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Abstract 

 

Semantic segmentation of 3D urban environments plays an important role in urban planning, management, and analysis. This paper 

presents an exploration of leveraging BuildingGNN, a deep learning framework for semantic segmentation of 3D building models, 

and the subsequent conversion of semantic labels into CityGML, the standardized format for 3D city models. The study begins with 

a methodology outlining the acquisition of a labelled dataset from BuildingNet and the necessary preprocessing steps for 

compatibility with BuildingGNN's architecture. The training process involves deep learning techniques tailored for 3D building 

structures, yielding insights into model performance metrics such as Intersection over Union (IoU) for several architectural 

components. Evaluation of the trained model highlights its accuracy and reliability, albeit with challenges observed, particularly in 

segmenting certain classes like doors. Moreover, the conversion of semantic labels into CityGML format is discussed, emphasizing 

the importance of data quality and meticulous annotation practices. The experiment as described in the methodology shows that 

outputs from the BuildingGNN for semantic segmentation can be utilized for the generation of CityGML building elements with 

some percentage of success. This particular work reveals several challenges such as the identification of individual architectural 

elements based on geometry groups. We believe that the improvement of the segmentation process could be further investigated in 

our near future work. 

 

1. Introduction 

As urban environments grow in complexity, the demand for 

detailed and accurate 3D city models represented in CityGML 

format becomes increasingly crucial for applications in urban 

planning, GIS, and smart city initiatives. CityGML, an open 

data model used for the representation and exchange of 3D city 

models in a standardized way (Kutzner et al., 2020), has 

prompted various methodologies in the generation of CityGML 

data. For instance, Voitenko (2023) explored the utilization of 

building footprints for CityGML generation, while an 

alternative approach involves the integration of BIM data into 

CityGML. This method requires geometry conversion and 

semantic mapping, as discussed by Biljecki et al. (2021) and 

Tan et al. (2023). Investigating the modelling of CityGML from 

LiDAR point cloud data, Jayaraj et al. (2018) contribute to the 

diverse landscape of data generation methods. Additionally, 

Biljecki et al. (2015) explore the conversion of OBJ models into 

CityGML. Despite the variety of approaches, challenges persist 

in the current ecosystem for creating and editing CityGML data. 

According to Jang et al. (2021), there are limitations in 

constructing CityGML data on a large scale with existing tools. 

Furthermore, Tan et al. (2023) highlight the deficiency in 

semantic mapping capabilities of current tools, impeding the 

complete conversion of CityGML data in practical applications. 

In response, this study explores an alternative approach that 

leverages deep learning for semantic segmentation in generating 

CityGML models from 3D model data. 

 

Deep learning, a subset of machine learning, has demonstrated 

remarkable capabilities in analysing complex data structures, 

particularly in the realm of computer vision. Applied to the field 

of 3D data, deep learning methods have proven effective in 

tasks such as 3D semantic segmentation, where the goal is to 

assign meaningful labels to individual components of a three-

dimensional scene. The motivation for semantic modelling in 

3D data lies in promoting a structured approach to data 

representation, ensuring consistency, and fostering 

interoperability across diverse datasets (Uceda-Sosa et al., 

2011). This involves creating models that not only capture the 

physical characteristics of buildings but also incorporate 

meaningful information about their components, functionalities, 

and relationships. 

 

Research into the segmentation of building components within 

3D models has explored various methodologies and 

technological approaches. Notable studies by Alexander and 

Ben (2015) and Hu et al. (2021) delve into the semantic 

segmentation of urban scenes, particularly focusing on point 

cloud data and point cloud classification. Meanwhile, Kundu et 

al. (2020) proposed a multiview fusion method, demonstrating 

its ability to achieve significantly better 3D semantic 

segmentation for indoor models. Building upon these 

advancements, Selvaraju et al. (2021) introduced a mesh-based 

graph neural network approach, leveraging modern deep 

backbones to automate the labelling of 3D building meshes. 

 

In this context, it's crucial to emphasize the gap in the existing 

literature. The literature highlights the need for improved 

methodologies for generating CityGML data, particularly with 

regards to semantic mapping and scalability. However, while 

deep learning has shown potential in other domains, its 

application to semantic segmentation in CityGML generation 

remains relatively unexplored. Thus, this study aims to explore 

the gap by investigating the efficacy of deep learning techniques 

for semantic segmentation in the context of CityGML 

generation. Specifically, we seek to evaluate the performance of 

deep learning models in accurately segmenting building 

components from 3D model data and assess their potential for 

enhancing the generation of semantic-rich CityGML models. 
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Figure 1 illustrates the overall process flow from 3D building 

models to a CityGML model, with the core segmentation 

process at the centre. 

 

 

Figure 1. The overall flow of the building segmentation within 

CityGML. 

 

The remainder of the paper describes the methodology in 

Section 2, discusses the findings in Section 3, and presents the 

conclusion in Section 4. 

 

2. Methodology 

This section describes the methodology for semantic 

segmentation of 3D building data by utilizing graph neural 

networks (GNN) and converting them into 3D GIS data 

standard such as CityGML. The focus is to segmentize the 

building exteriors with deep learning, providing a detailed 

representation of the model's structure. Figure 2 shows the 

processes involved in semantic segmentation - dataset, data 

preprocessing, AI development, inference, conversion to 

CityGML, and validation. 

 

 
 

Figure 2. The process of semantic segmentation of 3D building 

data into CityGML. 

 

2.1 Semantic Segmentation Through Deep Learning 

Semantic segmentation in 3D models involves classifying 

different parts or components within a three-dimensional space. 

Unlike traditional pixel-based segmentation, this approach 

works directly on mesh data or point clouds, contributing to a 

more detailed understanding of the structural composition of 

urban environments. In adapting semantic segmentation to 3D 

models, various algorithms have been proposed to address the 

complexities of spatial data. These algorithms often incorporate 

graph neural networks (GNNs) and other deep learning 

techniques to effectively segment mesh data or point clouds. 

Examples include PointNet++ (Qi et al., 2017), MeshCNN 

(Hanocka et al., 2019), and MinkNet (Choy et al., 2019), each 

designed to capture and interpret the spatial relationships within 

3D structures. The application of semantic segmentation to 3D 

models has potential for GIS, especially in the context of 3D 

building models conforming to the CityGML standard. This 

technique would enable the annotation and classification of 

distinct components within urban landscapes, facilitating a 

detailed representation of buildings and their features. 

 

Current studies have investigated the segmentation of point 

clouds for urban feature extraction, but there is a notable gap in 

the application of advanced segmentation techniques to enrich 

the semantic content of 3D building models within CityGML 

standards. The advancement of semantic segmentation through 

deep learning offers prospects for enhancing the semantic 

content of 3D building models. By automating the segmentation 

of 3D building structures, this study aims to contribute to the 

development of enriched CityGML data. In this study, the 

labelling of semantic components involves the implementation 

of a specialized Graph Neural Network (GNN) known as 

BuildingGNN (Selvaraju et al., 2021). BuildingGNN serves as a 

tool for semantic segmentation, demonstrating its ability to label 

building models through an intricate analysis of spatial and 

structural relations among geometric primitives. The efficacy of 

BuildingGNN in the semantic labelling of 3D building data has 

been documented in research literature. Its notable performance 

has sparked interest for further research endeavours within the 

domain. The BuildingGNN approach operates by segmenting 

distinct "subgroups" within a building, treating each subgroup 

as a foundational component (i.e. windows, doors, roofs, and 

walls). The approach generates detailed representations for 

individual building components and establishes connections 

between the components using an edge-based approach 

(Selvaraju et al., 2021). 

 

2.2 Semantic Segmentation Model Development 

An essential aspect of developing the semantic segmentation 

model involves acquiring a quality labelled dataset. The dataset 

chosen for the model training comes from the BuildingNet 

dataset, and accessible at https://buildingnet.org. This dataset 

functions as a comprehensive repository of 3D building models, 

each uniformly labelled with exterior annotations for various 

architectural components. BuildingNet exhibits diversity, 

encompassing a range of architectural styles, sizes, and 

complexities. As detailed by Selvaraju et al. (2021), this dataset, 

methodically curated from Trimble's 3D Warehouse, results 

from a combination of crowdsourcing and expert guidance, 

yielding 513,000 annotated mesh primitives grouped into 

292,000 semantic part components across 2,000 diverse 

building models. 

 

2.2.1 Data Preprocessing 

 

Given our utilization of the BuildingGNN framework, which 

employs the Minkowski Engine for efficient processing of 

sparse tensors in 3D space, preprocessing the dataset is 

essential. This ensures compatibility with the Minkowski 

network architecture. The Minkowski Engine excels at handling 

irregular, sparse data structures commonly encountered in 3D 

semantic segmentation tasks. In preparation for the Minkowski 

network, we performed preprocessing on the BuildingNet 

dataset. This involved organizing the data into training, testing, 

and validation subsets, as well as formatting appropriately for 

the consumption of the Minkowski network. This step ensures 

that the dataset aligns with the BuildingGNN’s input pipeline, 

which operates optimally with specific data structures and 

formats. This preprocessing not only streamlines the data 

ingestion process but also lays the groundwork for seamless 

integration with the BuildingGNN architecture, maximizing its 

effectiveness in semantic segmentation tasks. 
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2.2.2 Training Model Configuration 

 

The training of the BuildingGNN model is organized by a shell 

script that encapsulates essential configurations crucial for 

model convergence and performance optimization. The script 

specifies key parameters, including the number of epochs set to 

200 for comprehensive training. The model architecture 

employed is a variant of the Residual U-Net with 34 

convolutional layers Res16UNet34C. Batch size is set to 32 to 

balance computational efficiency and memory utilization. 

Particularly, the script leverages CUDA-compatible GPUs to 

accelerate model training, ensuring expedited convergence. 

Additionally, the training process does not involve pretraining, 

suggesting that the model is trained from scratch using the 

specified dataset and configurations. 

 

2.2.3 Evaluation Metrics 

 

BuildingGNN introduces innovative evaluation methodologies 

tailored specifically for the semantic segmentation of 3D 

building structures, aiming to provide a comprehensive 

assessment of model performance. In the mesh track, traditional 

evaluation metrics are adapted to accommodate triangular 

meshes. BuildingGNN proposes modified Intersection over 

Union (IoU) variations that consider the contribution of each 

triangle, weighted by its face area, to offer a nuanced evaluation 

of segmentation accuracy. 

 

In the evaluation process, BuildingGNN employs three primary 

metrics: part IoU, shape IoU, and per-triangle classification 

accuracy. Part IoU evaluation involves utilizing all annotated 

triangles across the test dataset, integrating both predicted and 

ground-truth labels. By incorporating triangle face areas into the 

IoU calculation, BuildingGNN aims to capture the spatial 

significance of individual triangles, providing insights into part-

level segmentation accuracy. The shape IoU metric extends this 

evaluation to entire shapes, considering the diverse label 

distributions within annotated shapes. 

 

Additionally, BuildingGNN reports per-triangle classification 

accuracy, acknowledging the impact of triangle size on 

classification performance. This evaluation framework enhances 

the interpretability of model results and facilitates a deeper 

understanding of semantic segmentation performance in 

complex 3D environments. 

 

2.3 Converting Semantic Labels to CityGML 

CityGML, designated as the standard data format for 3D city 

models, provides a robust framework for organizing and 

exchanging urban information. In our research, we leverage the 

capabilities of BuildingGNN to convert semantic labels into 

CityGML representations. This process plays a crucial role in 

integrating semantic information into standardized 3D city 

models, enhancing their utility for various urban applications. 

 

While BuildingGNN encompasses over 20 labelled classes, our 

current exploration narrows down to a subset of CityObjects 

and thematic surfaces within the CityGML schema. 

Specifically, we concentrate on five primary classes: roof, wall, 

window, door, and ground surfaces. This selective approach 

allows us to delve into initial experimentation and explore the 

integration of semantic information within CityGML 

representations.  

 

As part of the processing pipeline, BuildingGNN generates 

predictions in the form of labelled outputs stored in NPZ 

format. These outputs contain essential information, including 

predicted labels and per-triangle identifiers. This detailed data 

enables thorough analysis and evaluation of semantic 

segmentation results. To seamlessly integrate these outputs into 

CityGML representations using FME, we employ a conversion 

step that transforms NPZ files into JSON format. This 

conversion ensures efficient data processing and compatibility 

with downstream workflow. 

 

Figure 3 illustrates the implementation of the conceptual 

mapping facilitated by FME, comprising several detailed steps 

for data processing and conversion into CityGML. The process 

begins with loading the labeled outputs in JSON format 

generated by BuildingGNN. These outputs contain valuable 

information about building features such as doors, windows, 

and walls. Once the data is loaded, a geometry filter is applied 

within the FME workspace. This filter categorizes features 

based on their geometry type, ensuring that each feature is 

accurately identified according to its geometric properties. 

Following this, an attribute filter is applied based on the class 

label IDs to further organize the data. 

 

Subsequently, CityGML geometry and attribute property setters 

are utilized to format the data according to CityGML standards. 

This step involves mapping the semantic labels to the 

corresponding CityGML classes and attributes, ensuring 

coherence and alignment with CityGML's structured data 

model. This mapping is crucial for maintaining the integrity and 

usability of the data in CityGML format. Finally, a CityGML 

data writer completes the process by generating a CityGML file. 

For this work, CityGML version 2.0 is chosen, with LOD3 

multi-surface representation to support the creation of detailed 

building features, including openings such as windows and 

doors. This version and level of detail are selected to ensure the 

accurate and detailed representation of the building models in 

the CityGML format. 

 

By harnessing BuildingGNN’s capabilities, we establish a 

foundation for future endeavours. Our iterative approach aims 

to enrich CityGML representations with a comprehensive range 

of semantic attributes. This not only facilitates efficient data 

conversion but also deepens our understanding of the potential 

applications and implications of semantic urban modelling 

within the CityGML framework. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W11-2024 
19th 3D GeoInfo Conference 2024, 1–3 July 2024, Vigo, Spain

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-97-2024 | © Author(s) 2024. CC BY 4.0 License.

 
99



 

 
Figure 3. Implementation of the conceptual mapping from the generated labels to CityGML. 

 

 

3. Discussions 

In this study, the utilization of BuildingGNN for semantic 

segmentation of 3D building models, coupled with the 

conversion of semantic labels into the CityGML format, has 

provided insights into the accuracy and reliability of the 

process. The application of deep learning techniques, 

specifically tailored for 3D building structures, has 

demonstrated the ability of BuildingGNN to label architectural 

components.  

 

3.1 Evaluation of Semantic Segmentation 

 

Initial evaluation of the model training reveals the use of the 

IoU metric to assess segmentation performance. Table 1 

presents the segmentation performance of the trained model 

based on triangle meshes. Notably, the highest accuracy was 

achieved for the "Ground" class, while the accuracy varied for 

other classes such as Roof, Wall, Window, and Door. 

 

 

Classes IoU 

Roof 88.92 

Wall 76.13 

Window 72.05 

Door 40.28 

Ground 95.37 
 

Table 1. Evaluation metrics of each label class. 

 

Meanwhile, Figure 4 visually represents the final output of the 

semantic conversion process, depicting CityGML building 

models. Following the initial automatic generation of labels by 

the GNN models, manual corrections were implemented to 

address instances of incomplete or incorrect labelling. This 

iterative refinement process ensures the accuracy and 

completeness of the final semantic labels. In the rendered 

CityGML models, distinct colours are employed to represent 

various architectural components. The green delineates roof 

surfaces, while shades of blue depict window elements. The 

brown tones signify wall structures within the urban landscape. 

 

 

 

 

 
Figure 4. 3D models of CityGML with embedded semantic 

information. 

 

The lower accuracy observed for the "Door" class in semantic 

segmentation can be attributed to several factors inherent to the 

complexities of urban environments and the nuances of deep 

learning models. Firstly, class imbalance within the training 

dataset plays a role, as datasets often exhibit variations in the 

distribution of labeled classes. In the case of doors, there are 

fewer instances of annotated doors compared to other classes, so 

the model may not receive sufficient exposure to effectively 

learn the distinguishing features of doors. Figure 5 shows a 

close-up view of one of the 3D building models, highlighting 

the similar shapes of windows and doors. 

 

 
Figure 5. Close-up view of the 3D building models. 

 

Moreover, the inherent complexity and variability of doors in 

urban settings pose significant challenges for correct 

segmentation. Doors come in various shapes, sizes, orientations, 

and contexts, rendering them highly diverse architectural 

elements. This variability introduces considerable ambiguity 

and intricacy into the segmentation task, making it difficult for 
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the model to generalize effectively across different door types 

and conditions. We believe the preceding discussion warrants us 

for the challenges in developing a reliable and complete process 

for the segmentation. 

 

3.2 The Training Data Quality Challenges  

 

The quality of training data significantly impacts model 

performance. In our observations, we have encountered 

instances of inaccurate or inconsistent annotations. These issues 

include mislabeling and missing components, which can 

propagate errors throughout the training process. Ultimately, 

such issues undermine the model’s ability to accurately discern 

and classify doors. 

 

To address these challenges effectively, consider implementing 

robust annotation guidelines. Provide clear definitions and 

examples for each class to ensure a shared understanding among 

annotators. A standardized annotation protocol, complete with 

specific guidelines for labeling criteria and tools, can help 

maintain data quality. Keep in mind that while these measures 

may require additional time, cost, and resources, they are 

critical for ensuring reliable and effective models in real-world 

applications. 

 

Furthermore, the architectural complexities of doors—

characterized by detailed designs, handles, and textures—pose 

additional challenges for segmentation models. Exploring 

advanced model architectures and strategies to augment model 

capacity can potentially enhance performance in handling these 

complexities. 

 

3.3 Downsampling of 3D Models 

 

Downsampling of 3D data is a common preprocessing step in 

semantic segmentation tasks. This process involves reducing the 

spatial resolution of the input data. The primary motivation 

behind downsampling is to manage the computational 

complexity associated with processing high-resolution 3D data. 

By aggregating information from neighboring geometries or 

points, downsampling achieves a more balanced representation 

of the input data, thereby enhancing the model’s ability to 

generalize. 

 

However, downsampling introduces trade-offs. The reduction in 

spatial resolution leads to a loss of detail in the data, which can 

impact the model’s performance - especially in tasks that 

require precise localization or identification of fine-grained 

features. Additionally, downsampling may introduce spatial 

aliasing artifacts. These artifacts occur when high-frequency 

components of the data are incorrectly represented at lower 

resolutions, potentially leading to inaccuracies in segmentation 

results. 

 

When implementing downsampling as part of the preprocessing 

pipeline, careful consideration is essential. A balance between 

computational efficiency and preservation of relevant 

information is crucial. Optimizing downsampling parameters, 

such as the size or sampling rate, helps minimize information 

loss while still acquiring computational benefits. 

 

3.4 CityGML Conversion Challenges 

 

During the process of converting labeled data to CityGML 

format, a notable challenge emerges - specifically, the 

identification of architectural elements such as windows, doors, 

and roofs. Currently, this identification relies on the presence of 

specific geometry groups within the input mesh model. These 

geometry groups act as markers or indicators for different 

architectural components. However, when this information is 

missing or incomplete in the input data, it poses significant 

hurdles during the conversion process. As a result, the resulting 

CityGML models may lack the desired level of detail and 

specificity, impacting their usability and interoperability in 

urban modeling applications. 

 

To address this challenge effectively, consider employing 

strategies for robust geometry detection and classification 

within the input mesh models. Techniques such as geometric 

pattern recognition, feature extraction, or rule-based inference 

can be leveraged to infer the presence and characteristics of 

architectural elements based on geometric properties and spatial 

relationships within the mesh data. By overcoming these 

challenges, the conversion of labeled data to CityGML can yield 

more accurate and semantically rich representations of urban 

environments. This, in turn, facilitates improved analysis, 

visualization, and decision-making in urban planning and 

management. 

 

4. Conclusion and Near Future Work  

In summary, this study has demonstrated the potential of 

utilizing deep learning for semantic segmentation and its 

integration with CityGML. However, critical challenges and 

opportunities lie ahead for the field. Our current findings 

represent only the initial steps in a complex journey toward 

more effective and reliable labeling processes for semantic 

urban data. While deep learning holds promise, it is not yet fully 

ready for real-world applications. 

 

One major concern is the high tendency for mislabeling, which 

necessitates additional effort to correct. Manual intervention 

may be required to ensure effectiveness, adding extra time and 

resources to the process. To enhance our work, we can explore 

incorporating georeferenced objects, making it more useful for 

Geographic Information Systems (GIS) purposes. 

 

Looking ahead, it is crucial to critically assess the limitations 

and shortcomings of existing segmentation models. Complex 

architectural designs, varying data quality, and the inherent 

ambiguity of urban scenes pose significant challenges that 

demand deeper exploration. Future research efforts may focus 

on developing more robust and adaptable segmentation 

algorithms. 

 

Furthermore, automating the conversion pipeline process 

presents its own set of challenges. While advances in machine 

learning and geospatial technologies offer promising 

opportunities, seamless integration with CityGML remains 

complex. Addressing issues such as data interoperability, 

standardization of semantic labels, and scalability of conversion 

pipelines requires diligent attention. 
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