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Abstract 

 

European rivers are increasingly impacted by frequent and lasting dry periods, with consequences on jeopardized ecosystems and 

local economies. Tools for monitoring the evolution of such impacts may be profitable exploited by public administration to assess 

environmental conditions and draw safeguard policies. This work presents the evolution of a methodology which integrates optical 

and radar imagery, by Copernicus Sentinel constellations, to map river water surfaces. Despite the base methodology being 

developed as a man-supervised classification, with necessity for the user to manually define training polygons, the proposed 

advancements will allow the system to automate training sample extraction. The process is based on the realization of binary masks, 

originated by processing optical and radar imagery with a BMax Otsu algorithm for image segmentation. The masks are then 

furtherly refined to obtain a reliable set of classified pixels, from which the training samples are extracted. A sensitivity analysis is 

performed for assessing the optimal amount of pixels to be considered, with respect to the total area of interest. Furthermore, the 

performances of several Machine Learning supervised classification algorithms are compared, leading to the selection of the best 

algorithm to be considered for future developments of the methodology. 

 

 

1. Introduction 

1.1 Drought Events and Impacts on European Large 

Rivers 

It is well known that climate change impacts are increasingly 

affecting European territory, often in the shape of extreme 

natural events. Among those, in recent years, heat waves due to 

global warming contributed to the growth of intensity of dry 

periods (Dai, A., 2011). Changing the temporal reference, in 

future climates the severity and frequency of drought events is 

expected to increase, due to the processes related to global 

warming (Mukherjee et al., 2018). Particularly, the 

Mediterranean areas are expected to face extraordinary hot 

summers and increasingly frequent drought events, which may 

clearly affect the population (European Environment Agency, 

2021). Multiple examples could be presented, such as Loire 

River (France) and Ebro River (Spain) cases, for which the 

average water discharge was measured to be under average 

values for 11 months in the year (Copernicus, 2022). As 

mentioned, such phenomena eventually lead to huge 

consequences on several river ecosystem-related activities, as 

presented by Nikolova (2022) in the case of Danube. Impacts 

were reported in terms of economical losses, as an example due 

to limitations that vessels experienced because of water level 

decrease, but also of ecological damages. Bulgarian WWF, 

reports Nikolova (2022), stated the depletion of 90% of the 

records of autochthonous species’ eggs.  A further confirmation 

of the delineated crisis comes from the observations of 

Copernicus Climate Change Service on European rivers 

discharge data (Copernicus, 2022). The presented analyses 

clearly show the effects of an exceptional drought event in 2022 

(that actually lasted until the first months of 2023), which had 

consistent impacts on large rivers and their ecosystems, as 

summarized in Figure 1. Another key example, in this case 

related to medium width rivers, is the one of Po River (the 

longest Italian river), for which in 2022 the worst water scarcity 

of the past two centuries was recorded (Montanari et al., 2023). 

Experts agreed on the exceptionality of the phenomenon, stating 

nevertheless the repeatability of such events in near future 

(Bonaldo et al., 2022).  

 

 

  
Figure 1. Monthly average river discharge anomalies across all 

12 months in 2022 – August, from (Copernicus, 2022). 

 

The increments of severity and frequency of such events 

highlight the necessity for local authorities to be capable of 

monitoring the state of rivers and, if needed, promptly enacting 

countermeasures to face the related issues on their territory. 

This paper will present the last findings of a procedure intended 

support to public administration in river drought monitoring, 

which was, in the first phases of the work, triggered by Regione 

Lombardia, one of the the main regional authorities of Northern 

Italy. Specifically, the authors partnered with the public 

authority in the drafting of a procedure devoted to integrating 

optical and radar satellite imagery, aimed at combining two 

sensors for mapping water, overcoming the typical issues of the 

single data sources (Conversi et al., 2023), which will be 
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discussed in the following section. The current work embeds the 

efforts made by the team towards the automation of the 

procedure, aimed at making it more user friendly and, most of 

all, profitably employable in Regione Lombardia’s services for 

environmental monitoring. In addition, a process of selection of 

the best performing Machine Learning algorithm is proposed, 

considering the application within the advanced version of the 

methodology. 

 

1.2 Reference Methodology: Integration of Optical and 

Radar Imagery to Enhance River Drought Monitoring 

Before introducing the latest evolutions of the work, it may be 

of interest to summarize the principal characteristics of the first 

procedure proposed in (Conversi et al., 2023), schematized in 

Figure 2.  

 

 
Figure 2. Workflow of optical and radar imagery integration for 

mapping river water surface, proposed in (Conversi et al., 

2023). 

 

The main goal of the work is providing the public 

administration with an efficient tool for monitoring drought 

impact on rivers. It was pursued by obtaining a system capable 

of delivering a water coverage map from satellite imagery 

referred to a short interval of time, under the assumption of 

considering the variation of water surface itself as a good proxy 

of impacts experienced by rivers in dry periods. As summarized 

by the previous figure, two satellite data sources were 

identified, one for optical imagery (ESA’s Copernicus Sentinel-

2 constellation) and the other for radar imagery (ESA’s 

Copernicus Sentinel-1 constellation). 

As it is well known, image segmentation techniques allow to 

extract objects or regions from images, distinguishing between 

pixels belonging to the interest class and pixels classifiable as 

background (Huang, 2021). Such techniques may profitably be 

used for identifying (and extracting) water surface pixels from 

both radar and optical imagery. Nevertheless, the two families 

of sensors bring with them intrinsic limitations that may reduce 

the quality of classification results. Optical imagery suffers the 

presence of clouds (or whichever obstacle prevents the full 

vision of the object), leading to loss of information on the 

territory and, in the case of interest, to the underestimation of 

water surface. On the other hand, imagery sensed by Synthetic 

Aperture Radar (SAR) can be prone to misclassification when 

used for water pixels detection, due to several conditions, 

ranging from soil moisture to background noise (Landuyt et al., 

2019). Anyway, the work proved the possibility of overcoming 

these errors by integrating the two data sources into a unique 

classification process. The base process and the modifications 

oriented at its automation presented in this paper, were built in 

Google Earth Engine environment, the cloud-based service for 

global geospatial analyses powered and owned by Google 

(Gorelick et al., 2017). Within this environment, codes can be 

written in JavaScript language, and run, obtaining outcomes in 

forms of values, graphs or maps, which can be displayed in an 

inbuilt map visualizer. The tool consents to upload local data 

and manage them within the coded geoprocessing as well, 

allowing then to export and download the results in various 

formats. Furthermore, it also offers the possibility to explore a 

Data catalog (GEE, 2024), that contains lots of opensource 

geospatial resources, among which satellite imagery, such as the 

Sentinel-1 and Sentinel-2 collections used in this study. 

Input imagery was selected to ensure complete coverage of the 

area of interest, with mosaicking if necessary images coming 

from multiple close dates, a reliable assumption considering that 

the drought is usually a slow phenomenon. The interval of time 

between images was minimized by the code, depending on data 

quality and availability. Once the datasets were retrieved from 

the catalogue and preprocessed, their integration was performed 

using a Random Forest (RF) Machine Learning algorithm for 

supervised classification, deemed as particularly suitable for the 

case because of its capability of classifying pixels characterized 

by unknown frequency and distribution (De Fioravante et al., 

2021). The RF algorithm was then fed with two images 

representing spectral indices (Normalized Difference Water 

Index and Sentinel Water Mask), (JRC, 2011; Milczarek et al., 

2017), elaborated from orthorectified Sentinel-2 level 1C, and 

an image derived from Sentinel-1 (L1 GRD, VV band, 

processed with speckle filtering). In addition, a set of polygons 

representing “water” pixels and “background” pixels was drawn 

by the author by photointerpretation, in order to train the 

algorithm with reference data. The procedure was then applied 

to a real case study (Po River, in between Piacenza and Spessa 

Po sections) and a multitemporal analysis conducted over 

selected dates in a period of 8 years. The outcomes of the 

procedure were constituted by a map of water surface detected 

over the area of interest, for each of the considered time 

intervals, complemented with an estimate of the extent in km2. 

The results showed a satisfactory level of accuracy in 

classification and, most of all, a good level of agreement with 

hydrometric data recorded on the field, proving the capability of 

the system in matching the real trend of river behaviour 

(Conversi et al., 2023). 

 

 

2. Towards Automation of Ground Truth Extraction 

On the basis of the overall quality of the methodology results, it 

was of interest to the whole team to understand how the 

procedure itself could be enhanced to make a step towards the 

actual usage within the context of public authorities’ policies. It 

is evident that one of the main limitations to this process is the 

necessity for the user of providing to the Machine Learning 

(ML) algorithm training polygons of reference, which have to 

be drawn for each iteration of the procedure and must be 

specified for the different cases that may be encountered. As an 

example, the polygons representative of water pixels for a 

certain time window may not be correctly usable for the 

analysis on the same area, but in a different period, thus forcing 

the user to re-identify and draw a new set of reliable polygons. 

This part of the procedure, based on photointerpretation and 

analysis of the whole set of imagery (optical indices and SAR) 

obviously requires a certain level of understanding of the topic 
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and, most importantly, the mastery of the used instruments. 

Public administration operators may not be experts in satellite 

imagery analyses nor in GIS or GEE use. Thus, this led to the 

recent development of the methodology itself, which is oriented 

to the complete automation of the steps. 

 

2.1 Otsu and Bmax Otsu Algorithms for the Identification 

of a Threshold From Bimodal Histograms 

The code was integrated with an automatic thresholding 

method, named after its author, the Otsu method (Otsu, 1979). 

This methodology allows to define an optimal threshold value 

for distinguishing background from foreground objects. In 

mathematical terms, Otsu algorithm can be defined as an 

iterative algorithm that evaluates the variance for different 

thresholds k, selecting the k* that maximize a parameter λ, 

corresponding to the ratio between class variance (to be 

maximized) and intra-class variance (to be minimized). In this 

application the concept of class has to be interpreted as subset 

of values representing grey levels, each of which is associated 

to a certain probability of occurrence (Otsu, 1979). Aiming to 

state the potential of the method, its simplicity has to be stressed 

(it does not require many parameters to be run), it does not 

suffer from instability due to local properties of the pixels’ 

histogram distribution (because it is based on integration and 

not on differentiation), (Otsu, 1979). Furthermore, it can be 

exploited not only on incident radiation, but also on computed 

indices, as it will be shown in the next paragraph. Otsu methods 

found through the years lots of different applications, in diverse 

fields, that only share the necessity of image segmentation to 

draw conclusions, such in the case of medical diagnoses (Bindu 

& Prasad, 2012) and monitoring of infrastructural damages 

(Akagic et al., 2018). The reduction of computational time 

granted by the Otsu algorithm in real life applications, jointly 

with its flexibility fostered the development of a family of 

methods aimed at improving the original one (Goh et al., 2018). 

Among these, a particular role is played by Bmax Otsu 

algorithm (Cao et al., 2019), which is oriented to mitigate one of 

the main issues of the main algorithm, i.e. its dependency on the 

bimodality of processed images. In facts, in real case studies 

and procedures, such as the ones proposed in this work, it is rare 

to be able to operate on images presenting a clearly bimodal 

histogram of values. BMax Otsu was originally developed for 

Sentinel-1 imagery analysis and then it has been proved to be 

generally employable for images characterized by multiple 

classes or complex backgrounds (Markert et al., 2020). It is 

based on a sequence of processing steps meant to provide, 

disregarding the peculiarities of the analyzed image, a bimodal 

histogram to a classic Otsu. To initialize the method, a first 

threshold should be provided, so to estimate each class variance; 

then the image is subjected to a process of chessboard 

segmentation, which divides it in cells of user-defined 

dimensions (Cao et al., 2019). A bimodality test is then 

performed: for each cell the maximum normalized Between-

Class Variance (BVC) is evaluated and only the cells exceeding 

a certain level are selected (Markert et al., 2020), as exemplified 

in Figure 3. Usually, a grid cell is considered to be bimodal 

when the BVC (or Bmax) reaches values of 0.65-0.75 (Cao et 

al., 2019). The so-sampled cells, along with their histogram 

values distribution, are used to derive the final threshold by the 

mean of a classic Otsu procedure.  

 

Figure 3. Chessboard segmentation obtained through BMax 

Otsu algorithm implementation, bimodal cells are highlighted.  

 

2.2 Otsu-based Extraction of Training Samples 

Figure 4 depicts the workflow of the training samples 

extraction. 

 

 
Figure 4. Scheme of automated training samples extraction. 
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As shown on the previous scheme, the implementation of Bmax 

Otsu algorithm plays a crucial role in the identification of 

training samples necessary to the correct deployment of the 

classification procedure. As mentioned, the main concept 

behind its use is related to the possibility of removing the 

contribution of a “human” user in the selection of areas 

(previously identified as training polygons) that are 

representative of the two class of pixels (namely “water” and 

“background”). Aiming to automate the process it is relevant 

that the code can produce autonomously a mask of pixels for 

each of the classes, containing only pixels that are reliably 

belonging to the single class of interest. Clearly, removing the 

role of human eye and expertise, it would be difficult to obtain 

masks containing only pure pixels for the two classes, but with 

a sort of step by step procedure for masks production, 

reasonably good results can be achieved 

. First, the Bmax Otsu algorithm was applied separately to the 

three imagery inputs: NDWI, SWM, SAR filtered VV band. 

The initial estimates of the thresholds of the two indices were 

identified in common values used for differentiating water from 

non-water surfaces, as suggested by (McFeeters, 1996) and 

(Milczarek et al., 2017). For SAR, instead, a calibration was 

performed, and the most common value was selected, also in 

agreement with literature values for studies devoted to water 

detection through radar sensors (Carreño & De Mata, 2019). 

The grid size necessary for the application of the method, as 

introduced in the previous section, has been defined based on 

the river width. It was considered as a linearly increasing 

function (1), with the width calibrated so to maximize the 

similarity with a bimodal histogram distribution.  

 

Grid size = River width [m] ⋅ 0.008/250,                                 (1) 

 

The calibration tests were performed with the goal of obtaining 

a selection of cells (on which the Otsu algorithm would be run) 

that contain the same quantity of water and non-water pixels, at 

least as a good proxy. As it is shown by Figure 5, in the cells 

that are extracted, thus characterized by high bimodality, half of 

the area is covered by the river and the remaining part is made 

of background pixels. It is obvious that this formulation should 

be intended as an approximation and was built under the 

hypothesis of not considering distortional effects of the 

conformal map on the distances, as one is going far from the 

equator. 

 

 
Figure 5. Detail of bimodal cells extracted through BMax Otsu 

algorithm implementation. 

                            

By applying Bmax Otsu algorithm, the code is then capable of 

individuating for each of the images a specific threshold value 

that splits the histogram of values associated with water and 

values associated with background. Applying a segmentation 

based on the thresholds, three rough water masks are produced 

over the image collections; once again, it is not possible to 

completely trust these results, but they can be considered a good 

proxy of the presence of water in the area of interest. In order to 

refine the obtained masks, a procedure was built, capable of 

going through the images found for the reference time and 

extracting from them only the pixels that remain constantly 

categorized as water (or background) for the whole period. The 

further and last refinement of the mask is then performed by 

extracting from the three smoothed masks only the pixels that 

are actually classified as water (and background) in all three of 

them (NDWI, SWM, VV). The ultimate water mask can then be 

addressed as the intersection among the three mentioned 

smoothed masks. This discretized procedure allows to increase 

the refinement in subsequent steps, so to obtain at the end a 

mask of water and background pixels that is as much as possible 

representative of the real situation on the ground in the area of 

interest, all over the reference period. It is clear that the amount 

of pixels in these masks is strongly dependent on the time 

reference, which should be significant with respect to the 

phenomenon that is to be observed. The machine trained on 

points randomly extracted from the mask will then be used for 

mapping the water surface in the zone of interest, allowing to 

estimate the water coverage in the areas surrounding the river. 

In Figure 6 a portion of the area of interest is depicted: in 

yellow it is possible to identify the areas composed by the pure 

water pixels obtained from the ultimate mask (in yellow) and 

the background ones (in white), from which the corresponding 

training points are extracted, respectively in light blue for water 

and in red for background. 

 

 
Figure 6. Detail of the ultimate water wask with superimposed 

extracted training points. 

 

It is relevant to state that the number of training points to be 

extracted from the mask has a relevant impact on the overall 

quality of the water mapping results. Thus, a sensitivity analysis 

was performed, in order to define the optimal solution in terms 

of training sample size. At the same time, it was also carried out 

a second analysis, for comparing different Machine Learning 

algorithms, so to select the classification algorithm with the best 

performance. In this case, a fixed amount of training pixels 

analysis was considered, in accordance with the results of 

sensitivity analysis. 

 

 

3. Application of the Automatic Training Sample 

Extraction and Machine Learning Classification Algorithm 

Selection 

A sensitivity analysis and a classification method comparison 

were performed. The sensitivity analysis was devoted to the 

study of accuracies variation when changing the number of 

training sample points. Then, the results obtained with different 

ML algorithms were compared, testing them both on the 

integration of optical and radar imagery and on the single data 

sources considered separately. Doing so, it was possible to 

select the best performing algorithm and draw useful 

conclusions upon the data fusion concept, which is the core of 

the study. 

In both cases the classification accuracy was estimated with the 

confusion matrix, built from each iteration of the procedure. As 
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it is well known, in case of a binary classification such the one 

addressed in this work, the confusion matrix will be structured 

as a 2x2 matrix, containing values of True Positive (TP), False 

positive (FP), False Negative (FN) and True Negative (TN). 

Obviously, such a framework requires a preliminary knowledge 

on the conditions on the ground, so to make the system able to 

recognize whether if the value prediction for each cell is correct 

or wrong. In the sensitivity analysis, devoted to training sample 

size selection, the case study of the stretch of river delimited by 

Spessa Po and Piacenza sections was considered. In fact, for this 

area, reference data were available with a good distribution 

known water/non water pixels location, originally estimated by 

photointerpretation. The intercomparison of the classification 

algorithms was instead performed in a different study area, 

without prior ground truth knowledge, considering as reference 

map the one obtained with supervised Random Forest 

classification with photointerpreted polygon training samples.  

For both the aforementioned analyses the accuracy estimation 

was carried out exploiting three different Machine Learning 

classification algorithms, so to derive useful information on the 

methodology applicability: 

 

Random Forest; as it is well-known, it is a Machine Learning 

algorithm, originally introduced by Breiman (2001), which 

bases its analyses on several tree-like structures, named decision 

trees. A decision tree is built by recursively splitting the feature 

space of the training set until a predetermined stopping 

condition is met, having the goal of finding a set of decision 

rules that naturally partition the feature space, providing a 

robust hierarchical classification. It breaks down a dataset into 

smaller subsets while, at the same time, the decision tree is 

incrementally built. The final result is a tree with decision nodes 

and leaf nodes, where decision nodes have two or more 

branches and leaf nodes will define a final decision. Basing on 

bagging algorithm, in RF random samples sets are trained 

independently (collection of decision trees), with each one of 

the trees giving an independent answer to a specific task. The 

majority of the results will then define the output classification 

of the single pixel (Schonlau & Zou, 2020).  

Classification And Regression Tree algorithm (CART); it is a 

different kind of decision tree algorithm, with a difference in the 

way in which the decision nodes are split. In CART algorithm, 

the threshold value is selected based on the best homogeneity 

for the sub-nodes, using the Greedy Splitting (Bittencourt & 

Clarke, 2003). In Greedy Splitting, the decision nodes are split 

based on numerical procedure where different split values are 

tried using a cost function, the value that minimizes the cost is 

then chosen as threshold. 

Support Vector Machine (SVM); it is a supervised, non- 

parametric, statistical learning algorithm. SVM is particularly 

used in remote sensing because it can perform good with small 

training sets, often having a better accuracy with respect to 

other methods (Mountrakis et al., 2011). The algorithm relies on 

hyperplanes to separate the dataset into a discrete number of 

classes, hyperplanes are used in order to minimize 

misclassifications, optimizing the segmentation. It is a learning 

algorithm, meaning that there is an iterative process in finding 

the optimal threshold. In SVM pixels are represented as pattern 

vectors, where for each considered band, numerical 

measurements are performed (Mountrakis et al., 2011). 

 

3.1 Sensitivity Analysis: Estimation of Training Samples 

Number 

As anticipated in the previous section, the estimation of an 

optimal number of training samples depends on several factors, 

related to the specific parameters characterizing the processed 

imagery (number of bands, image complexity, etc.). Generally, 

an increment in the number of training pixels increases the 

accuracy, but in case of large datasets it can increase as well the 

opportunity of including spectral inhomogeneities, which can 

hamper the results quality (A. T. Joyce, 1978).  

For each of the introduced supervised classification algorithms a 

set of simulations was performed, for different time intervals, 

considering variable amount of pixels (intended as a percentage 

of the total area of interest): 0.005%, 0.01%, 0.02%, 0.25% and 

0.5%. The large variability of the proposed values was 

determined in order to be able to observe a diverse set of results, 

so to seize the optimal response that mitigates the impacts of the 

different factors. The validation was carried out considering a 

set of 5000 points distributed over the area of interest, 

representing both water and non-water pixels, classified by 

photointerpretation. Validation accuracies and True Positive 

Rate (TPR), (Ting, 2011), were evaluated for each of the 

Machine Learning algorithms over three different periods of 

time, aiming to guarantee to the analysis a good variability of 

conditions (e.g. a date interval during 2022 drought was 

considered). The plots shown in Figure 7 depict behaviours in 

terms of accuracy variation that are proper of the single 

algorithms. In facts, Random Forest seems to loose accuracy 

when the number of training samples is increased, while 

Support Vector Machine represents the opposite trend 

(increasing the amount of samples, the accuracy reaches higher 

values). On the other hand, Classification And Regression Tree 

algorithm results in a sort of mixed trend, with an initial drop in 

accuracies, recovered as long as the number of training samples 

increases. It should be noted that the overall accuracies report 

quite high values in all the simulations, even though the 

analyses of TPR showed CART has a tendency to the 

overestimation of water pixels, with larger amounts of false 

positives than the other algorithms. 

 

(a) 

 

(b) 
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(c) 

 

Figure 7. Sensitivity analysis plots. Variation of validation 

accuracy for varying amount of traing samples. Aiming to 

enhance the readability of the different trends, it was decided 

not to uniform y-axis minima. Results shown for RF, CART 

and SVM algorithms in (a) May 2016, (b) July 2022, (c) 

February 2023.  

 

All in all, aiming to find a balance among the illustrated trends 

and the unavoidable increase of computational time needed for 

large set of training samples, it was decided to set the amount to 

0.15% of the area of interest. Indeed, it can be noticed that in 

between 0.1% and 0.25% simulations, all of the trends reach an 

optimal threshold value after which not significant changes are 

appreciable.  

 

3.2 Selection of Machine Learning Algorithm With the 

Best Performance 

In order to test the applicability of the procedure to different 

territories, the simulations oriented to the selection of the ML 

classification algorithm with the best performance were 

conducted on a different area of interest with respect to the test 

case used in the sensitivity analysis. This was done also to 

ensure as much as possible the independency of this process 

from the already discussed sensitivity analysis. 

Po River was still taken as a reference, but a different stretch 

was selected. Once again, it was decided to focus the analysis 

on a portion of the river in between two instrumented sections, 

from which it would be possible to derive hydrometric records 

for further checking the results (Conversi et al., 2023). The two 

ends of the chosen river stretch are Borgoforte (Mantova 

province) and Casalmaggiore (Cremona province), two 

municipalities belonging to Regione Lombardia’s area of 

relevance (AIPO, 2024); the contextualization of the area and a 

water surface map produced over the area through the presented 

methodology is proposed respectively in Figures 8a and 8b. 

 

 
(a) 

 

 
(b) 

 

Figure 8. Contextualization of the selected area of interest, 

surrounding Po River stretch in between Borgoforte (Mantova 

province) and Casalmaggiore (Cremona province), (a) and 

output of the water surface mapping procedure in the region (b). 

Input imagery acquired between in September 2021 (1st – 6th). 

 

Aiming to establish a standardized procedure, a fixed number of  

randomly extracted training samples was set, and it was 

identified in the amount of 20877 pixels, corresponding to the 

0.15% of the area of interest, as resulted from the sensitivity 

analysis. Addressing the temporal scale, five different time 

spans were explored, so to furtherly explore the capability of the 

methodology in different weather conditions; considering the 

years for which all of the needed imagery was available, date 

intervals from summer, autumn and late winter were chosen. In 

addition to this, within the process of ML algorithm selection, 

the options of considering as an input images coming from 

single sensors only (optical or SAR) were considered 

separately. 

Figure 9 represents the results in terms of accuracy for the 

considered time periods, comparing the performances of 

Random Forest, Classification and Regression Tree Algorithm 

and Support Vector Machine applied in the case of sensor 

fusion (S1+S2), SAR imagery (S1) and optical imagery (S2). 
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Figure 9. Comparison of accuracies among RF, CART and 

SVM classification algorithms. Single sensors and sensor fusion 

performances are compared in (a) June 2017, (b) August 2018, 

(c) September 2021, (d) July 2022, (e) February 2023. 

 

Comparing the outcomes, it is recognizable that the 

employment of satellite data fusion is indeed a fruitful solution, 

as expected. In few cases actually the results achieved by the 

use of a single data source are comparable with or 

outperforming the use of integrated imagery. However, even if  

a stable and univocal behaviour cannot be identified, the optical 

and SAR combination always provides comparable or better 

results with respect to the optical or SAR alone. In general, the 

best performance is obtained with optical and SAR combined, 

processed with the Support Vector Machine algorithm.  

 

 

4. Conclusions 

The present paper proposes an innovation of a previously 

proposed procedure (Conversi et al., 2023), built in Google 

Earth Engine, devoted to the integration of optical and SAR 

imagery to detect river water surfaces. In particular, it fosters 

the possibility of automating the process, so to make the whole 

system user friendly and compatible with its employment in 

public administration procedures. Indeed, the work was 

triggered by the necessity expressed by a regional authority of a 

tool for monitoring the impacts of drought period on medium-

width rivers.  

The procedure is focused on the supervised classification of 

satellite-sensed images (NDWI and SWM indices derived from 

Sentinel-2 imagery and VV band extracted from Sentinel-1); the 

user is then required to draw by photointerpretation some 

polygons representing ground truth to train the algorithm. A 

step towards the complete automation procedure is taken by the 

mean of introducing into the code a technique for the automatic 

extraction of training samples from each of the processed 

images. This procedure is built on the base of the Bmax Otsu 

algorithm for automatic thresholding, that allows the system to 

reach autonomously binary masks representing water and non-

water classes for each considered band. The methodology will 

then process all the masks to obtain an Ultimate Mask that is 

representative of the situation on the territory and that can be 

objectively trusted as a reference source of information for 

water presence. Training samples are then extracted from it 

randomly.  

A sensitivity analysis was performed on the Po River to identify 

the percentage of the area of interest to be considered as training 

set and the value of 0.15% was selected. The study proposes 

also the outcomes of a further analysis, based on a different 

stretch of the same river, whose goal is to define which is the 

best performing supervised classification algorithm among 
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Random Forest, Classification And Regression Tree, and 

Support Vector Machine. The latter appears to be the best 

solution; the same analysis shows also that the combination of 

satellite data sources allows the process to reach better 

accuracies than the single sensor approaches. 

The results of the study are promising, with particular regard to 

the possibility of optimizing the process and reach the complete 

automation of the classification method. Nevertheless, it should 

be reminded that at the moment the code is not yet totally 

accessible by a non-expert user. Indeed, apart from the obvious 

requirement of being able to manage and run a JavaScript code, 

there are still few parameters that must be set and inserted by 

hand, such as the estimate of average river width, necessary for 

different steps, among which the tuning of Bmax Otsu 

algorithm. 

Concluding, the experience of this work proves that there are 

good possibilities of reaching the automation of such 

procedures, without sacrificing the classification accuracy. Even 

though some issues still need to be faced and solved, the authors 

will take advantage of data, information and results achieved in 

the current study to explore the feasibility of converting the 

methodology in a ready-to-use tool (e.g. in the shape of a 

WebApp) for supporting public administration’s policies in 

environmental monitoring and climate risk mitigation. 
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