
Modernizing geospatial services: an investigation into modern OGC API implementation and
comparative analysis with traditional standards in a web application

Sudipta Chowdhury1,2, Dietrich Schröder2, Hamidreza Ostadabbas1, Mohammad Hosseingholizadeh1, Frank Friesecke1

1 die STEG Stadtentwicklung GmbH, Germany - (hamidreza.ostadabbas, mohammad.hosseingholizadeh, frank.friesecke)@steg.de
2 Stuttgart University of Applied Sciences, Germany - sudipta.urp10@gmail.com, dietrich.schroeder@hft-stuttgart.de

Keywords: Modernizing Geospatial Services, OGC API, GeoServer, pygeoapi, Web Application Architecture, ALKIS

Abstract:

The study explores the transition from traditional geospatial service standards to modern Open Geospatial Consortium (OGC) API
standards in web applications, focusing on urban development management. The main goal is to compare the performance and prac-
tical implications of integrating modern and traditional geospatial technologies. Two prototype system architectures were formu-
lated based on the underlying principle of three-tier architectures. Database operations were facilitated by PostgreSQL (PostGIS),
while server-side functionalities employed GeoServer and pygeoapi for data publication and OpenLayers served as the frontend
for data visualization. The primary data source for this study is ALKIS (Authoritative Real Estate Cadastre Information System
of Germany). The investigation encompasses two principal facets: a theoretical evaluation of two distinct server implementations
utilizing conventional standards (GeoServer) and contemporary standards (pygeoapi), alongside a practical testing phase. Theor-
etical comparisons underscore GeoServer’s robustness, well-established user base, and comprehensive feature set, along with its
highly efficient folder structure and detailed, user-friendly documentation. In contrast, pygeoapi is characterized by its emphasis
on simplicity and utilization of modern technologies such as OpenAPI for implementing a RESTful API. During hands-on test-
ing, it was observed that pygeoapi consistently exhibited longer rendering times than GeoServer. Moreover, as the feature count
increased, both platforms showed a linear escalation in rendering times. To address prolonged rendering times in pygeoapi, incor-
porating vector tiles led to a significant reduction in rendering times. Regarding the affect of different data format, PostgreSQL
(PostGIS) consistently outperforms other data formats used in pygeoapi, while Shapefile and PostgreSQL (PostGIS) perform well
in GeoServer. This research aims to effectively integrate geospatial technologies, bridging the gap between established standards
and emerging APIs in web applications.

1. Introduction

What if we could imagine an urban landscape where traffic
flows seamlessly, energy consumption is optimized for effi-
ciency and resources are allocated perfectly? With the ongoing
expansion of cities, their challenges are also increasing. Geo-
graphic Information System (GIS) is considered as a potent
technology which makes it possible for better understanding
the territories (cities and rural) and manage them in an integ-
rated and efficient way (Gonçalves and Virtudes, 2020). How-
ever, as a result of the advancement of information technolo-
gies and the rise in web usage in general, WebGIS apps play
a significant role in urban management information system for
the spatial planning entities (Gonçalves and Virtudes, 2020).
Geospatial data visualization is a fundamental feature of GIS-
based web applications, enabling the presentation of inform-
ation about various spatial features within urban areas or any
geographical region. A primary objective of the web applica-
tion is to enable urban planners or architects to become more in-
dependent in terms of spatial data usage without extensive GIS
experience. However, the effectiveness of WebGIS is highly de-
pendent on the underlying Geo-services, which requires a thor-
ough examination of traditional and modern approaches to meet
the increasing demands of urban planning applications. In spite
of these advantages, WebGIS still faces a number of challenges,
particularly interoperability issues pertaining to heterogeneous
data sources (Rowland et al., 2020). To address interoperability
gaps, the Open Geospatial Consortium (OGC) has introduced
standards.

Since its inception at 1994, OGC has become an integral part

of the world’s information infrastructure by providing stand-
ards i.e., Open Web Standards (OWS) that enable developers
to create quickly and easily exchangeable information systems
(OGC-Standards, 2023). Until recently, OWS was comprised of
three popular standards: Web Map Service (WMS), Web Fea-
ture Service (WFS), Web Coverage Service (WCS) (Assefa,
2018). Recently, OGC has started working on developing a new
generation of standards called OGC API, which is the new re-
invention of how geospatial/location information is shared, ac-
cessed, integrated, and analyzed (OGC-Context, 2023). The
idea behind this OGC API is to make things simpler for anyone
to integrate and use geographical data to the web, as well as to
combine this data with any other kind of information by follow-
ing the approach of OpenAPI (OGC-Context, 2023). This new
standards are considered as a resource centric API which is the
combination of traditional standards (WxS) and modern web
development practices (OGC-Context, 2023). Therefore, the
central problem addressed by this study is the need to explore
and evaluate the transition from traditional geospatial standards
to modern OGC API standards.

In the world of WebGIS, there are various open source soft-
ware that implements the traditional web standards, such as
MapServer, GeoServer, QGIS Server. In addition, pygeoapi im-
plements the modern OGC standard protocol and simplifies the
process of sharing, discovering and accessing geospatial data
over the Internet. As this research focuses on conducting a
comparative analysis between traditional and modern geospa-
tial standards, so the traditional implementation of this stand-
ards was done by GeoServer and the modern standards was im-
plemented by pygeoapi, in order to identify the strengths, weak-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-11-2024 | © Author(s) 2024. CC BY 4.0 License.

 
11



nesses and overall performance of these platform. The aim of
this research is to explore the potential for enhancing web ap-
plications through a comparative analysis of the integration of
modern and traditional geospatial technologies based on their
performance and practical implications. To achieve this aim,
several objectives have been formulated. Firstly, a prototype
system architecture for a web application for urban data man-
agement was developed. Secondly, a PostgreSQL database was
designed as an extension of an existing database. Thirdly, the
prototype was implemented using the same database and sys-
tem specifications, with the pygeoapi and GeoServer selected
as geospatial services. Fourthly, existing case studies and real-
world implementations of pygeoapi and GeoServer in web ap-
plications was analyzed. Finally, a comparative performance
analysis between pygeoapi and GeoServer was conducted un-
der varying levels of concurrent requests.

2. Material and Methods

2.1 Data Analysis and Processing

The ALKIS data was used as the source of the test data in this
research. ALKIS data includes both spatial data and non-spatial
data, interconnected with varying cardinalities. Besides that, it
encompasses details about land parcels, buildings, administrat-
ive area units, and points containing diverse information such
as house numbers, parcel numbers, road names, reservations,
land register data, current land use, traffic details, vegetation,
water bodies, and more. Apart from the ALKIS data, the of-
ficial House Coordinates of Germany (HK-DE) data was also
used here which defines the precise spatial position of build-
ings with addresses across Germany. ALKIS data, typically
distributed as NAS files in XML format, were processed by util-
izing the ’norGIS-ALKIS-Import’ software developed by nor-
BIT to convert them into a PostgreSQL database. The resulting
dataset was stored in a database named the ’original database’,
preserving the original ALKIS data structure. Subsequently,
a project-specific database was created using Django, and Py-
thon scripting was employed to transfer the ALKIS data from
the original database to the new database while adhering to the
specifications outlined by the Steg planning department. The
figure 1 shows the overall workflow of data processing.

Figure 1. Workflow of the data processing

2.2 Dataset

The web application utilized ALKIS data from both Karlsruhe
and Frost cities for testing, enabling a comparative analysis

between GeoServer and pygeoapi. Both Karlsruhe and Frost
ALKIS datasets contains all the pertinent information typical
of ALKIS data mentioned in 2.1. Karlsruhe, is situated in
southwestern Germany on the eastern bank of the Rhine River
neighboring Rhineland-Palatinate to the northwest and France
to the west (Karlsruhe-Erleben-EN., 2023). The total area
of land parcel is 31.06 km2 (Karlsruhe-Erleben-EN., 2023).
According to ALKIS data, the total number of land parcel
and buildings of Karlsruhe are 11,602 and 17,852 respectively.
Forst is positioned in the northern part of the Karlsruhe dis-
trict encompassing an expanse of 11.47 km2 (Landeskundliche-
Informationssystem, 2024). ALKIS data further reveals that
Forst consists of 4,891 land parcels and 5,737 buildings.

2.3 Methodology

The methodological flowchart shown in figure 2 illustrates a
systematic approach to implement this research which includes,
a WebGIS prototype system architecture, database design, data
preparation, service setup, architecture implementations and
comparative analysis. The methodology is presented in detail
below.

Figure 2. Methodology

2.3.1 Prototype System Architecture Design: WebGIS
prototype system architecture serve as a foundational blueprint,
outlining its structure and design principles, which guide its
development. As far as the architecture of a WebGIS is con-
cerned, the architecture based on three levels is the most com-
monly used (Pascaul et al., 2012). In this study, two prototype
system architectures were formulated based on the underlying
principle of three-tier architectures. In the presentation tier, on
the client side, JavaScript libraries (OpenLayers, jQuery) as a
mapping library as well as Bootstrap, HTML5, and CSS were
used to design the web app (client side). The application tier,
situated on the server side, comprised map services. In the first
prototype system architecture, GeoServer (figure 3), adhering to
traditional Open Geo-spatial Consortium (OGC) standards such
as Web Map Service (WMS), Web Feature Service (WFS) was
employed. Conversely, the second prototype system architec-
ture incorporated pygeoapi (figure 4), a Python implementation
aligned with modern OGC API standards. At the database tier,
situated at the foundation of the architecture, spatial data was
stored in a PostgreSQL database with the PostGIS extension.

2.3.2 Database Design and Data Preparation: The data-
base structure for the ’die STEG Stadtentwicklung GmbH’
urban development project is designed to include six primary
layers, each containing both spatial and non-spatial data ele-
ments. These layers include parcels, buildings, landmarks, red
lines, future development areas and visual points. The spatial
data from ALKIS is combined with information from field in-
spections and in-house processing to populate the parcel and

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-11-2024 | © Author(s) 2024. CC BY 4.0 License.

 
12



Figure 3. Prototype system architecture using GeoServer

Figure 4. Prototype system architecture using pygeoapi

building layers. The data on landmarks, red lines and future de-
velopment areas are collected independently during the field in-
spections. This database design adheres to a fundamental prin-
ciple: the segregation of geometry and non-geometry informa-
tion into separate tables, with views created to amalgamate both
datasets based on unique identifiers. Such an approach facilit-
ates adaptability and customization, catering to diverse project
requirements. Moreover, this design fosters consistency and
scalability, enabling the creation of new views while preserving
the original spatial structure. Notably, a one-to-one relationship
between spatial and non-spatial tables is typically maintained;
however, for scenarios involving varying land prices across dif-
ferent years, a one-to-many relationship is established.

2.3.3 Setup Services and Architecture Implementations:
In this phase of the methodology, a number of geospatial com-
ponents were installed to create a robust infrastructure for con-
ducting a comparative analysis. These components included
PostgreSQL with the PostGIS extension, GeoServer, pygeoapi
and OpenLayers. The pygeoapi installation process offered
flexibility with options such as cloning directly from GitHub
or using the official Docker image. OpenLayers, on the other
hand, was installed by downloading the library from the official
website and initializing it within an HTML container through
JavaScript code. Regarding the interconnection between ele-
ments of the system architecture, the system architecture starts
at the front-end interface when the user interacts with the map
and triggers a request to the GeoServer for specific data. The
GeoServer then establishes communication with the database,
extracts the requested information and then transfers it back to
OpenLayers. There is therefore no direct connection between
OpenLayers and PostgreSQL, but the GeoServer acts as an in-
termediary. As an intermediary, GeoServer understands the
spatial data in the database, interprets incoming requests into
SQL or spatial queries, retrieves the data and formats it for
transfer to the front end. The seamless connection between
GeoServer and PostgreSQL is critical to the efficient manage-
ment and delivery of spatial data in a WebGIS application. In
terms of pygeoapi, it sends requests to the middleware to fetch
geographic data and updates the UI accordingly. These requests
can be made using standard web protocols such as HTTP or

HTTPS (Cerciello and Simones, 2022). It works with the mod-
ern HTTP paradigm of the OGC API and uses HTTP verbs
such as GET (Used for retrieving data or information), POST
(Used for creating or updat-ing data), PUT (Used for updat-
ing data), DELETE (Used for deleting data). Communication
uses HTTP status codes (e.g. 200, 201, 400) to indicate res-
ults and relies heavily on content negotiation to access relevant
media types (Cerciello and Simones, 2022). In addition, py-
geoapi supports JSON (JavaScript Object Notation), a widely
used format among web developers that complies with the prin-
ciples of RESTful (Representational State Transfer) web ser-
vices (Cerciello and Simones, 2022).

2.3.4 Comparative Analysis: A comprehensive comparat-
ive analysis was conducted to evaluate various parameters
between GeoServer and pygeoapi. These parameters encom-
passed installation processes, folder structure organization, data
format compatibility, layer preview functionality, rendering
performance, and usability. The analysis extended to assessing
rendering times for different feature counts, data format impacts
on efficiency, and symbology display. The rendering time of the
layer was systematically collected as part of the experimental
process. This involved utilizing the network section of Google
Chrome Developer Tools, a widely recognized and reliable tool
for performance analysis in web development. Specifically, the
tool enabled the precise measurement of the time taken for the
layer to render within the web application.

2.4 Web-app Implementation: Overview of Implemented
Functionalities

In both pygeoapi and GeoServer based web-app, fundamental
functionalities are provided within the frontend interface, en-
suring a cohesive and robust geospatial exploration experience.
To ensure methodological consistency in comparison, both web
applications exhibit equivalent functionality while interfacing
with distinct server endpoints, originating from pygeoapi and
GeoServer, respectively. These functionalities include a visual
legend for layer interpretation, dynamic layer switching for fo-
cused data exploration, and seamless zooming capabilities for
navigation. Additionally, tools for length and area measure-
ments facilitate accurate spatial analysis, while attribute popups
offer detailed information on individual layers. Attribute-based
queries further empower users by enabling precise extraction of
insights based on specified attribute criteria. Overall, the fron-
tend interface of both pygeoapi and GeoServer depicted in the
Figure 5.

Figure 5. Overall functionalities in the webapp

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-11-2024 | © Author(s) 2024. CC BY 4.0 License.

 
13



3. Result: Comparative Analysis

3.1 GeoServer and pygeoapi at a glance in terms of Func-
tionalities

GeoServer, originating in 2001, is a robust, Java-based open-
source server tailored for spatial data publishing while conform-
ing to OGC standards. GeoServer’s Graphical User Interface
(GUI) streamlines tasks like data uploading and symbology ad-
justments without manual coding. Additionally, GeoServer of-
fers a REST interface for interaction with Python scripts, ac-
commodating both manual and automated workflows. In con-
trast, pygeoapi, introduced in 2018, represents a Python server
implementation aligned with OGC Standards. It establishes a
RESTful API endpoint using OpenAPI, GeoJSON, and HTML.
Unlike GeoServer, pygeoapi lacks a direct user interface for
data publishing tasks but incorporates Swagger, facilitating API
documentation and testing. This dynamic interface enables
users to explore, comprehend, and test available API endpoints
effectively.

3.2 Installation Process

In terms of installation, both GeoServer and pygeoapi offer
accessible processes, although with different focuses and ap-
proaches. GeoServer being more user friendly particularly for
the windows user due to its automated installation procedure
equipped with a user-friendly interface, guides the user through
the installation steps. Besides that, GeoServer offers several
installation options, including Linux binaries, Windows bin-
aries, Windows installers, web archives and Docker contain-
ers (Geoserver-Installation, 2024). On the other hand, py-
geoapi offers a wider range of installation options, includ-
ing developer (manual installation), Python package, Docker,
Kubernetes, Conda, UbuntuGIS and FreeBSD (pygeoapi In-
stall, 2024). Furthermore, both pygeoapi and GeoServer of-
fer Docker container options for installation which provides a
lightweight, portable, and scalable solution for packaging ap-
plications and their dependencies (Dimensiona, 2023). In ad-
dition, after installing the GeoServer, all packages or libraries
are already embedded in the GeoServer, so no additional install-
ation of packages is required. As for pygeoapi, various Python
packages need to be installed, which are required for publishing
different types of data, such as GDAL for uploading shapefiles;
sqlalchemy, geoalchemy2 and psycopg2-binary are required for
PostgreSQL (pygeoapi Features, 2024).

3.3 Organization of Folder Structure

GeoServer has an well-structured folder structure that facilitates
organized data management. Users have the option of structur-
ing the data according to projects. For example, if there are
projects in Karlsruhe and Forst, separate folders can be created
with the project names. Within these workspaces, users can
define stores options to specify the data format to upload, such
as postGIS, geopackage or shapefile. In the Layers section, all
layers or views required for a project can be published in dif-
ferent formats. In addition, layer groups and styles can be pub-
lished using previously created style files. Figure 6 illustrates
the organization of the folder structure.

In contrast, pygeoapi lacks a folder organization system for spe-
cific projects, and all layers are directly published together on
the collection page, but user can verify whether the layers are
properly published or not. In order to publish, users must use

Figure 6. Organization of folder structure in GeoServer

the YAML file, which follows the OpenAPI concept; no direct
user interaction could be found by the author from the front end
part. Beyond publishing layers, essential information like data-
base connections, metadata, and other related details must be
specified in distinct sections within the YAML file.

3.4 Data Format Compatibility

In comparing GeoServer and pygeoapi’s data format compatib-
ility, while both platforms support various formats for storing
and handling geospatial data, pygeoapi offers a broader range
of formats compared to GeoServer. This extensive format sup-
port in pygeoapi provides users and developers with increased
flexibility and options for storing and sharing data. Put simply,
while both GeoServer and pygeoapi offer basic compatibility
with common formats, pygeoapi goes one step further by sup-
porting additional formats, potentially serving a wider range of
data sources and applications. Table 1 describes the wide range
of data formats supported by both pygeoapi and GeoServer.

pygeoapi GeoServer
CSV (point), Elast-
icsearch, ERDDAP
Tabledap Service, ESRI
Shape file, GeoJSON,
MongoDB, PostGIS,
SQLiteGPKG, Sensor-
Things API

Shapefile, GeoTIFF, Post-
GIS, GPKG, Oracle, Mi-
crosoft SQL Server

Table 1. Data Format Compatibility: pygeoapi vs. GeoServer
(pygeoapi Features, 2024, GeoServer-Dataformat, 2024)

3.5 Layer Preview

While both GeoServer and pygeoapi provide a layer preview
to check the positioning of the published layers, GeoServer is
characterized by the fast loading (259ms) of WMS files, result-
ing in a faster data display. In contrast, pygeoapi uses GeoJSON
files for the layer preview, which can lead to slower render-
ing times (7.7s), especially for larger feature sets. In addi-
tion, pygeoapi uses Leaflet as the frontend for the layer pre-
view, with rendering times being similar regardless of whether
Leaflet which is used by the pygeoapi for layer preview or the
OpenLayers client, as used in this study.

To enhance the efficiency of layer preview in pygeoapi, one ap-
proach is to limit the number of features visualized, a parameter
configurable through the YAML configuration file. In the con-
text of layer preview visualization, it’s noteworthy that Geo-
Server lacks a background base map behind the layers, poten-
tially leading to confusion regarding the accurate positioning of
the data. On the contrary, pygeoapi addresses this limitation
by incorporating OpenStreetMap as base map, ensuring a clear
visual context and aiding in the verification of data alignment
within the correct coordinate system.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-11-2024 | © Author(s) 2024. CC BY 4.0 License.

 
14



Figure 7. Layer preview of pygeoapi in the server side

Figure 8. Layer preview of GeoServer in the server side

3.6 Performance Analysis

This section describes a comprehensive analysis of perform-
ance in terms of rendering time for different levels and features
in GeoServer and pygeoapi. The investigation focuses on re-
cognizing the significant dynamic shifts in rendering time in re-
sponse to different zoom levels as well as the increasing amount
of features in the Web Feature Service (WFS), Web Map Ser-
vice (WMS) and GeoJSON formats. In addition, the effects of
different data types, e.g. from PostGIS, shapefiles and Geo-
Package (.gpkg), on the performance of layers are examined.

Figure 9 analyses the rendering time of the GeoServer Web Fea-
ture Service (WFS) as a function of different zoom levels and
different feature sets. The different colours within the bars cor-
respond to the different zoom levels from 14 to 18. It is notice-
able that the changes in the zoom levels have only a negligible
influence on the rendering time. Specifically, the rendering time
fluctuates slightly between 0.43s and 0.49s with a feature count
of 4,891. However, when the number of features increases from
4,891 to 23,319, a significant linear escalation in rendering time
becomes apparent. The average rendering time increases signi-
ficantly from 0.46s to 2.15s. This observed pattern indicates
a scalability problem associated with an in-creased number of
features.

Similarly, Figure 10 shows the dynamics of the rendering time
of the GeoServer Web Map Service (WMS) over different zoom
levels and feature sets. In contrast to the observed behavior of
the GeoServer (WFS), the GeoServer (WMS) shows no detect-
able economies of scale. This means that the rendering time
remains independent of variations in the zoom levels or the
number of features. Within the data set, it can be seen that
the rendering time has a marginal range that fluctuates between
228 ms and 232 ms in response to changes in the zoom levels
for a feature count of 4,891. Similarly, increasing the feature
count from 4,891 to 23,319 results in rendering time variations
between 216 ms and 227 ms. This proves that the number of
features has no distinguishable effect on the rendering time.

Figure 9. Rendering time of GeoServer (WFS) in relation to
varying zoom level and different no. of features

Figure 10. Rendering time of GeoServer WMS in relation to
varying zoom level and different no. of Features

Figure 11 describes the rendering time characteristics of py-
geoapi GeoJSON across different zoom levels and different fea-
ture sets. Similar to the results in GeoServer (WFS), there is
a consistent rendering time across different zoom levels from
1.50s to 1.74s for a feature count of 4,891. However, as the
number of features increases, a linear clear escalation in render-
ing time becomes apparent. The sharpest increase in rendering
time is observed at the transition from 1.6s at 4,891 to 7.52s
for the highest number of features of 23,319. This indicates a
higher sensitivity to larger feature datasets, which may indicate
scalability issues.

Figure 11. Rendering time of pygeoapi GeoJSON in relation to
varying zoom level and different no. of Features

Figure 12 shows a comparative analysis of the rendering times
(in seconds) for the GeoServer Web Map Service (WMS), the
GeoServer Web Feature Service (WFS) and pygeoapi at differ-
ent feature counts (4,891, 11,602, 16,493 and 23,319) based
on the polygon feature. Here the rendering time is represented
for the one specific zoom level which is 16. There are some
notable observations when evaluating these results. Overall as
a result, GeoServer (WMS-Tiles) renders in a fairly consistent
manner, ranging from 0.219s to 0.23s as feature counts increase

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-11-2024 | © Author(s) 2024. CC BY 4.0 License.

 
15



from 4,891 to 23,319. This indicates robust performance under
different feature sets. Contrastingly, GeoServer (WFS-GML
output) displays a more noticeable increase in rendering time.
Starting at 0.454s for 4,891 features, the rendering time escal-
ates to 2.19s for 23,319 features. pygeoapi (GeoJSON), in com-
parison, demonstrates rendering times that are notably higher
than both GeoServer (WMS and WFS). Commencing at 1.55s
for 4,891 features, the rendering time substantially increases to
7.56s for 23,319 features. This substantial increment may sug-
gest certain performance implications or efficiency considera-
tions associated with the pygeoapi platform.

Figure 12. Comparison rendering time of GeoServer WFS,
WMS and pygeoapi

Figure 13 shows a comparative analysis of the rendering times
(in seconds) for the GeoServer using different data formats -
PostGIS, Shapefile (.shp) and GeoPackage (.gpkg). The ana-
lysis focuses in particular on 16 zoom levels and a data set with
16,493 features. The results in Figure 13 show different render-
ing performances for the individual data formats in GeoServer
which indicates that PostGIS has a higher efficiency compared
to the other data formats such as Shapefile and GeoPackage,
having a slightly longer rendering time.

Figure 13. Performance differences because of the different data
format in GeoServer

As part of pygeoapi, a comprehensive analysis was carried out
covering an extended range of data formats, in particular Post-
GIS, Shapefile (.shp), GeoJSON, WFS (Web Feature Service)
and GeoPackage (.gpkg). The investigation maintained con-
sistency of key parameters, e.g. 16 zoom levels and a data-
set of 16,493 features. It is noticeable that pygeoapi offers the
flexibility to incorporate traditional data services such as WFS
and WMS, a feature that is particularly beneficial for web ap-
plications built on modern architectures. Figure 14 shows the
perceived performance differences between the different data
formats in pygeoapi. Due to PostGIS’s spatial extensions for
PostgreSQL, an efficient relational database management sys-
tem, it is very effective for displaying and delivering geospatial

data due to its optimized spatial indexing and query capabilities
(Tjukanov and Topi, 2018). GeoJSON also shows remarkable
performance (6.25s). However, the rendering quality decreases
for data formats such as WFS and GeoPackage (more than 9s).

Figure 14. Performance differences because of the different data
format in pygeoapi

3.7 Symbology and Legend

GeoServer presents a comprehensive suite of symbology op-
tions tailored to optimize the visualization of geospatial data.
Central to this toolkit is the Styled Layer Descriptor (SLD).
While SLD files can be seamlessly integrated into GeoServer
via its REST interface, occasional manual adjustments might be
required for proper uploading. Moreover, GeoServer extends its
capabilities with CSS styling, YSLD, and support for Mapbox
Styles through the MBStyle extension. pygeoapi itself does not
have built-in symbology options or styling capabilities. Styling
is typically handled by client applications that consume data
served by pygeoapi. In this research, symbology was declared
manually on the OpenLayers, front-end part while publishing
the layer to the front from the server side.

The comparison between GeoServer and pygeoapi reveals dif-
ferences in their handling of symbology and legend graphics.
GeoServer utilizes the GetLegendGraphic operation to gener-
ate legend images, often resulting in lower quality output due
to its reliance on raster graphics. In contrast, pygeoapi lacks
server-side support for legends, necessitating a client-side ap-
proach. Despite this, pygeoapi offers clearer and more detailed
symbology through vector graphics, surpassing GeoServer in
terms of detail and scaling quality.

3.8 Usability Assessment

The usability assessment based on a survey of 12 parti-
cipants provided insights into the overall user experience, load-
ing speed, map display, recommendations, and preferences
between GeoServer and pygeoapi in the context of a WebGIS
application. In comparison, for the pygeoapi-based web applic-
ation, 25% of users said they were satisfied, while the major-
ity of 75% said their experience was good (Figure 15b). Of
particular note, participants were unanimous (100%) in favor
of GeoServer in terms of the speed of loading and map dis-
play, underlining its superiority in these aspects (Figure 15a).
In terms of recommendations, 50% of users recommended both
platforms, showing a balanced preference (Figure 15d). How-
ever, 33% of respondents, especially those who identified them-
selves as developers, exclusively recommended pygeoapi, un-
derlining its appeal within the developer community (Figure
15d). Conversely, 17% of users recommended GeoServer (Fig-
ure 15e). Interestingly, 42% of users saw no significant differ-
ence between GeoServer and pygeoapi when it came to rating

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-11-2024 | © Author(s) 2024. CC BY 4.0 License.

 
16



the smoother panning, zooming in, and zooming out (Figure
15e). However, 41% preferred pygeoapi for these functionalit-
ies, while 17% preferred GeoServer (Figure 15e).

Figure 15. User Perspectives about GeoServer and pygeoapi

3.9 Vector Tiles as a Solution of Faster Rendering Speed
of pygeoapi

It was seen in the previous analysis that, the pygeoapi has the
higher rendering time of up-loading data in compare to the
GeoServer. A solution can be to address to this problem is
vector tiles. A significant advantage of vector tiles over fully
rendered image tiles lies in their dynamic styling capabilities,
which enable them to be adjusted on-the-fly without requir-
ing the download of additional tiles (Vector-Tiles, 2024). At
this moment, the providers of the vector tiles of pygeoapi are
MVT-tippecanoe, MVT-elastic, MVT-proxy, WMTSFacade as
a remote data source (pygeoapi Vector-Tiles, 2024). In this
particular scenario, the tiles are pre-rendered for a designated
layer within the local directory through the application of Tip-
pecanoe. Subsequently, the layer is published by leveraging
the configuration file of pygeoapi. Figure 16 represents the
prerendered vector tiles data of Karlsruhe published from py-
geoapi and OpenStreetMap (© OpenStreetMap contributors) as
basemap. The findings demonstrate a notable reduction in ren-
dering time, decreasing from 7.56 seconds to 459 milliseconds
when transitioning from GeoJSON to vector tiles.

Figure 16. Using vector tiles in pygeoapi

4. Discussion

In the course of research, several significant findings have been
achieved on the effectiveness, efficiency and usability of mod-
ern OGC API standards compared to traditional geospatial data

methods. These findings range across a broad spectrum of
areas, including the fine distinctions of web application archi-
tectures, the handling of different geospatial data formats, per-
formance benchmarks under different workload scenarios, and
usability considerations. The general findings of this research
are presented below.

The chosen architecture in this study comprises three levels:
Presentation (front-end), Application (server-side) and Data-
base. OpenLayers as well as Bootstrap, HTML5 and CSS
were chosen for the front-end due to their versatility and robust
mapping capabilities. GeoServer, which adheres to traditional
OGC standards, was chosen for the server side, while pygeoapi,
which is based on modern OGC API standards, ensures greater
efficiency. The spatial data is stored in a PostgreSQL database
with the PostGIS library, which enables efficient management
of the geographical objects. With this three tier architecture,
web application architectures can achieve optimal performance,
flexibility and usability, leading to improved geospatial services
in city government and beyond.

GeoServer and pygeoapi offer different benefits: GeoServer of-
fers a user-friendly GUI for seamless data management and
a quick installation process, while pygeoapi offers versatility
with multiple installation options. In addition, GeoServer has
an organized folder structure for data management, while py-
geoapi lacks project based organization but compensates with
a comprehensive YAML file approach. In addition, GeoServer
is characterized by high layer preview display speed, while py-
geoapi provides a basemap for better spatial context. GeoServer
boasts a well-established community with extensive document-
ation, structured development processes and comprehensive
user manuals aimed at users of all skill levels. In contrast, py-
geoapi, which is relatively new, has a smaller community but
offers a Python-based RESTful API with Swagger integration
that provides a dynamic interface for API documentation and
testing. Despite GeoServer’s user-friendly documentation that
caters to a wide variety of users, pygeoapi documentation re-
quires a solid technical understanding for effective use.

GeoServer and pygeoapi are characterized by the processing of
geodata formats for web applications. While GeoServer sup-
ports common formats such as PostGIS, Shapefile and Geo-
TIFF, pygeoapi offers all common formats that GeoServer also
provides, extended by additional formats such as CSV, Elast-
icsearch and MongoDB. Besides that, pygeoapi also supports
traditional services like WMS, WFS. This extended support by
pygeoapi expands the possibilities of data storage and data ex-
change and improves the applicability in various applications.
To summarize, both platforms offer basic compatibility, but py-
geoapi broader format support covers a wider range of user
requirements. In the practical tests of rendering times due to
the different data formats in GeoServer and pygeoapi, it was
found that in both cases PostGIS had the highest efficiency,
while GeoPackage lagged slightly behind. In pygeoapi, Post-
GIS and Shapefile were the most efficient, while GeoJSON also
performed well. However, formats such as WFS and GeoPack-
age had longer rendering times. Overall, PostGIS proved to be
the most effective format for displaying and providing geodata
on both platforms.

The performance comparison between the pygeoapi and Geo-
Server with different numbers of concurrent requests reveals
several important findings. While the Web Map Service (WMS)
in GeoServer shows consistent rendering times regardless of

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-11-2024 | © Author(s) 2024. CC BY 4.0 License.

 
17

https://www.openstreetmap.org/copyright


the number of features or zoom level, the Web Feature Ser-
vice (WFS) which uses GML as data format shows a linear
increase in rendering times for larger feature datasets, indic-
ating scalability issues, but no effect of rendering time because
of the zoom level. On the other hand, the rendering times of
pygeoapi (GeoJSON) are consistently higher compared to Geo-
Server, indicating optimization opportunities. However, both
platforms show minimal impact on rendering times due to ad-
ditional functionalities at a certain zoom level, which underlines
their stability with simultaneous requests. Overall, GeoServer
shows a more consistent rendering performance, especially in
scenarios that require established Geo-services.

The usability assessment revealed that while GeoServer ex-
celled in loading speed and map display, pygeoapi achieved
higher overall user satisfaction. However, both platforms re-
ceived balanced recommendations from users, indicating dif-
ferent preferences and strengths of the two platforms. In sum-
mary, the study compares modern OGC API standards rep-
resented by pygeoapi with traditional geospatial methods such
as GeoServer for web applications. While GeoServer offered
stable rendering performance, pygeoapi was more attractive to
developers. The results emphasize the importance of consider-
ing project requirements and user preferences when choosing
between these platforms for web GIS applications.

5. Conclusions

This work has explored the area of modernizing geospatial tech-
nologies through the adoption of Open Geospatial Consortium
(OGC) API standards in web applications, particularly in the
context of urban development management. Through theoret-
ical assessments and practical testing, the study has provided
valuable insights into the transition from traditional geospatial
service standards to modern OGC API standards. The com-
parison between GeoServer and pygeoapi revealed differences
in terms of performance, data compatibility and deployment
processes, highlighting the strengths and limitations of the two
platforms. While GeoServer offers a comprehensive feature set,
pygeoapi focuses on simplicity and modern technologies. In
addition, the study of data formats highlighted the importance
of considering the differences of each format when optimizing
geospatial data services. The work also proposes actionable in-
sights to improve the performance of web applications, such as
the inclusion of vector tiles to mitigate rendering time issues.
Overall, this research contributes to the advancement of geo-
spatial technologies by bridging the gap between established
standards and emerging APIs, paving the way for more efficient
and effective web applications in the field of urban development
management.

References

Assefa, D., 2018. Developing Data Extraction and Dynamic
Data Visualization (Styling) Modules for Web GIS Risk As-
sessment System (WGRAS). Master Thesis in Geographical
Information Science.

Cerciello, Antonio, J., Simones, 2022. emotional cities: Map-
ping the cities through the senses of those who make them: Ar-
chitecture definition and code for the generic sdi. Technical re-
port, DTU.

Dimensiona, 2023. What is docker and what are its ad-
vantages?–dimensiona. https://www.dimensiona.com/en/
what-is-docker-and-what-are-its-advantages (2024-01-02).

GeoServer-Dataformat, 2024. Supported data
formats—geoserver 2.26.x user manual. https://docs.geoserver.
org/main/en/user/extensions/importer/formats.html (2024-03-
04).

Geoserver-Installation, 2024. Installation—geoserver
2.26.x user manual. https://docs.geoserver.org/main/en/
user/installation/index.html (2024-03-02).

Gonçalves, O., Virtudes, A., 2020. Smart Urban Planning at
Local Scale: e-Master Plan. KnE Engineering, 214–227. DOI:
10.18502/keg.v5i5.6943.

Karlsruhe-Erleben-EN., 2023. Facts and figures. https://
www.karlsruhe-erleben.de/en/city-portrait/facts-figures (2023-
09-30).

Landeskundliche-Informationssystem, 2024. Frost-detail page-
leo-bw. https://www.leo-bw.de/web/guest/detail-gis/-/Detail/
details/ORT/labw ortslexikon/5360/Forst(2024-02-09).

OGC-Context, 2023. Ogc api context. https://ogcapi.ogc.org/
(2023-09-26).

OGC-Standards, 2023. Open geospatial consor-
tium standards—osgeo-live 7.9 documentation. https:
//live.osgeo.org/archive/7.9/en/standards/standards.html
(2023-09-23).

Pascaul, M., Alves, E., De Almeida, T., De França, G. S., Roig,
H., Holanda, M., 2012. An architecture for geographic inform-
ation systems on the web-webgis. Proceedings of the GEO-
Processing 2012 Fourth International Conference on Advanced
Geographic Information Systems, Applications, and Services,
Valencia, Spain, 209–214.

pygeoapi Features, 2024. Publishing vector data to ogc api-
features. https://docs.pygeoapi.io/en/stable/data-publishing/
ogcapi-features.html (2024-03-03).

pygeoapi Install, 2024. pygeoapi: Install. https:
//docs.geoserver.org/main/en/user/installation/index.html
(2024-03-03).

pygeoapi Vector-Tiles, 2024. Publishing tiles to ogc
api-tiles—pygeoapi 0.16.dev0 documentation. https:
//docs.pygeoapi.io/en/latest/data-publishing/ogcapi-tiles.html
(2024-03-18).

Rowland, A., Folmer, E., Beek, W., 2020. Towards self-service
gis—combining the best of the semantic web and web gis.
ISPRS international journal of geo-information, 9(12), 753.
https://doi.org/10.3390/ijgi9120753.

Tjukanov, Topi, 2018. Why should you care about
postgis?—a gentle introduction to spatial databases.
https://medium.com/@tjukanov/why-should-you-care-
about-postgis-a-gentle-introduction-to-spatial-databases-
9eccd26bc42b (2024-03-10).

Vector-Tiles, 2024. Vector tiles introduction-tilesets-
mapbox. https://docs.mapbox.com/data/tilesets/guides/
vector-tiles-introduction/ (2024-03-18).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-11-2024 | © Author(s) 2024. CC BY 4.0 License.

 
18

https://www.dimensiona.com/en/what-is-docker-and-what-are-its-advantages
https://www.dimensiona.com/en/what-is-docker-and-what-are-its-advantages
https://docs.geoserver.org/main/en/user/extensions/importer/formats.html
https://docs.geoserver.org/main/en/user/extensions/importer/formats.html
https://docs.geoserver.org/main/en/user/installation/index.html
https://docs.geoserver.org/main/en/user/installation/index.html
DOI: 10.18502/keg.v5i5.6943 
DOI: 10.18502/keg.v5i5.6943 
https://www.karlsruhe-erleben.de/en/city-portrait/facts-figures
https://www.karlsruhe-erleben.de/en/city-portrait/facts-figures
https://www.leo-bw.de/web/guest/detail-gis/-/Detail/details/ORT/labw_ortslexikon/5360/Forst (2024-02-09)
https://www.leo-bw.de/web/guest/detail-gis/-/Detail/details/ORT/labw_ortslexikon/5360/Forst (2024-02-09)
https://ogcapi.ogc.org/
https://live.osgeo.org/archive/7.9/en/standards/standards.html
https://live.osgeo.org/archive/7.9/en/standards/standards.html
https://docs.pygeoapi.io/en/stable/data-publishing/ogcapi-features.html
https://docs.pygeoapi.io/en/stable/data-publishing/ogcapi-features.html
https://docs.geoserver.org/main/en/user/installation/index.html
https://docs.geoserver.org/main/en/user/installation/index.html
https://docs.pygeoapi.io/en/latest/data-publishing/ogcapi-tiles.html
https://docs.pygeoapi.io/en/latest/data-publishing/ogcapi-tiles.html
https://doi.org/10.3390/ijgi9120753
https://docs.mapbox.com/data/tilesets/guides/vector-tiles-introduction/
https://docs.mapbox.com/data/tilesets/guides/vector-tiles-introduction/

	Introduction
	Material and Methods
	Data Analysis and Processing
	Dataset
	Methodology
	Prototype System Architecture Design:
	Database Design and Data Preparation:
	Setup Services and Architecture Implementations:
	Comparative Analysis:

	Web-app Implementation: Overview of Implemented Functionalities

	Result: Comparative Analysis
	GeoServer and pygeoapi at a glance in terms of Functionalities
	Installation Process
	Organization of Folder Structure
	Data Format Compatibility
	Layer Preview
	Performance Analysis
	Symbology and Legend
	Usability Assessment
	Vector Tiles as a Solution of Faster Rendering Speed of pygeoapi

	Discussion
	Conclusions



