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Abstract

The Sentinel-2 (S2) mission from the European Space Agency’s Copernicus program provides essential data for Earth surface
analysis. Its Level-2A products deliver high-to-medium resolution (10-60 m) surface reflectance (SR) data through the MultiSpectral
Instrument (MSI). To enhance the accuracy and comparability of SR data, adjustments simulating a nadir viewing perspective
are essential. These corrections address the anisotropic nature of SR and the variability in sun and observation angles, ensuring
consistent image comparisons over time and under different conditions. The c-factor method, a simple yet effective algorithm,
adjusts observed S2 SR by using the MODIS BRDF model to achieve Nadir BRDF Adjusted Reflectance (NBAR). Despite the
straightforward application of the c-factor to individual images, a cohesive Python framework for its application across multiple S2
images and Earth System Data Cubes (ESDCs) from cloud-stored data has been lacking. Here we introduce sen2nbar, a Python
package crafted to convert S2 SR data to NBAR, supporting both individual images and ESDCs derived from cloud-stored data.
This package simplifies the conversion of S2 SR data to NBAR via a single function, organized into modules for efficient process
management. By facilitating NBAR conversion for both SAFE files and ESDCs from SpatioTemporal Asset Catalogs (STAC),
sen2nbar is developed as a flexible tool that can handle diverse data format requirements. We anticipate that sen2nbar will
considerably contribute to the standardization and harmonization of S2 data, offering a robust solution for a diverse range of users
across various applications. sen2nbar is an open-source tool available at https://github.com/ESDS-Leipzig/sen2nbar.

1. Introduction

The Sentinel-2 (S2) mission from the Copernicus program of
the European Space Agency (ESA), comprising the Sentinel-
2A (S2A) and Sentinel-2B (S2B) satellites, is equipped with the
MultiSpectral Instrument (MSI) sensor (Drusch et al., 2012).
This sensor is designed to capture data across various spectral
bands with high-to-medium spatial resolutions (Table 1). The
Level-2A product from S2 provides surface reflectance (SR)
data, which are indispensable for detailed Earth surface ana-
lysis. This product has been employed in diverse applications,
examples include the estimation of carbon fluxes (Pabon-Moreno
et al., 2022), the investigation of vegetation dynamics using
spectral indices (Montero et al., 2023a), and Land Use and Land
Cover (LULC) products generation via Artificial Intelligence
(AI) models (Brown et al., 2022). The utility of S2 SR data
is significantly enhanced through the incorporation into Earth
System Data Cubes (ESDCs, Mahecha et al., 2020; Montero
et al., 2023b), which offer an organized spatiotemporal frame-
work, allowing for simplified multitemporal analyses.

While S2 SR data is widely used, its viewing angle (±10.3°)
and field of view (20.6°) amplify Bidirectional Reflectance Dis-
tribution Function (BRDF) effects due to SR anisotropy (Roy et
al., 2017b). To minimize BRDF effects, adjustments simulat-
ing a nadir viewing perspective are needed (Roy et al., 2016).
These corrections address the directional effects arising from
the anisotropic nature of SR and the variability of sunlight and
satellite viewing angles. Such adjustments are crucial for the

consistent comparison of images taken at different times and
under various sensor acquisition conditions. This is particu-
larly important for the processing and analysis of analysis-ready
ESDCs, which are increasingly utilized due to their organized
spatiotemporal structure and the simplicity of generating them
from cloud-stored data (Montero et al., 2023b).

The spectral parameters derived from the MODIS BRDF model
facilitate the computation of directional reflectance across any
specified sensor viewing and solar angles (Roy et al., 2008).
Using this framework, Roy et al. (2008, 2016) introduced the c-
factor method, a straightforward approach for adjusting Landsat
SR data by applying the MODIS spectral BRDF model para-
meters. This adjustment yields Nadir BRDF Adjusted Reflect-
ance (NBAR) by multiplying the observed Landsat SR with the
ratio of reflectances predicted by the MODIS BRDF model for
both the observed Landsat SR and a standard nadir view un-
der fixed solar zenith conditions. Roy et al. (2017b) and Roy
et al. (2017a) extended this methodology for multiple S2 spec-
tral bands. Despite the simplicity of the c-factor method for
individual S2 images, a unified Python framework for applying
this conversion uniformly across multiple images, especially for
ESDCs derived from SpatioTemporal Asset Catalogs (STAC),
is missing so far.

This paper presents sen2nbar, an open-source Python package
designed to facilitate converting S2 SR data to NBAR using
the c-factor method. sen2nbar is engineered to support both
automatic NBAR conversions through a single function, ac-
commodating SAFE files and ESDCs derived from STAC. The
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Name Band Resolution (m) Wavelength (nm) fiso fgeo fvol Reference
Sentinel-2A Sentinel-2B

Blue B02 10 496.6 492.1 0.0774 0.0079 0.0372 Roy et al. (2017b)
Green B03 10 560.0 559.0 0.1306 0.0178 0.0580 Roy et al. (2017b)
Red B04 10 664.5 665.0 0.1690 0.0227 0.0574 Roy et al. (2017b)
Red Edge 1 B05 20 703.9 703.8 0.2085 0.0256 0.0845 Roy et al. (2017a)
Red Edge 2 B06 20 740.2 739.1 0.2316 0.0273 0.1003 Roy et al. (2017a)
Red Edge 3 B07 20 782.5 779.7 0.2599 0.0294 0.1197 Roy et al. (2017a)
NIR B08 10 835.1 833.0 0.3093 0.0330 0.1535 Roy et al. (2017b)
SWIR 1 B11 20 1613.7 1610.4 0.3430 0.0453 0.1154 Roy et al. (2017b)
SWIR 2 B12 20 2202.4 2185.7 0.2658 0.0387 0.0639 Roy et al. (2017b)

Table 1. BRDF spectral parameters for the Sentinel-2 bands.

document is organized into the following sections: Section 2
presents the sen2nbar framework, elaborating on the modules
that simplify the processing steps; Section 3 illustrates the ap-
plication of sen2nbar, providing practical examples; Section 4
explores the limitations of sen2nbar as well as its potential,
with a particular emphasis on AI; and Section 5 summarizes
our conclusions.

2. The sen2nbar Python package

The sen2nbar package, developed in Python, facilitates the
conversion of S2 L2A Surface Reflectance values into NBAR
values through a single function. To achieve this higher level,
the package is structured into several modules, ensuring a meth-
odical conversion process leveraging multidimensional arrays
via xarray (Hoyer and Hamman, 2017) and numpy (Harris et
al., 2020):

2.1 The axioms module

This module stores the predefined MODIS BRDF spectral model
parameters, namely fiso(λ), fvol(λ), and fgeo(λ) (as shown in
Table 1), in addition to preserving the values corresponding to
the spatial resolution of each spectral band. In accordance to
the methodology proposed by Roy et al. (2017a,b), our imple-
mentation encompasses all spectral bands except for the Aer-
osols (B01) and the narrow NIR (B8A) bands. Consequently,
the NBAR values are not computed for B01 and B8A bands.
Also note that for the S2 Red Edge bands, the BRDF spectral
model parameters were determined through a process of linear
interpolation between the red and NIR MODIS BRDF spectral
model parameters (Roy et al., 2017a).

2.2 The metadata module

This module is tasked with the extraction of two critical sets
of data from the scene’s metadata files (MTD MSIL2A.xml and
MTD TL.xml, Figure 1a), essential for the computation and har-
monization of NBAR values: firstly, it extracts the sun and
sensor viewing angles; secondly, it determines the processing
baseline of the scene. The acquisition of this information is con-
ducted directly from the metadata file when dealing with SAFE
files1. Alternatively, when operating with ESDCs construc-
ted via stackstac or cubo (Montero et al., 2024), the mod-
ule retrieves the requisite data from the corresponding metadata
STAC asset within a specific item in a STAC catalog using the
requests library. This dual-path approach ensures flexibility
and adaptability in processing various data sources for NBAR
computation and harmonization.

1 https://sentinels.copernicus.eu/web/sentinel/

user-guides/sentinel-2-msi/data-formats

2.2.1 Solar and sensor viewing angles: The extraction pro-
cess for solar and sensor viewing angles in degrees involves the
aggregation of detector-specific data across each spectral band
into a unified 4-dimensional array A ∈ R|Λ|×|Θ|×H×W . This
array is structured with dimensions |Λ| = |B|+1, where B are
the bands undergoing conversion (with an additional index al-
located for solar information) and Λ is the set of bands added to
the solar component; |Θ| = 2 (the number of extracted angles,
i.e. Θ = {zenith, azimuth}); and H = W = 23, reflecting the
spatial resolution of this information (5 km). The assignment
of spatial coordinate values within this grid uses the Upper Left
(UL) X (ULX) and Y (ULY) coordinates, derived from the tile’s
geocoding information.

2.2.2 Processing Baseline: The Processing Baseline (PB)
of the scene is extracted and converted into a floating-point nu-
merical format. This PB version serves as a criterion for ini-
tiating a harmonization procedure for scenes possessing a PB
version of 4.00 or greater.

2.3 The kernels module

A kernel-based BRDF model integrates various scattering mech-
anisms as a linear combination of distinct scattering modes,
termed kernels (Lucht et al., 2000). The Ross-Li BRDF model
(Section 2.4), also known as the Ross-Thick/Li-Sparse Recip-
rocal BRDF model, which is the standard for MODIS BRDF
(Lucht et al., 2000), is composed of three components: the iso-
tropic scattering parameter, the radiative transfer-type volumet-
ric scattering kernel (Volumetric Kernel Kvol), and geometric-
optical surface scattering kernel (Geometric Kernel Kgeo). The
objective of this module is to calculate the volumetric and geo-
metric kernels. The computation of these kernels adheres to
the mathematical formulations presented by Lucht et al. (2000).
Here we use the solar zenith angle θ = A{sun, zenith}, the view
zenith angle ϑ = A{B, zenith}, and the view-sun relative azi-
muth angle ϕ = A{sun, azimuth} − A{B, azimuth} (all angles ex-
pressed in radians). Note that θ ∈ RH×W (since it is a 2-
dimensional array representing the solar zenith angle) while
ϑ, ϕ ∈ R|B|×H×W (since they are 3-dimensional arrays rep-
resenting the zenith and relative azimuth angles for all bands).
This implies that Kvol(θ, ϑ, ϕ), Kgeo(θ, ϑ, ϕ) ∈ R|B|×H×W :

2.3.1 Volumetric Kernel: The Volumetric Kernel Kvol in
the Ross-Li BRDF model is represented by the RossThick ker-
nel (Roujean et al., 1992), which is based on the radiative trans-
fer theory presented by Ross (1981):

Kvol(θ, ϑ, ϕ) =
(π/2− ξ) cos ξ + sin ξ

cos θ + cosϑ
− π

4
(1)

Where cos ξ = cos θ cosϑ+ sin θ sinϑ cosϕ.
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Figure 1. Flowcharts depicting the process of computing NBAR for SAFE files (a) and ESDCs (b). In (a), NBAR values are calculated
for each spectral band and subsequently stored either as GeoTIFF or Cloud Optimized GeoTIFF (COG) within a newly created folder
titled “NBAR” inside the original SAFE file’s directory. For ESDCs, depicted in (b), the NBAR computation results in the generation

of a new ESDC, represented as an xarray object. The dashed arrows linking the STAC object in (b) signify that this procedure is
automated, eliminating the need for users to manually extract items from the STAC.

2.3.2 Geometric Kernel: The Geometric KernelKgeo in the
Ross-Li BRDF model is represented by the LiSparse kernel
(Wanner et al., 1995), which is based on the geometric-optical
mutual shadowing BRDF model by Li and Strahler (1992):

Kgeo(θ, ϑ, ϕ) = O − sec θ′ − secϑ′

+
1

2
(1 + cos ξ′) sec θ′ secϑ′ (2)

where

O =
1

π
(t− sin t cos t)(sec θ′ + secϑ′) (3)

cos t =
h

b

√
D2 + (tan θ′ tanϑ′ sinϕ)2

sec θ′ + secϑ′ (4)

D =
√

tan2 θ′ + tan2 ϑ′ − 2 tan θ′ tanϑ′ cosϕ (5)

cos ξ′ = cos θ′ cosϑ′ + sin θ′ sinϑ′ cosϕ (6)

θ′ = tan−1

(
b

r
tan θ

)
(7)

ϑ′ = tan−1

(
b

r
tanϑ

)
(8)

Here, the cos t term is constrained to [-1,1], h/b = 2, and
b/r = 1 (Lucht et al., 2000).

2.4 The brdf module

This module is dedicated to the computation of the Ross-Li
BRDF model, leveraging the scattering kernels sourced from
the kernels module and the BRDF spectral parameters ob-
tained from the axioms module, in accordance with the math-
ematical framework outlined by Lucht et al. (2000). Prior to
computation, the BRDF spectral model parameters are trans-
formed into xarray.DataArray objects such that fiso, fvol, fgeo

∈ R|B|. This enhances the efficiency and scalability of the
BRDF model computation. Consequently, this computation of
the Ross-Li BRDF model outputs values as a multidimensional
array BRDF(θ, ϑ, ϕ) ∈ R|B|×H×W :

BRDF(θ, ϑ, ϕ) = fiso + fvolKvol(θ, ϑ, ϕ)

+fgeoKgeo(θ, ϑ, ϕ)
(9)

2.5 The c factor module

This module is tasked with calculating the c-factor, adhering to
the methodology delineated by Roy et al. (2008). The c-factor
is instrumental in modifying the reflectance values to align with
any given viewing or solar geometry, as outlined by Roy et al.
(2016). To standardize the reflectance measurements to a nadir
viewing zenith angle, the value of the viewing zenith angle, ϑ,
is predetermined to be 0. Note that c(θ, ϑ, ϕ) ∈ R|B|×H×W :
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Figure 2. Diagram illustrating the c-factor computation block. The arrays depicted in this block serve as examples derived from a
single metadata file, with the understanding that values could vary across different files.

c(θ, ϑ, ϕ) =
BRDF(θ, 0, ϕ)
BRDF(θ, ϑ, ϕ)

(10)

Furthermore, this module integrates information and function-
alities from preceding modules to directly derive the c-factor
from a metadata file, establishing a comprehensive function spe-
cifically tailored for SAFE files. Additionally, recognizing the
accessibility of metadata files through STAC items, a separate
function has been developed to compute the c-factor directly
from STAC items. This latter function is notably equipped
with the capability to reproject the c-factor to a designated CRS
when required. This reprojection feature is essential for en-
suring the alignment and consistency of ESDCs created from
scenes that originate in varying CRS, thereby facilitating their
integration and analysis within a unified spatial framework.

2.6 The nbar module

This module is designed to compute NBAR values, tailored to
the format of the input data, whether they are SAFE files or
ESDCs constructed via stackstac or cubo:

2.6.1 SAFE files: For SAFE files (Figure 1a), the spatial
resolution is band-specific, denoted as λ ∈ B, leading to the
necessity of computing NBAR values for each λ independently.
Let ρλ ∈ RHλ×Wλ represent the SR of band λ, with Hλ and
Wλ indicating its spatial dimensions. Initially, metadata files
are used to extract the PB ∈ R+ and to compute the c-factor
c(θ, ϑ, ϕ) ∈ R|B|×H×W . The PB is then applied to harmonize
ρλ if required:

ρ∗λ =

{
ρλ − 1000, if PB ≥ 4,

ρλ, otherwise
(11)

Here, ρ∗λ signifies the harmonized SR values. Subsequently,
the NBAR values are computed. It’s important to note that the
c-factor is derived using the original spatial resolution of the
angle information (5 km), which makes the computation faster
compared to performing angle interpolation beforehand. There-
fore, c(θ, ϑλ, ϕλ) undergoes bilinear interpolation, denoted by
the function I such that I : RH×W → RHλ×Wλ , to align with
the original resolution of band λ. The NBAR values are then
generated as follows:

NBARλ = I(c(θ, ϑλ, ϕλ))× ρ∗λ (12)

Resulting NBAR images are subsequently exported individu-
ally into the same SAFE file directory, available in either COG
or GeoTIFF formats.

2.6.2 Earth System Data Cubes: For ESDCs constructed
from STAC (Figure 1b), the spatial resolution is predefined,
enabling the generation of NBAR values for the entire ESDC
via operations on multidimensional arrays. We denoted ρT ∈
R|T |×|B|×Hr×Wr as the SR of the ESDC, where T represents
the temporal dimension items, andHr andWr are its spatial di-
mensions at resolution r, alongside the bounding box (BBox) of
the ESDC. Initially, the module accesses the STAC, retrieving
metadata files and PB values for each item τ ∈ T . For each
τ , the c-factor cτ (θτ , ϑτ , ϕτ ) is calculated and subsequently
concatenated along the temporal dimension such that cT =
[cτ (θτ , ϑτ , ϕτ )]τ∈T , resulting in cT ∈ R|T |×|B|×H×W . The
PB values for each τ are also concatenated as PBT ∈ R|T |.
This array facilitates the harmonization of ρT :

ρ∗T =

[{
ρτ − 1000, if PBτ ≥ 4,

ρτ , otherwise

]
τ∈T

(13)

Here, ρ∗T represents the harmonized SR values of the ESDC.
Following this, NBAR values are calculated. Given that the c-
factor is derived from the original spatial resolution of angle in-
formation, it undergoes bilinear interpolation through function
I such that I : R|T |×|B|×H×W → R|T |×|B|×Hr×Wr , align-
ing with the predetermined resolution and BBox of ρ∗T . This
process enables NBAR computation for ESDCs with uniform
spatial dimensions (Hr = Wr , as in cubes generated via cubo)
and for those with non-uniform dimensions (Hr ̸= Wr , as in
cubes generated via stackstac). Note that I only interpolates
the spatial dimensions H and W . The NBAR values are then
derived as follows:

NBART = I(cT )× ρ∗T (14)

3. Showcase

In a case study designed to showcase the capabilities of the
sen2nbar package in handling multidimensional data, we util-
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Figure 3. ESDCs illustrating the difference between NBAR and SR values. The initial ESDC presents an RGB composite utilizing
visible bands to create a true color reference image. The maximum (blue) and minimum (red) ∆ρ values for each band are indicated

in the lower-right corner of the corresponding ESDC.

ized an ESDC of S2 L2A data generated for the Hainich Natural
National Park area, proximate to the DE-Hai Eddy Covariance
tower (Knohl et al., 2003), a deciduous broadleaf forest in Ger-
many, using cubo (Montero et al., 2024). The ESDC was craf-
ted with a uniform resolution of 10 meters (r = 10) across all
bands, featuring an edge size of 128 pixels, which translates to
Hr = Wr = 128. This ESDC covers the period from 2021-
01-01 to 2023-12-31, focusing on images with less than 10%
cloud coverage for analysis, encompassing a total of 90 images
(|T | = 90). It includes all S2 bands with the exception of B01
and B8A. Data from both satellites (S2A and S2B) were incor-
porated.

Utilizing the aforementioned ESDC, NBAR values were com-
puted, followed by the calculation of the difference:

∆ρ = NBART − ρ∗T (15)

This metric shows the variations in reflectance values when
transitioning from SR to NBAR data, particularly within the
spatiotemporal framework of the ESDC. Figure 3 illustrates the
∆ρλ for the ESDCs. Spatially, while the reflectance scales ac-
cording to the c-factor and shows minimal variance owing to
the confined area of study, the temporal variations are more pro-
nounced, underscoring the significance of NBAR for accurate
multitemporal analysis. This effect is especially marked in the
Red Edge-NIR region, where discrepancies between values are
more substantial compared to other bands. However, it’s im-
portant to note that the maximum and minimum ∆ρ values ex-
hibit similar ranges across all bands, highlighting the impact of
NBAR adjustments.

Reflectance changes, as highlighted previously, can greatly in-
fluence the derivation of various products. To illustrate this ef-
fect, we computed four widely used vegetation indices for both
the NBART and ρ∗T : the Normalized Difference Vegetation
Index (NDVI, Rouse et al., 1974), the Near-Infrared Reflect-
ance of Vegetation (NIRv, Badgley et al., 2017), the Kernel
NDVI (kNDVI, Camps-Valls et al., 2021), and the Inverted Red

Edge Chlorophyll Index (IRECI, Frampton et al., 2013). Addi-
tionally, the difference between the indices derived from NBAR
values and those from SR values was calculated as:

∆ψ = ψNBAR − ψρ∗ (16)

Here, ψ represents the index in question. Figure 4 displays the
∆ψ for the ESDCs. It is noted that the impact on NDVI is min-
imal, but it considerably increases for the other indices, particu-
larly for kNDVI and IRECI, where the largest absolute changes
observed reach values of 0.051 and 0.087, respectively. This
variance underlines that the influence of reflectance adjustments
on derived indices is index-dependent and can be substantial
enough to potentially skew analysis reliant on these derived fea-
tures.

4. Discussion

Here we present various factors that either constrain or enhance
the capabilities of sen2nbar, focusing on data providers and
scalability. As we discuss below, this approach enhances the
possibilities for big data computations, workflow generation to-
wards analysis-ready data cubes, and therefore eases the applic-
ation of novel artificial intelligence (AI) methods.

4.1 The Impact of Metadata Availability

sen2nbar is fully operational with SAFE files, which are widely
accessible as they are publicly available (including metadata
files). When it comes to ESDCs, sen2nbar is compatible with
those generated from STAC, particularly from public collec-
tions. A prime example of this compatibility is with the S2
L2A collection from the Microsoft Planetary Computer STAC,
which possesses the required metadata files for transforming
SR to NBAR values. Conversely, sen2nbar does not support
the S2 L2A collection from the Element84 STAC due to the ab-
sence of necessary metadata files. Similarly, while tools like
cubo facilitate the creation of ESDCs from GEE, the lack of
metadata files in this context precludes the calculation of NBAR
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Figure 4. ESDCs illustrating the difference between indices calculated using NBAR and SR values. The first row presents the four
calculated indices using the SR values. The second row presents the ∆ψ values for each ESDC. The maximum (green) and minimum

(brown) ∆ψ values for each index are indicated in the lower-right corner of the corresponding ESDC.

values. Future versions of sen2nbar may overcome these lim-
itations by enabling the interconnection of STAC assets (lever-
aging data from one STAC provider while sourcing metadata
from another). This approach, however, depends on the avail-
ability of identical scenes across different collections.

4.2 Parallel Processing and Lazy Evaluation

sen2nbar employs multidimensional arrays through xarray

and numpy, enabling the execution of various array operations.
In the context of ESDCs, the outcome of NBAR processing
is another multidimensional array mirroring the dimensions of
the input array. This architecture facilitates the acceleration of
computations by exploiting lazy evaluations and parallel pro-
cessing when necessary. Specifically, when an ESDC is gen-
erated via stackstac or cubo, the cube initially remains une-
valuated, and its actual creation occurs only upon data retrieval.
This setup allows the NBAR processing to be integrated into
the lazy evaluation chain, as xarray accommodates dask ar-
rays (Rocklin, 2015), ensuring that the NBAR computation is
conducted concurrently with cube creation. Moreover, if an
ESDC is pre-existing, either stored in memory or on disk, it can
be divided into chunks for processing. sen2nbar is then cap-
able of executing the NBAR transformation in a lazy manner
on these chunks. This approach is particularly effective with
inherently chunked data formats, such as zarr, which can be
processed lazily and re-written to disk in chunks, enhancing ef-
ficiency.

4.3 Refining Multidimensional Dataset Production

sen2nbar can enhance the accuracy of S2 data and derived
features, supporting a wide range of applications, from indi-
vidual snapshot analyses to comprehensive multitemporal stud-
ies. This extends to datasets generated from S2 data. This im-
provement will be largely attributed to the streamlined genera-
tion of ESDCs via STAC coupled with the data accuracy refine-

ment process offered by sen2nbar. This conversion process
ensures interoperability across the temporal dimension for all
kind of applications. As a result, sen2nbar streamlines the pro-
cessing of multidimensional datasets like FluxnetEO (Walther
et al., 2022), which originates from MODIS NBAR data de-
signed for vegetation monitoring but is adaptable to S2 data,
or BigEarthNet (Sumbul et al., 2019), derived from S2 patches
aimed at land cover classification benchmarks. Therefore, the
sen2nbar package emerges as a crucial tool in remote sensing,
improving the accuracy and utility of data for a broad spectrum
of applications.

4.4 Artificial Intelligence

The ultimate impact of sen2nbar is its potential to greatly im-
prove AI models in remote sensing. With the introduction of
Transformer architectures (Vaswani et al., 2017), AI has seen
the development of new models that surpass traditional archi-
tectures across a variety of tasks, including Convolutional Neural
Networks (CNNs) and Long-Short Term Memory (LSTM) net-
works. In remote sensing, the adoption of Transformer mod-
els has notably advanced, especially with pretrained models
such as SITS-Former (Yuan et al., 2022). These foundation
models, capable of learning from unlabeled datasets, are in-
strumental for various specific applications. Notable examples
include Prithvi-100M (Jakubik et al., 2023) and SpectralGPT
(Hong et al., 2023), which are trained on Harmonized Landsat
Sentinel (HLS, Claverie et al., 2018) data and BigEarthNet,
respectively. As these models form the basis for diverse applic-
ations, the role of sen2nbar in improving the quality of input
datasets becomes invaluable. By ensuring that these models
have access to clean and accurate data, particularly in a multi-
temporal context, sen2nbar will greatly contribute to the im-
provement of AI models’ performance in remote sensing ap-
plications.
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5. Conclusions

In this paper, we introduced sen2nbar, an open-source Python
package crafted to facilitate the computation of Nadir BRDF
Adjusted Reflectance (NBAR) values for Sentinel-2 L2A data.
By enabling the computation of NBAR values through a single
function, sen2nbar greatly simplifies the process, demonstrat-
ing its adaptability and compatibility with SAFE files as well as
Earth System Data Cubes (ESDCs) derived from STAC through
stackstac or cubo. We foresee sen2nbar playing an instru-
mental role in enhancing the accuracy of remote sensing data
analyses within Earth system research. Its utility is especially
pronounced in spatio-temporal analysis and in strengthening
advanced AI-driven tasks via refined Sentinel-2 datasets.
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2023-01” program with contract number PE501083135-2023-
PROCIENCIA. M.D.M. and C.M. acknowledge support by the
German Aerospace Center, DLR (“ML4Earth”) and by the Fed-
eral Ministry of Education and Research of Germany and by
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Brümmer, C., Schrader, F., Prokushkin, A. S., Panov,
A. V., Jung, M., 2022. Technical note: A view from
space on global flux towers by MODIS and Landsat: the
FluxnetEO data set. Biogeosciences, 19(11), 2805–2840.
http://dx.doi.org/10.5194/bg-19-2805-2022.

Wanner, W., Li, X., Strahler, A. H., 1995. On the derivation
of kernels for kernel-driven models of bidirectional reflectance.
Journal of Geophysical Research: Atmospheres, 100(D10),
21077–21089. http://dx.doi.org/10.1029/95JD02371.

Yuan, Y., Lin, L., Liu, Q., Hang, R., Zhou, Z.-G., 2022. SITS-
Former: A pre-trained spatio-spectral-temporal representation
model for Sentinel-2 time series classification. International
Journal of Applied Earth Observation and Geoinformation,
106, 102651. http://dx.doi.org/10.1016/j.jag.2021.102651.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-105-2024 | © Author(s) 2024. CC BY 4.0 License.

 
112


	Introduction
	The sen2nbar Python package
	The axioms module
	The metadata module
	Solar and sensor viewing angles:
	Processing Baseline:

	The kernels module
	Volumetric Kernel:
	Geometric Kernel:

	The brdf module
	The c_factor module
	The nbar module
	SAFE files:
	Earth System Data Cubes:


	Showcase
	Discussion
	The Impact of Metadata Availability
	Parallel Processing and Lazy Evaluation
	Refining Multidimensional Dataset Production
	Artificial Intelligence

	Conclusions



