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Abstract

The generation of photogrammetric point clouds from satellite images is often based on image correlation techniques. Correlation
errors can arise for a wide variety of reasons: transient objects, homogeneous areas, shadows, and surface discontinuities. Therefore,
a simple 3D Gaussian distribution at the point cloud level is not an appropriate model. In this paper, we propose a new point
cloud denoising method integrated into the Multiview Stereo Pipeline CARS, dedicated to satellite imagery. Building upon bilateral
filtering principles, our approach introduces a novel utilization of color information, confidence estimation and geometric constraints
alongside point positions and normals. While the use of point color increases the level of detail, the addition of geometric constraints
and confidence awareness guides processing towards a realistic solution. We propose an ablation study and compare our solution
against a previously established bilateral filter with LiDAR data as ground truth.

1. Introduction

As part of the CO3D mission (Lebègue et al., 2020), carried
out in partnership with Airbus, CNES is developing the image
processing chain including the open source Multi View Stereo
(MVS) pipeline CARS (Youssefi et al., 2020), available under
the Apache-2.0 licence. By acquiring land areas within two
years, providing 4 bands (Blue, Green, Red, Near Infra Red)
at 50 cm, the objective is to produce a global Digital Surface
Model (DSM) with 1 m relative altimetric error (CE90) at 1 m
ground sampling distance (GSD) as target accuracy. The world-
wide production of this 3D information will notably make a real
contribution to the creation of digital twins (Brunet et al., 2022).

Satellite imagery provides global coverage, which unlocks the
possibility to update the 3D model of any location on Earth
within a rapid time frame. However, due to the smaller number
of images or lower resolution than drone or aerial photography,
a denoising step is necessary to extract relevant 3D information
from satellite images. Denoising aims to smooth out flat ele-
ments in the observed scene (rooftops, roads) while retaining
their sharp edges that are sometimes barely recognizable relat-
ive to the sensor resolution, such as the contour of small houses
or the narrow gaps between them.

After a brief review of existing denoising methods, the motiv-
ation for using a MVS pipeline for our use case is presented
in section 2. Section 3 describes in detail the proposed denois-
ing method, its integration into an MVS and its differentiating
features compared with the method from which it is derived.
After a description of the data and reference used to qualify the
method in section 4, section 5 shows how the point cloud is
affected by the various modifications made to bilateral filtering.

2. Related work

Point cloud denoising is a topic widely studied in 3D recon-
struction. Previous works have proposed two possibly consec-
utive steps, outlier removal and noise removal. The first step
aims to remove out-of-distribution points. The second one,

rather than removing the points, aims to move them closer to
the surface. In case of noise removal, several methods, ran-
ging from classical (Oztireli et al., 2009) to deep learning-based
(Rakotosaona et al., 2020) have been designed over the past
decades. The methods often rely on little a priori information
because they can be used on point clouds generated from image-
based reconstruction techniques, with low-cost depth sensors
like Microsoft Kinect or via a high-resolution 3D scanner such
as LiDAR.

With the advent of the new NeRF and 3D Gaussian Splatting
reconstruction methods, which represent a real breakthrough in
3D field (Mildenhall et al., 2020, Kerbl et al., 2023), we might
think that denoising is less and less necessary. Although, these
methods are beginning to be successfully adapted to satellite
imagery (Derksen and Izzo, 2021, Marı́ et al., 2022), given
the computation times of these new methods, the reconstruction
pipelines from satellite imagery belonging to the MVS pipelines
are still the most suitable for massive data production, win-
ning the 2016 IARPA (Facciolo et al., 2017) and 2019 Data
Fusion Contest (DFC) challenges (D’Angelo et al., 2019). Fur-
thermore, many of these methods, including 3DGS, rely on an
initial point cloud. Others (Marı́ et al., 2022) use a point cloud
derived from photogrammetry as a prior to improve the quality
of the 3D reconstruction results. In any case, these more costly
methods may also benefit from denoised point clouds as inputs.

Several MVS pipelines have been developed and can be used
to produce point clouds from satellite imagery (Krauß et al.,
2013, de Franchis et al., 2014, Qin, 2016, Rupnik et al., 2017,
Beyer et al., 2018). CARS1 stands out by being designed for
maximize scalability robustness and performance, while go-
ing through the same steps as the state-of-the-art tools (Michel
et al., 2020): rectification, stereo matching and triangulation.
Since denoising is applied to the point cloud, it takes place
after the triangulation stage (see Figure 1). SGM regulariza-
tion (Hirschmuller, 2008) is often used, but imposes a trade-off
between regularization and accepting disparity jumps: smooth
surfaces can therefore remain noisy, hence the need for an ad-

1 PyPI: pypi.org/project/cars, GitHub: github.com/cnes/cars
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hoc denoising method developed for satellite imagery. Figure 2
shows an example of mesh before and after denoising.

Simplified2 pipeline

resample images
in epipolar
geometry

images geomodels

compute
disparity map3

triangulate
disparity map

denoise
point cloud

rasterize

digital surface
model as a raster

Figure 1. Position of the denoising step in the full
CARS pipeline

3. Methodology

The proposed method is built upon bilateral filtering from (Digne
and de Franchis, 2017). Julie Digne’s bilateral filtering is an
adaptation to point clouds of the filtering developed for meshes
(Fleishman et al., 2003). This filtering only needs point posi-
tions and normals and an efficient implementation has been pro-
posed that offers a good compromise between speed and qual-
ity. Figure 3 shows the contribution of neighbors in the bilateral
filtering framework: Mathematically, each point p is moved to
p′ along the normal vector np estimated from q points from
neighborhood N (p):

p′ = p+ δp · np (1)

where the displacement δp is expressed as follows:

δp =

∑
q∈N (p) wd(||q − p||)wn(|⟨np, q − p⟩|)⟨np, q − p⟩∑

q∈N (q) wd(||q − p||)wn(|⟨np, q − p⟩|)
(2)

2 Detailed pipelines on https://cars.readthedocs.io
3 Performed by PANDORA: https://github.com/cnes/pandora

(a) Mesh before denoising

(b) Mesh after denoising

(c) Image 1

(d) Image 2

Figure 2. Example of mesh from points cloud before (a) and
after (b) denoising. Generated from a pair of images (c) and (d)

acquired by the Pleiades 1B satellite (Nice, France).

and where weights functions w are centered Gaussian func-
tions:

wi(x) = exp

(
−x2

2σ2
i

)
(3)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-149-2024 | © Author(s) 2024. CC BY 4.0 License.

 
150



We have chosen to integrate new constraints into this filtering.
Our aim is to show how a priori knowledge can be used to guide
denoising and, above all, to produce a denoised point cloud that
is more consistent with the acquisition conditions or metrics ob-
tained during correlation. This new method takes into account
two important constraints.

The first is a geometric constraint. The input to the denois-
ing step is a point cloud from photogrammetry resulting from
matched points on the sensor images. Our pipeline CARS de-
rives lines of sight from these matched points and the intersec-
tion of these lines given the target 3D positions. In our method,
when we denoise this point cloud, the points are constrained to
stay on their initial line of sight. This has two main advantages:
firstly, the associated color will remain consistent with the new
position. Secondly, points will not accumulate in certain spaces
and create empty areas. This would be the case if the point was
recolored following an approach like (Zhang et al., 2019).

The second constraint comes from the correlator PANDORA4.
The software is available under the Apache-2.0 licence. The art-
icle (Sarrazin et al., 2021) describes a confidence metric, named
ambiguity integral metric, to assess the quality of the produced
disparity map. This measurement determines the level of con-
fidence associated with pairs of homologous points. Each point
is moved along the line of sight according to its confidence: the
less confident the correlator, the more the point is moved while
respecting the geometric constraint mentioned earlier. Apart
from these two added major constraints, our method still uses
the usual denoising parameters, such as the initial color and pos-
ition of each considered point regarding its neighborhood. Nor-
mal smoothing is included to compensate correlation inaccur-
acy. Figure 4 shows the benefits of considering these additional
constraints.

(l1) (l2)
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(i1, j1) (i2, j2)

(l1) (l2)

p

(i1, j1) (i2, j2)

(a) Point p to be denoised (red)
with its neighborhood (blue)

(b) Distance weights

(l1) (l2)

p

(i1, j1) (i2, j2)

(l1) (l2)
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(c) Regression plane
estimation

(d) Normal distances as dotted
lines and associated weights

Figure 3. Neighbors weights in the denoising process (high
opacity = large weight in (b) and (d)). Point p corresponds to the
intersection between lines l1 and l2. Ground truth is represented
by colored lines corresponding to the radiometry of the building

to be reconstructed.

4. Experimental setup

An urban area of Nice (France) is selected as interest site for
our study. We extract a 800x500 region from a couple of Plei-
4 PyPI: pypi.org/project/pandora, GitHub: github.com/CNES/pandora
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(e) Projection of the point

Figure 4. New information added in the denoising process (high
opacity = large weight in (a), (b) and (d)). Changing the weights
of neighbors modifies the regression plane estimation. Point p is
reprojected onto the reference line of sight to ensure its original

coherence (e).

ades HR stereo images given as input for a CARS production.
Default CARS configuration is applied, except for the DSM
output resolution, set to 1m, to match CO3D product charac-
teristics. For the stereo matching step, we use the census filter
of (Zabih and Woodfill, 1994) along with a semi-global optim-
ization from (Hirschmuller, 2008).

The denoising filter takes a point cloud as input. With the
cropped stereo image couple as input, a first CARS produc-
tion provides intermediate products, disparity map (epipolar co-
ordinates) and point cloud dataset (earth-centered, earth-fixed
coordinates). A final production generates the DSM of our re-
gion of interest (Universal Transverse Mercator zone 32N pro-
jection). For later quality evaluation of our denoised point cloud
dataset, reference data is generated for each CARS output based
on LiDAR HD®5. This freely distributed data contains 10 points
per m2 and includes a semantic label for each point, allowing
for a class-specific quality assessment according to building,
vegetation or ground. Using this external data a reference dis-
parity map is then generated using a planimetric and altimetric
readjustment between LiDAR and CARS DSM, followed by
a ground truth disparity map using height-disparity ratio as in
(Cournet et al., 2020). CARS production is reiterated with a
breakpoint before triangulation to inject this new reference dis-

5 LiDAR HD® website: geoservices.ign.fr/lidarhd
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parity map. This new production enables the retrieval of a ref-
erence point cloud dataset and a final reference DSM, which
integrates building, vegetation and ground classification as ad-
ditional data.

Our bilateral filtering requires some user settings, similar to the
one proposed by Julie Digne (Digne and de Franchis, 2017),
which is parameterized by N (number of iterations), r (radius of
the neighbourhood search) and Gaussian weights for euclidean
distance and distance to the tangent plane. The following con-
figuration results from a sensitivity study:

• Number of considered neighborhoods for each point, K =
10 (we consider each point and its 99 neighbors);

• Max iteration number = 10;

• Standard deviation of Gaussian weighting factor for dis-
tance, sigma d = 2.0 (points located at more than 4.3m
have a weighting factor under 10%);

• Standard deviation of Gaussian weighting factor for color,
sigma c = 60 (radiometric differences with point of interest
that exceed 128.76 have a weighting factor under 10%);

• Standard deviation of Gaussian weighting factor for am-
biguity, sigma a = 0,2 ( ambiguity value above 0,5 has a
weighting factor under 10%).

Two main steps integrate these parameters. Normal vectors are
calculated at the beginning of the iterations for each point. Each
vector is determined according to its neighborhood and selected
attributes. Point repositioning is realized using these previously
calculated vectors and point attributes in the neighborhood. To
avoid the influence of normal vector quality on results due to
selected parameters upon which they were calculated, we fixed
this normal vector calculation to an estimation using distance
and color weight. To assess the contribution of each factor, we
perform point repositioning for different configurations:

• only distance weighting;

• distance and color weighting;

• distance and ambiguity weighting;

• distance, color and ambiguity weighting;

• all four configuration with projection onto the line of sight.

The output of the filter is evaluated quantitatively by means of
global statistics on euclidean distances between denoised and
reference point clouds and qualitatively using CloudCompare,
a 3D point cloud processing software, and QGIS.

We consider our second constraint, the normalized ambiguity
metric, as an indicator of correct point positioning in the CARS
point cloud dataset. Using this criterion as a new filter para-
meter introduces the possibility of selecting points to relocate.
This approach differs from other filter methods in literature where
all points are affected. But this advantage of not moving already
well positioned points broaches the first issue of determining
how to classify points in both categories: to move or not to
move. Using a strict threshold can create a lack of anchor points
in some less dense or less qualitative datasets whereas a flexible
threshold can be too dependent on point cloud ambiguity dis-
tribution. Therefore, we realized a correlation study between

point ambiguity values and euclidean distances to their refer-
ence points for points considered as being part of buildings.
The results, visible in Figure 5, show that for decreasing am-
biguity value, the gap between reference and initial point cloud
dataset decreases. However, this correlation is only valid for
points with ambiguity below 0,5 and contains a high number
of outliers. Therefore, for points with ambiguity below 0,5,
point repositioning will decrease with ambiguity whereas for
points above the threshold, no weight will be assigned. We ad-
apt this weighting factor so that areas of missing ≪ambiguity
anchor points≫ that might be created by the strict threshold can
be compensated by other filter factors such as distance and/or
color.

Figure 5. Euclidean distance error distribution between initial
CARS and reference point cloud according to their considered

confidence (1 - ambiguity) range.

5. Results

Figure 6 shows the results varing the information added in the
denoising step. Visually, color is the added information that
seems to bring the most change. The other information added
brings a few changes to the roof edges.

Table 1 summarizes the results obtained by integrating the am-
biguity constraint. Statistical observation shows no obvious im-
pact of ambiguity upon strict color or distance criterion. Indeed,
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(a) only distance

(b) with color

(c) with color + ambiguity

(d) with color + ambiguity + projection

Figure 6. Mesh filtered without using color (a) with color (b)
with color and ambiguity (c) with color, ambiguity and

projection onto the line of sight (d).

during the first iteration, the number of points that are within 1
meter of the reference increases. However, it seems that the
smoothing effect of distance with increasing iterations is atten-
uated when using ambiguity. Adding color seems to contain
points within some limited range. CE90 is the lowest of all
configurations and using ambiguity does not impact its value as
for distance criterion. We see a small positive impact on median
with ambiguity but color might have a predominant effect over
ambiguity for our current filtering parameters. The minor im-

pact of ambiguity might be explained by its spatial distribution.
Low ambiguity regions are mostly located on top of buildings,
compared to high ambiguity regions present on the ground. In
these regions, ambiguity contribution tends to be poor because
all points in neighborhood have similarly high ambiguity val-
ues. It is important to balance the contribution of the ambiguity
and color constraints. If the colors are ignored, the resulting
point cloud will have the same noise effects as the initial one.

Table 1 reveals the results obtained with and without projection
of filtered points onto their respective line of sight. A beha-
vior relatively similar to that observed without projection can
be noted. Overall, projection onto the line of sight does not
worsen the performance of bilateral filtering. A slight improve-
ment in the best points is even noticeable.

As a reminder, points displaced by bilateral filtering undergo
orthogonal projection onto their line of sight to ensure consist-
ency with the acquisition geometry of these points (see Fig-
ure 4). In comparison, traditional bilateral filtering can move
filtered points away from their observation sources. Obviously
(by construction) this difference is zeroed when projected onto
the lines of sight. This ensures superimposability with the other
layers of the CARS product (color, confidence).

In table 1, it can also be noted that the quality of denoising with
projection onto the line of sight deteriorates with the number of
iterations. This behavior echoes that of the initial bilateral filter-
ing (e.g., without projection), which seems to converge towards
a very smooth surface. These results show that the denoising
parameterization can still be improved to better preserve height
discontinuities.

Settings Iter

Metrics
%
pts
≤

1m

med
(m)

max
(m)

ce10
(m)

ce90
(m)

mean
ce90
(m)

noisy N/A 54.12 0.89 30.13 0.153 4.77 0.08

denoised 1 56.05 0.86 30.16 0.18 4.78 0.10
5 52.50 0.94 28.76 0.23 4.91 0.14

color 1 55.68 0.86 30.20 0.18 4.78 0.10
5 53.82 0.91 29.85 0.21 4.84 0.13

ambiguity 1 56.32 0.85 30.16 0.18 4.84 0.10
5 54.11 0.91 28.54 0.22 5.03 0.13

clr&amb 1 55.91 0.86 30.20 0.18 4.79 0.10
5 54.95 0.89 29.85 0.20 4.89 0.12

denoised
projected

1 56.40 0.85 30.16 0.15 4.78 0.08
5 53.72 0.92 28.52 0.17 4.91 0.09

color
projected

1 55.98 0.86 30.20 0.15 4.77 0.08
5 54.75 0.89 29.96 0.16 4.84 0.08

ambiguity
projected

1 56.78 0.84 30.16 0.15 4.83 0.08
5 55.41 0.88 28.28 0.16 5.04 0.08

clr&amb
projected

1 56.24 0.85 30.20 0.15 4.79 0.08
5 56.02 0.86 29.96 0.15 4.89 0.08

Table 1. Quantitative contribution of the proposed filtering
method settings: taking color and confidence into account and

forcing the point to stay on the reference line of sight.
The error is calculated by comparison with the LiDAR HD®.
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6. Conclusion

In this contribution, we have recalled the challenges of point
cloud denoising while respecting acquisition conditions, within
the framework of the CO3D mission. Building upon the work
of (Sarrazin et al., 2021), we have proposed preliminary work
towards integrating the so called ”ambiguity”, provided by the
correlator, into bilateral filtering denoising. Once again, we
have observed the correlation between strong ambiguity and po-
sitioning error. However, the results indicate that further stud-
ies are needed to adjust the contributions of distance (neigh-
borhood), membership to the same object (following the hypo-
thesis that there exists a strong correlation between color and
an object and then between an object and a planar surface), and
the ambiguity attributed to the 3D position of a point in the 3D
point cloud.

We have also demonstrated that it is possible, without worsen-
ing of results, to impose a strong constraint on point displace-
ment along the line of sight with a simple orthogonal projec-
tion. Point cloud denoising then resembles a post-processing
step on the disparity map, preserving coherence between the
point source (sensor) and the restitution of their 3D position.

Future work will incorporate a more precise notion of the per-
missible displacement of a point in space (Malinowski et al.,
2024), as well as the replacement of color with object mapping,
building upon the works presented in (Dumas et al., 2022).
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