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Abstract 
 
Developing a precise tree stem curve and robust estimation of stem volume are crucial for forest inventories with various applications. 
Laser scanned point clouds have been recognized as the most practical data for tree information modeling. Many methods for stem 
curve development involve estimating stem diameters at different heights and determining stem volume by utilizing fitted cylinders 
based on these diameters and the associated heights. The estimation of diameter depends on circle fitting. However, many circle fitting 
methods are non-robust and inaccurate in the presence of noise, outliers, and significant data gaps, resulting in faulty diameters and 
imprecise stem volume. Limited scanning, occlusions from the physical complexity, high tree density, and adjacent branches may 
cause data incompleteness, and generate outliers. To address these challenges, we employ robust statistical approaches to restrain the 
influence of outliers and data gaps. This paper contributes by (i) exploring the problems of robust diameter estimation for partial data, 
and in the presence of noise and outliers, (ii) understanding the impacts of using erroneous diameters in cylinder fitting, and later for 
stem curve and volume estimation, and (iii) developing a robust method that couples robust circle and cylinder fittings to derive precise 
stem curve and estimation of stem volume in the presence of outliers and partial data. We demonstrate the performance of the proposed 
algorithm through terrestrial laser scanning point clouds.  
  
 

1. Introduction 

Understanding tree structure, particularly the estimation of tree 
stem curve and volume (i.e., the total volume of the aboveground 
tree stem), is essential for characterizing forest stands and 
effectively managing forest resources. This encompasses 
quantifying logs, estimating aboveground biomass (AGB), and 
assessing carbon storage, all of which are crucial tasks for forest 
inventories (FIs) [Liang et al., 2018; Masuda et al., 2021; You et 
al., 2021; Abegg et al., 2023; Nurunnabi et al., 2024].  
 
A stem curve is an arrangement of stem diameters that are a 
function of height. In Liang et al. (2018), it is defined as a set of 
stem diameters starting at the height of 0.65 meter (m) above the 
ground, followed by the diameters at breast height (DBH; at 1.3 
m), and at every successive meter, such as at 2m, 3m, and so on, 
until the maximum measurable height around the treetop.  
 
In conventional FIs, stem diameters are typically measured using 
slide callipers, measuring tapes and hypsometers, while tree 
volume is estimated using allometric models based on related 
measured parameters such as tree DBH and height (Akpo et al., 
2021; Hyyppä et al., 2020; Yusup et al., 2023). However, 
measuring tree height and upper diameters physically can be 
time-consuming, laborious, and in some cases impossible, 
especially when dealing with trees exhibiting complex stem 
shapes or in densely populated and intertwined environments 
(Akpo et al., 2021; Masuda et al., 2021).  
 
Light Detection and Ranging (LiDAR)-based non-invasive laser 
scanning systems provide three-dimensional (3D) point clouds 
(PCs) have been recognized as the most suitable data for tree 
information modeling (TIM) [Shu et al., 2022]. Terrestrial laser 
scanning (TLS) systems have gained popularity within forestry 
applications, and forest inventories (FIs), as TLS has become 

more affordable and manageable due to reductions in size and 
weight of associated hardware. This technology produces highly 
dense PCs, up to several million of points for a single tree. While 
PCs give detail geometry with high level of accuracy to present 
an object, processing them is not trivial as they are irregular, 
often incomplete, occluded by nearby complex structures, and 
contaminated with noise and outliers. Estimating tree stem 
volume from LiDAR PCs is an active area of contemporary 
research.  
 
When estimating stem diameter and volume, particular 
consideration must be given to shadowing effects, especially 
when data are collected using a single scan. The most notable 
disadvantage of a single scan is the limited visibility of the stem 
caused by occlusion from surrounding branches, leaves, and 
nearby trees. This limitation can result in partial scans and data 
gaps, ultimately leading to lower-quality tree parameter 
estimation and characterization (Liang et al., 2018; Pueschel et 
al., 2013; Pitkänen et al., 2019). In contrast, multiple scans from 
various viewpoints around a tree can offer superior and 
comprehensive stem coverage. However, achieving accurate 
registration between scans in wide areas and complex 
environments may present challenges, as aligning all the points 
precisely can be difficult (Kawasaki and Masuda, 2022). Despite 
the advantage of generating a complete PC using multiple scans, 
the single-scan mode is often preferred due to its higher sampling 
efficiency (Pueschel et al., 2013).   
 
A common approach for deriving stem profiles involves fitting a 
collection of geometric primitives, such as cylinders and circles, 
to a PC capturing the tree stem. Åkerblom et al. (2015) 
investigated various geometric primitives in quantitative 
structure models (QSMs) of tree stems and concluded that the 
circular cylinder is the most robust primitive. They found that it 
exhibits well-bounded volumetric modeling errors, even in the 
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presence of noise and data gaps. Most algorithms proposed for 
estimating DBH and stem profiles operate under the assumption 
that stem cross-sections are circular in shape. They typically 
reconstruct the stem as a series of circles or as portions of 
cylindrical or conical surfaces. 
 
In this study, we focus more on incomplete data which may result 
because of a single scan. Consequently, there is a pressing need 
to develop methods capable of handling partial data in the 
presence of occlusions and outliers. To address the influence of 
outliers, occlusions, and partially scanned data on stem curve and 
volume estimation using LiDAR PCs, we propose a robust 
algorithm for deriving stem curves and stem volume estimation.  
 
The remainder of the paper is organized into four sections. 
Section 2 provides a brief literature review. Section 3 outlines the 
methodology of the proposed algorithm. Section 4 evaluates the 
new algorithm through two experiments using real-world TLS 
datasets. Finally, Section 5 concludes the paper. 
 
 

2. Related Literature  

Over the years, numerous methods have been developed for 
characterizing tree stems. Two key aspects of this 
characterization are the stem curve, which represents stem 
diameters at different heights, and stem volume, defined as the 
cumulative wood volume of a stem. Typically, methods for 
estimating stem volume can be categorized into two groups: (i) 
destructive methods, which relies on felled trees, and (ii) non-
destructive methods, based on standing trees (You et al., 2021). 
 
The destructive approach entails extensive fieldwork, which is 
time-consuming and necessitates adherence to numerous strict 
rules and regulations. In a study conducted in the Amazonian 
Forest, Leão et al. (2021) found that a minimum of 29 to 81 
sample trees were necessary, depending on tree species, to 
develop a reliable allometric model. Another destructive 
approach is the water displacement method, which entails 
immersing logs in a known quantity of water and measuring the 
subsequent increase in volume (Akossou et al., 2013). 
Conversely, the non-destructive approach is crucial for 
estimating tree growth and yield, thereby contributing to the 
decision-making process for sustainable forest management, the 
estimation of AGB, and carbon storage. Given our focus on 
remote sensing (RS) and the assessment of living trees, our 
primary concern lies with non-destructive approaches.  
 
For standing trees, stem volume is typically calculated using 
allometric equations based on the tree's total height and DBH 
[Sumida et al., 2013]. Although DBH can be easily measured, 
estimating diameters for the upper part of the stem is challenging, 
and they may not accurately represent other parts of the stem. 
Kelly and Beltz (1987) conducted a comprehensive review of 
different regression models for tree volume estimation using 
DBH as a regressor variable. Consequently, many researchers 
utilize taper equations to estimate stem volume and diameter at 
various heights along the stem (Kozak, 2004; Poudel et al., 
2018). However, proper selection of the allometric and/or taper 
equations is an analytical issue. 
 
Typically, individual trees are extracted, and their stem shapes 
are estimated using circular and cylindrical approximation 
techniques (Masuda et al., 2021). Olofsson et al. (2014) 
employed a Hough Transformation (HT) [Duda and Hart, 1972] 
and a random sample consensus (RANSAC) [Fischler and 

Bolles, 1981]-based algorithm for tree stem classification and 
measurements. Their study concluded that the RANSAC 
algorithm effectively reduced noise and provided reliable 
estimates of tree stem parameters. In a similar vein, Wang et al. 
(2016) developed a method to model tree stems in an alpine 
landslide-affected forest. Their approach involved fitting a series 
of cylinders using a 2D-3D RANSAC-based method, 
demonstrating its applicability in challenging terrain conditions. 
In their 2017 study, Trochta et al. developed an open-source 
software application featuring a user-friendly graphical interface 
designed to compile algorithms for extracting tree parameters. 
This software enables the extraction of parameters such as DBH, 
tree height, stem curve, and volume. This algorithm employed a 
randomized HT (RHT) [Xu and Oja, 1993] for tree diameters 
estimation. Pitkänen et al. (2019) developed an automated 
processing chain wherein tree stems were modeled as cylinders. 
These models were subsequently utilized as prior information for 
a circle fitting procedure, taper curve estimation, and diameter 
calculation. Cabo et al. (2018) and later Prendes et al. (2021) 
improved an algorithm for tree height and diameter estimation 
using TLS data, consisting of four main steps: (i) height 
normalization, (ii) identification of stems, (iii) tree 
individualization, and (iv) calculation of stem diameters at 
different heights. To obtain stem diameters, the authors fit circles 
by minimizing the geometric error (i.e., the sum of squared 
distances from the points to the fitted circle) using the nonlinear 
least squares (Gauss-Newton) method (Gander et al., 1994) and 
Hyper (Al-Sharadqah and Chernov, 2009).  
 
Bienert et al. (2014) developed a voxel-based technique to 
estimate tree volume of standing trees using TLS data. With 
recent advancements in computer vision and photogrammetry, 
particularly in the context of precision forestry, several recent 
studies have employed ground-based Structure from Motion 
(SfM) photogrammetry to analyze 3D tree structures (Piermattei 
et al., 2019). Hyyppa et al. (2020) developed an algorithm to 
derive stem curves using a pulse-based backpack laser scanner 
combined with an in-house simultaneous localization and 
mapping (SLAM) technique, along with a post-SLAM algorithm 
incorporating inclination angle correction. This methodology 
enabled to estimate stem volumes in boreal forest plots using the 
derived stem curves and tree heights. Windrim and Bryson 
(2020) developed a deep learning approach capable of isolating 
individual trees, identifying tree stem points, and constructing a 
segmented model of the main tree stem, which includes 
parameters such as tree height, diameter, taper, and sweep. 
Notably, their method relied on high-resolution airborne 
(helicopter) LiDAR PCs captured in two Radiata pine forests. 
Interested readers can refer to Ravaglia et al. (2019) for a 
comprehensive evaluation of three recent algorithms: STEP, 
CompuTree, and SimpleTree used for estimating stem DBH and 
diameters along the bole length.  
 
 

3. Methodology 

We propose a 7-step method for extracting tree stem curves and 
estimating stem volume. Our aim is to produce accurate 
diameters at different heights along the stem. This involves a 
fitting process for cross-sections of nearly circular (geometric) 
shapes obtained by dividing the stem into smaller vertical disks. 
Finally, cylinders are constructed based on the parameters of the 
robustly fitted circles formed by two consecutive disks, and the 
stem volume is estimated from the accumulated cylinders’ 
volumes. The steps involved in the new algorithm are described 
in the following subsections and outlined by the flowchart 
depicted in Fig. 1. 
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Figure 1. The flowchart of the proposed algorithm for tree stem curve and volume estimation. di = diameter for Dki (ith improved 
disk), Cyli= ith cylinder, vi = volume of the Cyli, V = stem volume.   
 
3.1 Step 1. Elimination of ground points  

To analyze the tree stem, ground points associated with the tree 
should be eliminated. We employ a robust locally weighted 
regression (RLWR)-based ground filtering algorithm developed 
by Nurunnabi et al. (2016) to eliminate ground points. The 
method involves segmenting the dataset into convenient strips, 
applying the algorithm to each stripe, and then merging the 
results. For each strip, the algorithm operates on two 2D-
orthogonal profiles: x-z and y-z. It follows an iterative process 
consisting of two main steps: (i) employing RLWR to achieve a 
robust nonlinear fit for the entire strip, and (ii) iteratively fitting 
each stripe while robustly down-weighting the z (elevation) 
values based on the residuals from the previous fit. This iterative 
process continues until it reaches the ground level. Ground points 
are defined as those falling within the lowest (ground) level, and 
the level with a threshold added to the ground level estimated via 
the repeated fits. This method demonstrates statistical robustness 
even in the presence of outliers. For further details, the reader is 
referred to Nurunnabi et al. (2016).  
 
3.2   Step 2. Tree stem extraction and noise/outlier reduction 
 
In this step, we want to reduce unnecessary branches and leaf 
points which come with the stem. Initially, as TLS data typically 
exhibit high density, we employ subsampling based on the 
underlying data density to mitigate accuracy bias stemming from 
heterogeneous data distribution, to reduce computational burden, 
and for having a consistent distance between adjacent points. 
This task potentially enhances clustering quality. 
 
To reduce non-stem points from surrounding leaves and 
branches, we segment tree points using a region-growing-based 
clustering approach. Since trees lack regular shapes, we employ 
3D Euclidean distance (ED)-based spatial clustering (EDSC). 
ED calculates one-to-one distances between nearby points. 
Region growing begins from a seed point with the lowest z value 
in the tree data. Points are accumulated within a predefined 
distance threshold, EDth. Each new point serves as a subsequent 
seed point to search for other points until no point lies within the 
EDth distance. A region containing a minimum number of points 
is identified as a cluster. The largest cluster, originating from the 
lowest point (matching with the ground level), is considered the 
potential tree stem. Additionaly, to reduce outlier effects, we can 
employ the noise and/or outlier reduction algorithm proposed in 
Nurunnabi et al. (2015).  
 
3.3   Step 3. Slicing stem PC to get diameters 
 
Following the definition of stem curve given in Liang et al. 
(2018), we need to find stem diameters at the heights of 0.65m, 

1.3m, 2m, 3m, and so on. Hence, we slice the stem along its 
height (elevation, z) with a vertical length of 7cm at each height 
of (0.65±0.035)m, (1.3±0.035)m, (2±0.035)m, (3±0.035)m, and 
so forth, up to the measurable height. We call these 7cm slices 
(cross-sections), stem disks. Considering the data density, users 
can readjust the height of the disks. These disks serve the purpose 
of fitting circles and estimating diameters in subsequent steps. 
Users can alter the height (distance) between two consecutive 
disks according to the shape of the stem being studied. For a 
complex and irregular stem, it is advisable to consider the gaps 
between two disks as 0.5m instead of 1m.  
 
3.4 Step 4. Improvement of stem disks 
 
We project the 3D disk-points obtained from Step 3 onto the x-y 
(ground) plane to yield 2D points. To mitigate the influence of 
noise and outliers, especially when the outliers are significantly 
distant, we initially utilize DBSCAN (Density-Based Spatial 
Clustering of Applications with Noise), a machine learning 
algorithm introduced by Ester et al. (1996). DBSCAN is a 
nonparametric approach recognized for its ability to 
automatically identify clusters of diverse shapes and sizes, 
eliminating the need for a predetermined number of clusters. This 
density-based algorithm effectively groups closely situated 
points in a space, while discerning outliers as those significantly 
distanced from the clusters, often residing solitarily or scattered 
within low-density areas. As a result, one of DBSCAN's key 
strengths lies in its resilience to noise and outliers, this makes it 
particularly suitable for datasets characterized by irregular 
shapes and fluctuating densities. Fig. 2(b) demonstrates the 
application of DBSCAN.  
 
3.5 Step 5. Circle fitting and diameter estimation 
 
The 2D points may still contain outliers, particularly those 
originating from surrounding branches, leaves, and loose barks, 
which can manifest as scattered and/or clustered outliers. 
Furthermore, some of the disks may be incomplete due to limited 
scanning, resulting in data gaps, especially in cases where data 
are collected through a single scan. Fitting circles to incomplete 
data and in the presence of outliers poses a significant challenge. 
The widely used least squares fitting-based geometric approach 
is highly sensitive to outliers. We are inspired by the robust circle 
fitting introduced by Nurunnabi et al. (2018). For the circle 
fitting procedure, we adopt 'Hyper' (Al-Sharadqah and Chernov, 
2009), an algebraic fitting method that satisfies many essential 
mathematical properties. The authors assert that their technique 
surpasses many existing algebraic methods, achieving circle 
fitting accuracy comparable to geometric fitting and even 
yielding superior results for partial circular arcs. However, as 
shown in Fig. 2(c), it is evident that even such an efficient circle  
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Figure 2. (a) A part of a tree stem, (b) projection of a 3D stem disk [purple color in (a)] onto a 2D plane; purpole points are identified 
as outlying points, (c) fitted circles to the inlier points [ash color in (b)] by using RANSAC, HT, LS, Hyper and our method.   
 
 
fitting method (Hyper) is not immune to outlier effects, as we see 
here the fitted circle is significantly biased towards the outliers. 
In the literature reviw of Section 2, we noticed that, many 
algorithms used RANSAC, HT, Hyper or least squares. We 
perfomed all of them on our dataset [(ash color points in Fig. 
2(b)]. Fig. 2(c) demonstrates that neither RANSAC, HT, Hyper, 
nor the least squares methods are immune to the influence of 
outliers. Hence, to reduce the outlier effects, especially for 
cluster outliers, Hyper is coupled with the repeated least trimmed 
squares (RLTS) regression (Rousseeuw and Leroy, 2003). 
Initially, we fit a cirle with the Hyper and then utilize RLTS. LTS 
is a robust regression technique, is designed to minimize the 
influence of outliers in the dataset, RLTS proceeds by identifying 
outliers and fits iteratively and downweighting the most outlying 
observations. It finds outliers and then assigns weights to the 
outliers according to their degree of outlyingness. It minimizes 
the sum of the weighted squared residuals:  
 
                      𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶,𝑅𝑅) ∑ 𝑤𝑤𝑖𝑖𝑟𝑟𝑖𝑖2𝑛𝑛

𝑖𝑖=1 ,                              (1) 
 
where 𝐶𝐶 (𝑎𝑎𝑥𝑥 , 𝑏𝑏𝑦𝑦) and 𝑅𝑅 is the centre and radius of the 
fitted circle, respectively. We fix 𝑤𝑤𝑖𝑖 = 0  when the ith point is 
an outlier, otherwise 𝑤𝑤𝑖𝑖 = 1, and the ith residual is defined as: 
 
     𝑟𝑟𝑖𝑖 = �(𝑝𝑝𝑖𝑖𝑥𝑥 − 𝑎𝑎𝑥𝑥)2 + (𝑝𝑝𝑖𝑖𝑦𝑦 − 𝑏𝑏𝑦𝑦)2 − 𝑅𝑅 = 𝑑𝑑𝑖𝑖 − 𝑅𝑅,     (2) 
 
where 𝑝𝑝𝑖𝑖(𝑥𝑥,𝑦𝑦) (𝑚𝑚 = 1, 2, … ,𝑚𝑚) is the ith point. The circle 
fitting process starts with a minimal subset of (usually 3) points. 
Monte Carlo (MC) type probabilistic principle (c.f., Fischler and 
Bolles, 1981; Rousseeuw and Leroy, 2003) is employed to have 
an outlier free initial subset, and to determine the number of 
iteration (In) required for getting the outlier free subset.  The 
circle fitting process works as: (i) fits circle based on an intial 
random subset, (ii) based on the fit, calculates the residuals for 
all the data points, (iii) arrange the points in ascending order 
according to their residual values, (iv) finds first h points (h 
= ⌈0.5𝑚𝑚⌉), and (v) fits a circle based on the h points, and finally 
(vi) organizes the data in ascending order according to the 
resudal values from the latest fit, and sum up the residuals until 
the h points, put the sum values in a list. These six (i-vi) tasks are 
repated In times. After performing all the repetitions, we select 
the h subset of points for which the sum of residuals is the lowest, 
and the fit based on that subset is the final one. The resltant redius 
is used to calculate the diameter of the fitted circle.  
 
3.6 Step 6. Stem curve derivation and cylinder parameters 
estimation  
 
We derive the tree stem curve based on stem diameters estimated 
at various positions using circle fitting as described in Step 5. We 

then employ a standard method to fit cylinders using two 
diameters estimated from successive disks.  
 
Given the typical morphology of a tree stem, it is reasonable to 
assume that the diameters at the two ends of a section may differ, 
typically the upper end diameter smaller than the lower end, 
suggesting a conical cylinder (frustum) shape, see Fig. 3. To 
reconstruct such a conical cylinder based on the diameters of the 
two ends, we proceed to determine the parameters: the cylinder 
axis, radii at both ends, and the length of the cylinder. In the 
initial step, we identify the cylinder axis by establishing the line 
passing through the centers of the two consecutive circles, which 
represent the ends of the cylinder. Thus, the line connecting the 
centers of the circles represents the cylinder axis. Once the axis 
is established, the length of the cylinder (i.e., the length of the 
axis) can be calculated as the distance between the centers of the 
two given circles.  
 
3.7 Step 7. Stem volume estimation 
 
We calculate the volume (v) of each fitted cylinder based on two 
diameters and the distance between two successive disks, using 
the formula defined in Eq. (3) [Bienert et al., 2014; Åkerblom et 
al., 2015]. Then, we sum the volumes of all (n-1) cylinders to 
obtain the required stem volume (V), Eq. (4).  
 

                            𝑣𝑣 =  𝜋𝜋ℎ �r1
2+r2

2+r1r2
3

� ,                        (3) 
 

                        V =  𝑣𝑣1 + 𝑣𝑣2 + ⋯+  𝑣𝑣n−1 ,                  (4) 
 

where r1  and  r2 are the two raddi at the ends of the cylinder, 
and h is the estimated height of the cylinder, as seen in Fig. 3. .  
 

 
Figure  3.  Part of a tree stem shows a conical cylindrical shape.     
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4. Experiments, Evaluation, and Discussion  

In this section, we present two experiments utilizing real-world 
TLS data. To facilitate comparison with existing methods, we 
implemented the 3D Forest and 3DFin (3D Forest Inventory) 
software. These tools derive tree stem curves using 
methodologies proposed by Trochta et al. (2017), and Cabo et al. 
(2018) and Prendes et al. (2021), respectively. As mentioned in 
Section 2, Trochta et al. (2017) employed the randomized Hough 
transform (RHT) [Xu and Oja, 1993], known for its robustness 
in circle fitting. In 3DFin, circle fitting is based on an improved 
version of Cabo et al. (2018)’s approach utilizing the least 
squares method with Hyper (Al-Sharadqah and Chernov, 2009). 
Notably, in our algorithm, we further employ Hyper alongside 
RLTS to mitigate outlier effects during circle fitting when points 
having significant data gap.  
 
4.1 Experiment 1  

For the first experiment, we took a Scots pine (Pinus sylvestris) 
tree from Weiser et al. (2022). The data were collected using a 
RIGEL VZ-400 based TLS system. The tree depicted in Fig. 4(a) 
lacked ground points and consisted of 1,198,381 points with a 
height and DBH of 30.7m and 48.5cm, respectively. We 
downsampled the data with a spacing of 0.03m and applied 
EDSC (EDth = 0.04) to extract the potential tree stem. The results 
created the largest segment shown in Fig. 4(b), representing the 
tree stem, with most branches and leaves removed. We then 
divided the stem into n segments, each with a vertical length of 
7cm, starting at height of 0.65m, then at 1.3m, 2m, 3m, and so 
forth, until reaching the feasible height around 25m. This process 
yielded 28 (n) disks, each projected distinctly onto the x-y plane. 
We performed DBSCAN to remove outliers that are significantly 
distant from the main circular portion created by the disks. Now, 
circles were fitted for each of the 2D datasets. The results yielded 

the necessary diameters for the stem curve shown as magenta 
circles in Fig. 4(b). To facilitate comparison, we implemented 
3D Forest and 3DFin. The results are detailed in Table 1, and 
visually exposed in Fig. 4. The estimated DBHs for 3D Forest 
(48.6cm) and our method (48.7cm) are nearly equal and close to 
the provided ground truth of 48.5 cm. For 3DFin, it was 
underestimated to 47.1 cm. At a height of 19m, the estimated 
diameters are 48.6cm, 28.7cm, and 30.9cm for 3D Forest, 3DFin, 
and our method, respectively. As depicted in Fig. 4(g), at 19m 
height , RHT (3D Forest; Trochta et al., 2017) overestimated by 
20.6cm (where the expected diameter is around 28cm) due to the 
outliers in the maroon rectangles. In Fig. 4(f), 3D Forest fixed 
the diameter almost the same as ours, but both 3D Forest and 
3DFin are significantly displaced towards the outliers. Figs. 4(f) 
and (g) illustrate that 3DFin and 3D Forest encounter challenges 
in fitting robust circles due to outlier contamination and 
incomplete data, whereas our method precisely fits the circles, 
enabling us to derive the stem curve accurately. Figs. 4(c) and 
(d) reveal that Cabo et al. (2018) [3DFin] and Trochta (2017) [3D 
Foreest] failed to derive the stem curve until the top height; they 
could estimate diameters only until 19m and 20m, respectively, 
while our method develops the stem curve up to 25m [Fig. 4(b)]. 
For 3D Forest, the algorithm halts when the estimated diameter 
exceeds twice the diameter of both of the two previous circles, 
which is a limitation to get diameter until the tree top.   
 
In Fig. 5 (line diagram) and Table 1, we consistently observe 
decreasing diameters toward the treetop, smoothly fitted at 
various heights using our method, displaying a more even trend 
than 3D Forest and 3DFin. Certainly, the existing methods 
produce imprecise stem volume. In conclusion, we construct 
cylinders based on the diameters of adjacent circles and related 
heights, estimating the stem volume to be 2.50m³.  Whereas, 3D 
Forest and 3DFin produce stem volumes of 2.38m3 and 2.23m3, 
respectively.   
 

 

 
 

Figure 4. (a) Scots pine tree point cloud, black rings indicating stem disk-circles to be fitted at those heights, (b) the stem segment 
obtained through spatial clustering, magenta rings representing the fitted circles (stem curve; our method) at defined heights, (c) stem 
curve derived by 3DFin (d) stem curve derived by 3D Forest, (e) a part of the stem curve from Fig. (d); with fitted circles (magenta 
rings) at 18m, 19m, and 20m, (f) fitted circles at 18m height; the blank space in the black box represents an incomplete circular arc, 
(g) fitted circles at 19m height, points in the maroon rectangles showing the presence of clustered and scattered outliers.  
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Height/position at (m) 0 0.65 1.0 1.3  2 3 4 5 6 7 8 9 10 11 
Dia- 
meter 
(cm) 

3DForest (RHT) 50.2 - 50.8 48.6 45.2 43.8 41.0 45.8 40.6 40.4 37.6 36.6 40.8 35.4 
3DFin (Hyper) 55.0 51.3 50.5 47.1 45.1 43.1 41.4 45.7 46.4 41.2 40.4 36.3 37.3 36.9 
Ours  60.3 52.5 50.5 48.7 44.7 43.8 41.1 41.6 41.0 40.2 37.7 36.4 36.8 36.3 

Height/position at(m) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
Dia-
meter 
(cm) 

3DForest (RHT) 36.2 33.0 35.4 31.0 30.8 29.0 28.8 48.6 27.2 - - - - - 
3DFin (Hyper) 34.3 35.1 32.8 33.4 31.6 30.9 33.2 28.7 - - - - - - 
Ours  36.0 34.0 34.2 32.3 29.8 28.9 28.5 30.9 27.5 27.1 25.7 24.1 23.4 17.5 

Table 1. Estimated diameters w. r. t. the corresponding heights of the stem curves at Fig. 4(b), (c), (d). Ground truth DBH is 48.5cm. 

 

 
 

Figure 5. Line diagram for estimated diameters versus different 
heights along the stem for the Scots pine tree.  

 
4.2 Experiment 2 

For the second experiment, we chose an additional TLS dataset 
of a Douglas-fir (Pseudotsuga menziesii) tree captured using a 
RIGEL VZ-400 scanner, detailed in Weiser et al. (2022). The tree 
data depicted in Fig. 6(a) comprises 2,559,351 points, with a 
height of 39.3m and a DBH of 48.2cm.  
 
We downsampled the data using the same spacing (0.03 m) as 
for the previous experiment.  To eliminate unnecessary branches 

and leaves, we utilized EDSC with an EDth value of 0.04m, 
resulting in the extraction of the potential stem segment, 
approximately 32m in height, as depicted in Figure 6(b). 
Subsequently, we sliced the stem to generate stem disks with a 
vertical length of 7cm at intervals, starting from a height of 
ground level (0.0m), and continuing at 0.65m, 1.3m, 2m, 3m, and 
so forth, until reaching approximately 32m. These disks were 
projected onto the x-y plane, where DBSCAN was employed to 
remove distant outliers not constituting stem points. Finally, 
circles were fitted to each of the 2D point sets generated by the 
stem disks. We implemented 3D Forest and 3DFin. The 
estimated stem diameters at different heights are presented in 
Table 2. The resulting diameters are illustrated as the stem curve, 
depicted by orange, blue and magenta circles, visually shown in 
Figs. 6 (c), (d), and (e). We observed that 3D Forest, 3DFin, and 
our method could generate diameters up to 11m, 29m, and 32m, 
respectively, with our method being capable of generating the 
stem curve at the highest point. Upon visual examination of the 
raw data, we comprehended that beyond 32 meters, the tree lacks 
significant wood structure in the form of a stem. We estimated 
the DBH to be 48.3cm, which is the closest to the ground truth 
DBH of 48.2cm. However, for 3D Forest, it was overestimated 
at 49.0cm, and for 3DFin, it was underestimated at 47.5cm. At 
the heights of 28m and 29m, 3DFin estimated diameters of 
41.9cm and 28.1cm, respectively, with the diameter of 41.9cm 
being inflated almost double of the diameter (21.8cm) at 27m. In 
contrast, our method estimated diameters of 21.3cm and 19.7cm 
for the same heights. 

 
Figure 6. (a) Douglas-fir tree point cloud, black points (look rings) indicating specific positions where circles to be fitted for getting 
stem diameters, (b) extracted stem segment obtained by using spatial clustering, (c) stem curve (orange rings) using 3D Forest; rings 
representing the fitted circles at different heights, (d) stem curve (blue rings) by using 3DFin, (e) stem curve (magenta rings) by using 
our method, (f) tree point cloud between 27m to 29m, (g) two fitted cylinders by using 3DFin and our method for the stem part (yellow 
points) in Fig. (f), (h) reconstructed stem using the fitted cylinders based on our method.  
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Height/position at (m) 0 0.65 1.0 1.3  2 3 4 5 6 7 8 9 
Dia- 
meter 
(cm) 

3D Forest (RHT) 11.8 - 49.0 49.0 46.0 45.4 42.8 42.0 41.0 40.6 40.0 38.8 
3DFin (Hyper) 58.6 50.7 47.9 47.5 45.3 44.1 42.5 41.9 40.8 39.9 40.1 38.8 
Ours  59.6 51.1 49.2 48.3 45.6 45.1 43.0 42.2 40.7 40.2 39.9 38.6 

Height/position at(m) 10 11 12 13 14 15 16 17 18 19 20 21 
Dia-
meter 
(cm) 

3D Forest (RHT) 38.0 37.2 - - - - - - - - - - 
3DFin (Hyper) 38.3 37.3 36.9 38.9 37.2 35.3 35.7 35.5 32.5 31.7 29.5 32.9 
Ours  37.9 37.9 38.9 36.0 34.7 34.2 33.3 32.7 31.8 30.6 29.3 28.5 

Height/position at(m) 22 23 24 25 26 27 28 29 30 31 32  
Dia-
meter 
(cm) 

3D Forest (RHT) - - - - - - - - - - - 
3DFin (Hyper) 29.2 26.6 27.0 24.4 25.2 21.8 41.9 28.1 - - - 
Ours  27.3 26.4 25.2 24.8 23.1 21.8 21.3 19.7 19.2 17.4 15.2 

Table 2. Estimated diameters w. r. t. the corresponding heights of the stem curves at Fig. 6(c), (d), (e). Ground truth DBH is 48.2cm. 

The line diagram in Fig. 7 and Table 2 illustrate that our method 
estimated diameters at various heights, displaying a smooth 
decreasing trend towards the treetop and showing a more even 
pattern compared to 3D Forest and 3DFin. In conclusion, we 
fitted cylinders with accurate length and radii using the adjacent 
circles from the respective stem disks, estimating the stem 
volume to be 2.89m³. In contrast, RHT-based 3D Forest and 
Hyper-based 3DFin estimated stem volumes of 1.46m³ and 
3.05m³, respectively. Fairly, both the estimates are inaccurate.  
 

 
Figure 7. Line diagram for estimated diameters versus different 
heights along the stem for the Douglas-fir tree. 
 
 

5. Conclusions 

In this paper, we present a robust method for deriving tree stem 
curve and estimating stem volume using LiDAR point clouds. 
Our algorithm employs robust circle fitting to estimate tree 
diameters at various heights along the stem. Specifically, it 
utilizes Hyper, an algebraic circle fitting approach coupled with 
robust RLTS regression. This approach offers advantages in 
handling outliers and addresses significant portion of data gaps, 
which may result in incomplete circular arcs. The algorithm 
derives cylinder parameters using the fitted diameters/radii of the 
respective circles and the length measured between the 
consecutive centers of the fitted circles. Using clustering 
approaches (EDSC and DBSCAN), the new method successfully 
separates unwanted tree branches and leaves from the target tree 
and/or nearby trees. Moreover, this method precisely estimates 
stem volume even when the tree stem is not perfectly straight, as 
it fits irregular cylinder shapes with improved cylinder fit 
matching within an adjustable (smaller or larger) region of the 
tree stem. The distance between consecutive disks can be 
adjusted, ranging from 1m to less than or greater than 1m, for 
example, 0.5m or 2m, based on the underlying tree stem 
structure.   

The method is indeed independent of tree species and size, 
providing adaptability across diverse forest environments. 
However, it's worth noting that this algorithm may necessitate 
additional processing time due to its iterative nature. In future 
research, efforts will be directed towards optimizing the process, 
with a focus on enhancing automation and efficiency to reduce 
processing time, especially considering its application for forest 
stand analysis having complex environment.   
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