
of the same Phylum were confused with each other, especially
when underwater. In addition, the change in colour and texture
that images of the underwater sand show have made Ulva spp.
wrongly predicted as underwater sand.

In future work, we would like to study the optimal neighbour-
hood radius of the topological indexes’ calculations to maxim-
ise accuracy results. Denoising and smoothing these indexes
could improve the accuracy values shown in this study. What’s
more, while we have used indirect measurements of the height
in the areas of study, we have not taken the relative altitude of
the macroalgae ensembles into account. Adding the informa-
tion of the DEM directly as another channel of the images could
further improve classification accuracy as the different mac-
roalgae populations are distributed in different intertidal zones
(Cacabelos et al., 2010).

Moreover, the estimation and use of multispectral indices in the
classification process should be considered, as these could en-
hance the macroalgae classification results. Some researchers
added the NDVI to the spectral bands to train their classifi-
ers (Taddia et al., 2020), or a combination of DEM and NDVI
(Tait et al., 2021; Brunier et al., 2022). However, we do not
recommend using two topographic indexes in the same model,
as the computation time of raster calculation does not lead to
an increase in classification accuracy. We hope that these find-
ings will lead to a more robust monitoring pipeline for intertidal
macroalgae monitoring.
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