
Beautiful thematic maps in Leaflet with automatic data classification

Dániel Balla 1, Mátyás Gede 1

1 Institute of Cartography and Geoinformatics, ELTE Eötvös Loránd University, Budapest, Hungary –

(balla.daniel,saman)@inf.elte.hu

Keywords: thematic maps, data classification, symbology, Leaflet, web cartography, open source.

Abstract

Even though the web is a platform that provides lots of features, interactivity, and a high degree of customizability for creating web
maps, web-based thematic maps still require expertise to visualize geospatial data in a way that highlights spatial differences and is
cartographically comprehensive. The popular open-source web mapping library Leaflet lacks a straightforward approach to create
thematic maps with basic principles they should adhere to (data classification, automatic symbology and legend generation).
Although various tutorials and workarounds exist, those are hard-coded, only solve some principles thematic maps require and are
complex to accomplish, requiring programming experience. The paper focuses on finding a way to overcome shortcomings of
Leaflet in terms of thematic maps, that supports a simple, self-explanatory method of producing thematic web maps using the library.
As a solution, this paper introduces an easy-to-use, open-source plugin for Leaflet, developed by the authors, which combines all
processes required for creating a thematic map from a GeoJSON dataset, in one single step. For symbology, it supports graduated
symbol colours and sizes, and colour and hatch pattern fills for polygons. It supports well-known classification methods for
quantitative data and puts emphasis on providing numerous options for all underlying processes, to fine-tune the visualization (data
normalization, rounding class boundary values, legend templating etc.). This highly customizable extension intends to help people
who do not have experience with map design and are not familiar with scripting to an extent to be able to code visually pleasing
thematic maps for websites.

1. Introduction

To visualize quantitative data, web-based thematic maps are a
popular and great tool to aid a comprehensive data visualization,
while, due to its web-based nature, offering interactivity as well.
Thematic mapping emphasizes communication between the
map maker to the map user via information abstraction (Linfang
& Liqiu, 2014). Since choosing the most optimal way to
represent data is essential in the field of thematic cartography,
one of the most important tasks of an author of a thematic map
is to create a product that is legible (for the type of intended
target audience) and unambiguous, while still pleasant to look
at. To ensure the map is not visually overloaded, besides
processes like generalization, the selection of appropriate
symbology with altering appropriate visual variables is of
utmost importance to display both quantitative and qualitative
data. Based on the summary on visual variables by (Roth,
2017), (Bertin, 1967/1863) originally identified seven visual
variables (location, size, shape, orientation, colour hue, colour
value and texture), which was later extended with colour
saturation and arrangement by (Morrison, 1974) and crispness,
resolution and transparency by (MacEachren, 1995) for an
overall of 12 variables.
Strongly related to thematic mapping is data classification,
which precedes any kind of visualization on the map. During
classification, map features are classified into groups based on
one or more of their quantitative attributes. Proven and popular
statistical classification methods include Natural breaks (Jenks),
Equal count (Quantile), Equal intervals, Standard deviation etc.
The individual methods all both have advantages and
disadvantages, when used with different spatial data types to
minimize information loss (Osaragi, 2002). Choosing an
optimal method and an optimal class count massively helps the
map user to quickly comprehend thematic data and discover
relevant spatial differences. For example, classifying data into
two classes does not convey much useful information, while
using 10 class bins might make the map incomprehensible by
having very similar symbols which can no longer be easily

distinguished. Previous research (Miller, 1956; Mersey, 1990;
Cromley, 1995) suggested using five to seven classes for static
maps. Most thematic maps show data with seven or less classes
(Linfang & Liqiu, 2014). In order to distinguish individual
classes on a graduated symbols map, an exact symbol is
assigned to each, which are created with altering one or more of
the visual variables to distinguish classes. Besides the more
complex techniques of symbology, for point features their
symbol fill colour, shape and symbol size can indicate both
qualitative and quantitative data, line features have stroke
colour, type and width which we can operate with, while
polygon features usually have their fill colour or type (e.g.,
hatching) altered to indicate a given class. The use of colours
and colour ramps also hugely influences the map user’s
perception of the product. By adhering to colour theory, using
colours that create a proper visual hierarchy we emphasize the
thematic overlay(s) over the background map. Based on data
type, we differentiate three major types of colour ramps:
sequential, diverging, and qualitative schemes (Brewer et al.
2003). Another vital part of a thematic map is a descriptive
legend, which contains all the distinct classes the map features
were classified in, with exact symbols for each class. Given we
work with quantitative data, the individual class interval
boundary values are usually rounded to a given decimal or a
whole number to ease and quicken comprehension for the map
user.
All the available visual variables and methods offer a wide
range of possibilities for the map maker to achieve a symbology
that conforms to the basic principles of thematic cartography.
By conducting three studies on web mapping technologies,
comparing features, user needs and experiences, (Roth et al.,
2014) identified a subset of available technologies for teaching
web mapping, while revealing insights into web map design.
Their subset comprised of Google Maps API, OpenLayers,
Leaflet, and D3. Out of the three open technologies
(OpenLayers, Leaflet, D3), they concluded Leaflet as the one
with the most representation and interaction requirements met
by participants (60.4%). Their study also investigated the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-3-2024 | © Author(s) 2024. CC BY 4.0 License.

3

participants’ emotional experience with the technologies, in
which Leaflet scored the highest (most positive experience).
Based on the work of (Farkas, 2017), OpenLayers and Leaflet
are two of the most feature-rich, open-source web mapping
libraries. In a web environment, the interactivity and
customizability offered by the likes of these further enhance the
creation of a proper symbology. However, while creating rich
thematic maps with both Leaflet and OpenLayers is possible,
neither features a straightforward way to combine all basic
principles of thematic mapping (data classification, appropriate
symbology and legend creation) natively. Due to support for
touch-based interaction and small library size, Leaflet is
considered one of the best libraries for web mapping when
designing for a mobile environment (Roth et al., 2014).
Scientific literature on using Leaflet to create interactive
thematic maps with built-in client-side data classification is
sparse, and mainly consist of qualitative classification, as in
(Horbiński and Smaczyński, 2023) and (Horbiński and Lorek,
2020), instead of quantitative.

This paper introduces a newly developed, client-side Leaflet
plugin to make the creation of GeoJSON-based thematic maps
much easier. The extension intends to help people who do not
have experience with map design and are not familiar with
programming and scripting to an extent to be able to code
visually pleasing thematic maps on websites. It also aims to
provide some features related to thematic mapping that are
present in desktop GIS environments, like data normalization,
handling of null values, class boundary value rounding and easy
multiplication/division of values for changing unit of
measurement.

2. Features and Shortcomings of Leaflet

Why Leaflet? Among the three open-source technologies
mentioned in Introduction, Leaflet requires the least amount of
programming experience to get started with. While getting
started with it on a basic level is easier, creating refined and
elegant thematic maps is still a challenge in all three. D3, while
being a feature packed library for interactive data visualization,
since its focus is not on maps, it requires workarounds to have
basic features like map panning and zooming implemented.
Although OpenLayers does have a rich feature set, its steeper
learning curve makes its usage harder for non-expert users.
Leaflet (https://leafletjs.com/) is an open-source, client-sided
JavaScript library for web mapping, which, due to its
lightweight, interactive and customizable nature, is increasingly
popular. Developed and maintained by Volodymyr Agafonkin,
Leaflet makes use of the possibilities of HTML5 and CSS3
standards, with a designated goal of being a simple, performant,
and mobile-friendly library. A lot of useful third-party plugins
are available for free, which extend Leaflet’s functionality. This
allows developers to customize their specific use of Leaflet in a
web environment. Although it is relatively easy-to-use and it
renders spatial data client-side well, it is unable to do
geoprocessing internally – geoprocessing algorithms are well-
covered by another JS library, Turf.js (https://turfjs.org/), which
can easily be integrated with Leaflet. Despite that, Leaflet offers
a substantial amount of display and styling features. The
visualization of spatial vector primitives like points, lines and
polygons are well-handled while making use of the SVG
(Scalable Vector Graphics) specification for client rendering.
For symbology, a lot of styling parameters are available (colour
fill, outline, line width, dashed lines, opacity, symbol size etc.)
(Agafonkin, 2023). The official website of Leaflet does provide
some basic examples and tutorials for symbolizing features and
creating a legend, based on which a specific thematic map could

be produced. A tutorial exists for an interactive choropleth map,
provided by Leaflet. However, it is hard-coded, meaning that it
will have to be recreated for each specific thematic map tailored
to a specific data set, making them unsuitable for
implementation in a dynamic data visualization. This way, they
also leave data classification and symbology design completely
up to the map maker/developer to figure out. The study of (Roth
et al., 2014) indicates that, when faced with the task of a more
complex web mapping scenario, users new to Leaflet might still
find it confusing. It also highlights a participant, who noted it’s
difficult to figure out what they need to read first and what is
most important, in order to match the requirements of the
scenario. This phenomenon might be explained by the lack of
variety and depth in the tutorials on Leaflet’s official homepage.

Creating thematic maps does represent one of the more
complicated tasks in Leaflet. To fulfil the expectations and
follow the basic principles of thematic maps (data classification,
appropriate symbology, and a clear legend with the individual
symbols), Leaflet lacks some important features. Although
developing these features can be realized one-by-one, they are
quite complex and static, and require some experience with
JavaScript coding to get the intended result.

2.1 Data Classification

For data classification, Leaflet does not do any classification of
data natively. This is partly understandable, since Leaflet’s main
goal is to provide a visualization, not GIS or data manipulation
functions. Any classification we want to perform on the data set
has to be done beforehand with external software. In terms of
external tools and helpers, ClassyBrew is noteworthy.
ClassyBrew, as an open-source utility to generate class breaks
and applying “colorbrewer” theory, currently only supports
three methods for data classification (equal interval, quantile,
Jenks natural breaks) (Tanner, 2023). It does not generate an
appropriate legend for the created visualization. Since it only
operates with colours (applies one of the existing colour palettes
to features and class symbols, which could be useful for
choropleth maps), it does not support more advanced but classic
thematic visualization methods like symbol size-, line width- or
hatch pattern fill-based symbology. Considering that it is an
independent tool, it has no tight integration with Leaflet classes:
data values must be manually parsed from GeoJSON and given
to the utility as an array, from which the utility generates
colours that can be used in a Leaflet “styler” function. The
utility is no longer maintained, as the last commit happened on
20 June 2017 by its developer.

2.2 Symbology

When loading spatial vector data into Leaflet (e.g., GeoJSON),
amongst other features, styling of the individual features can be
overridden. This way, it is possible to define a “styler” function,
which receives a given attribute value as an argument, processes
the value using a stacked conditional statement with a pre-
defined data classification, and returns the correct style
attributes (e.g., fill colour) for the given class. That style is then
applied to the feature as the feature’s graphical representation.
Even though this workflow allows for a classification based on
pre-defined class boundaries, the process of data classification
itself must be done manually beforehand (i.e. in GIS software).
After classifying manually, the map maker has to code the styler
function as well, including the exact class boundary values and
colour codes to get the desired results. This workaround is
complicated and is immensely prone to human error.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-3-2024 | © Author(s) 2024. CC BY 4.0 License.

4

As for specific styling features, using a hatch fill is a common
technique in traditional thematic cartography. Most server-side
mapping software already support hatch fills for a long time,
however, client-side mapping libraries do not natively support
pattern fills (Gede, 2022). Even though it is making good use of
modern web standards, Leaflet does not support hatch fills for
styling features (e.g. polygon fills) natively.

2.3 Legend

Besides an appropriate symbology, a thematic map missing a
legend to explain visualized data is rather pointless. Without a
legend, visualized data cannot be understood by the map user. A
clean, visually organized and precise legend further increases
the chance of the map reader’s proper comprehension. Leaflet,
in addition to the default UI elements (“controls”), has an
interface that supports the creation of custom map controls and
elements. Making use of this feature, creation of a legend is
feasible using HTML elements and CSS style definitions. The
custom control must be designed from the ground-up, which
requires knowledge of HTML/CSS, especially, when the goal is
a clean and tidy legend. This way, once a legend is designed for
a specific thematic map, it remains static in terms of data, and
can only be used for that specific data set, without an easy
means to modify later (reclassify, change symbology etc.).

As it has been reflected on, while being a feature-packed web
map renderer, Leaflet is missing data classification and
automatic legend creation natively. Pairing that with a
cumbersome and static means of defining symbology results in
a complicated way of creating thematic maps with Leaflet. To
aid this, a new Leaflet plugin is introduced, which extends
Leaflet’s GeoJSON class to provide combined functionality to
generate thematic maps easily, while complying with some of
the basic but crucial principles of thematic cartography.

3. Leaflet Plugin for One-Step Thematic Map Creation:
‘leaflet-dataclassification’

The objective of the research is to find a way to overcome the
exact shortcomings presented in the previous section, that
supports a simple, self-explanatory method of producing
thematic web maps in Leaflet. As a solution, an extension is
introduced with the aim of offering an easier, faster method to
generate appealing thematic visualizations of quantitative data
in Leaflet. As it extends the functionality of Leaflet’s GeoJSON
class, the plugin is easily integrated in a Leaflet-based web map
by instantiating an L.dataClassification layer, the same way as
one would without the plugin (L.geoJSON). Upon instantiation,
the plugin takes care of data classification of a chosen
quantitative attribute, styles the features appropriately and
creates a clean, appealing legend based on its initial
configuration options, to provide a seamless and comprehensive
process. As the whole process happens during the instantiation
of a GeoJSON layer, the plugin can easily be integrated in
automatic processes for dynamic data visualization (to
programmatically update data, customize visualization options
etc.). Multiple instances of the plugin layers are handled well,
with most standard L.geoJSON functions available (for example
calling the layer’s remove() method, besides removing the
features from the map, also removes the linked legend instance
of the layer). This also allows for more complex thematic maps
using two or more layers, with different symbology on top of
each other (for example a choropleth map with polygons as the
bottom layer, with symbol size-based, classified point features
on top, both layers with a matched legend). In this case, the use

of Leaflet panes are leveraged, to set z-index of specific layers
and control visual layer order.
As one of the goals is to ease the seemingly complex process of
creating a thematic map using Leaflet, usage of the plugin is
quite simple and straightforward. After including both the
JavaScript and CSS files of the plugin and its dependencies
(simple-statistics.js, chroma.js, leaflet-hatchclass), all the new
options are available when using L.dataClassification. Only
three options are required to be passed as an object upon the
instantiation of the layer:

̶ `mode`: classification method,
̶ `classes`: desired number of classes,
̶ `field`: target attribute field to base quantitative data

classification on.
Defaults have been defined to provide a decent initial result
with only the three required options, but the features described
in the following subsections are available as additional options
as well, to further customize the visualization and maximize its
potential.

The plugin and its full API documentation can be found on
GitHub: https://github.com/balladaniel/leaflet-dataclassification.

3.1 Supported Data Classification Methods

As one of the required options, choosing a classification method
to use is necessary. Currently, the plugin supports the following
data classification methods: natural breaks (Jenks), quantile
(equal count), equal interval, standard deviation, logarithmic
scale and manual. In-code, classification functions are primarily
handled by simple-statistics.js, a JavaScript library that
implements statistical methods (Simple-statistics.js, 2023),
extended by custom functions. Classification based on standard
deviation emphasizes values below and above the mean in a
normally distributed data set. It currently generates classes with
a fixed interval size of a standard deviation, with plans to
support 1/2, 1/3 as well. When using a manual classification,
option `classes` expects an array of class boundary values,
instead of an integer of class count. Although using a manual
classification method partly defeats the purpose of the plugin, it
is still implemented to not limit map makers and their data
visualization in any way.

3.1.1 Data Manipulation Options: In desktop GIS
environments, normalization in a favoured tool to adjust data
attributes based on another attribute value, even before
performing classification. This process allows for direct
comparison of values in different scales or units. To normalize
data, a normalization function has been implemented in the
plugin to adjust an attributes in the loaded GeoJSON. For
example, this feature comes handy when creating a population
density map using a data set that does not have normalized
population data, since the area-based normalization can happen
upon visualization. Thus, the features can be directly compared,
regardless of their respective size. The plugin also allows for
some basic data manipulation, in order to create more
comprehensible class boundaries by rounding or modifying
their values. Generated class boundaries can be either rounded
to n decimals, whole numbers, or rounded up/down to the
nearest 10, 100, 1000, etc. values. The latter might come useful
when working with large numbers, for example on a thematic
map with raw population data, considering that it does not make
much sense to classify and show population data to a precision
of a single person.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-3-2024 | © Author(s) 2024. CC BY 4.0 License.

5

3.2 Symbology Features

The plugin puts an emphasis on providing a lot of options for a
highly customizable symbology for a concise graphical
representation. The map maker has various tools to fine-tune the
data visualization for each type of feature, increasing the chance
of getting the intended message through. In the context of the
plugin, all styling options generate discrete symbol classes.

All colour-related functions in the plugin are powered by
chroma.js, a small, zero-dependency JS library for colour
conversions, scales and colour manipulation. Chroma.js
supports all the most common colour definitions (e.g.,
hexadecimal RGBA, individual RGBA values, colours parsed in
a specific colour space (HSL, HSV, HSI, CIELAB, OKLAB,
CMYK, LCH), named colours, etc.) and also has built-in
Brewer colour ramps (Chroma.js, 2023). Brewer colour
schemes define colours that ensure legibility of thematic maps
on most output mediums (Brewer et al. 2003), while helping
those, who have little or no experience with map design or data
visualization (Brewer, 2003). With the plugin, the predefined
colour ramps can easily be reversed with an option, which
might come handy to correctly illustrate positive/negative
phenomena, e.g. reversing ‘RdYlGn’.
For point features, it supports styling based on symbol fill
colour and symbol size (graduated symbol sizes) as a means of
distinction between classes (Figure 1). Colour-based distinction
can be done by using one of the predefined Brewer colour
ramps (for use with sequential, diverging, and qualitative data)
or by defining a custom colour ramp. For symbol size-based
distinction, minimum and maximum symbol sizes can be
defined, between which the plugin automatically generates
symbols for the desired number of classes. Shape of point
features’ symbols can also be overridden with some basic, built-
in SVG-based shapes like circle, square, triangle, diamond, etc.
In this case, symbol shape is not manipulated as a visual
variable (since it is only suitable for nominal, qualitative
distinction), but rather as a static symbol to use with both
colour- and size-based modes for point features.

Figure 1. Means of distinction between four classes for point
features, demonstrated with diamond-shaped symbols.

Line features can be symbolized based on line colour and width
(graduated line widths) (Figure 2). Similarly to styling point
features, line colour-based distinction uses predefined or custom
colour ramps, and width-based distinction of lines generates
widths between adjustable min-max values. Width-based
distinction is particularly suitable for quantitative data on
segmented line features, where there are data values for all
individual segments, for example for traffic data, river
discharge, river width (since a river has multiple sources, which
usually accumulate resulting in increasing width) etc.

Figure 2. Means of distinction between five classes for line
symbols.

Polygon features can currently be classified and distinguished
by two fill types: colour or hatch pattern (Figure 3). Colour
mode is similar to the other two feature types, using colour
ramps. Hatch mode uses pattern fills for polygons, and offers
distinction of classes by hatch line width, angle, or both (as seen
in Figure 4). Hatch pattern can be customized by defining two
stroke colours to alternate between, stroke widths to gradually
alternate between (when the distinction base is either width or
both). Initial hatch angle can also be defined, while setting a
value to increment angle with, between hatch fill symbols is
also possible (when the distinction base is angle or both).
Integrated into the plugin, CSS hatch pattern classes are
generated by plugin leaflet-hatchclass, developed by Mátyás
Gede. As discussed in (Gede, 2022), compared to static maps,
the existence of dynamic, zoomable web maps using hatch fills
is limited, due to several visual and technical concerns. The
leaflet-hatchclass plugin solves these problems by using a scale-
independent hatch density in the form of SVG patterns. In case
of hatch fills, the legend automatically widens the symbols to
make sure hatch patterns are distinguishable. In case of a
distinction based on alternating hatch pattern angle, the plugin
warns if the symbols would become too similar (if the value to
increment angles with between symbols was set around π/2, π,
3π/2).

Figure 3. Means of distinction between four classes for
polygons, with hatch fill alternating both angle and line width.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-3-2024 | © Author(s) 2024. CC BY 4.0 License.

6

Figure 4. Hatch fill distinction modes (left to right): width,
angle, both. Basemap: © OpenStreetMap, © CARTO. Data:

Eurostat.

Although proportional symbols can be realized in Leaflet
(Donohue, 2013), implementing this kind of symbols is not the
primary goal of this plugin, since they are less relevant to data
classification and delineation of exact class intervals with exact
symbols.
The plugin is prepared to handle GeoJSON features with
“nodata”/null attributes correctly. Nodata features get assigned a
separate null value class, with appropriate distinction in the
legend. By default, these features are assigned a neutral symbol
(grey), depending on mode of distinction of the classes. The
colour (fill/stroke) for these features can also be customized.
Should the map maker wish to ignore nodata features, they can
be ignored, therefore not showing up on the map, nor in the
legend as a differentiated class.
In addition, all L.geoJSON/L.Path styling options can still be
used for properties that are not handled by the plugin itself (e.g.,
when classifying line symbols with a line width distinction, it
allows tweaking of every other styling property, except symbol
width). Setting polygon outline to a neutral colour like white,
for example, emphasizes the single- or multi-hue fill colour
ramps, making the map much more legible and easier on the
eyes.

3.3 Options for Legend Customization

The legend is constructed and displayed automatically as a
semi-opaque floating panel, with exact symbols of the classes to
truly reflect map data. A high level of customization has been
provided for legends as well, with its non-essential parts being
optional. One of the most important parts of a legend is a
header, which usually briefly describes the visualized data for
the map user, including a clear unit of measurement. An
optional legend footer can be enabled for short data description
(e.g. broader-than-header description, data acquisition time or
method). Both the hidable header and optional footer allows for
HTML-markdown and CSS-styling, should map maker wish to
do so. Legend position inside the map object can be set with the
usual L.Control positional options. In order to visually separate
the distinct symbol classes, a row gap can be defined (which can
also be further customized in the provided CSS file). Class
order inside the legend is also subjective – the plugin allows for
both descending and ascending sorting. An important feature is
the possibility of templating legend class rows (Figure 5). A
template can be defined for the highest, middle, lowest and
nodata classes individually, using placeholders for high/low
values and feature counts in the context of a given class interval.
This templating allows for a very high level of customization,
so the map maker can choose whether to display the class
boundary values in a low-to-high or a high-to-low fashion,
including any special characters around the values (e.g., “{low}
– {high}” for middle classes, “{low}+” for the highest class, “<

{high} [{count}]” for the lowest class, etc.). This approach also
opens for internationalization, since this way, the map maker
can format their legend to use words and prepositions of any
language and order, if they wish to include any (e.g. “above
5000” in English, “5000 felett” in Hungarian).

Figure 5. Legend structure with row templating.

Shown class boundary values can be easily modified by
multiplying or dividing them by a number. This purely visual
modification only affects the displayed legend and might come
handy for quick unit conversions (e.g., raw data is in metres, but
it makes more sense to display kilometres in the legend). This
provides an optional tool to further fine-tune the visualization,
make it more legible and appealing to the map user, and to
facilitate quicker communication of spatial data.

4. Results and Discussion

In this section, various thematic maps generated with the plugin
are presented as examples to show the capabilities of the
extension. In addition, evaluation of processing time and overall
performance will be presented.

4.1 Examples

As demonstration, various examples for all vector data types are
provided on the GitHub project page. Each shows off different
classification and symbology methods and plugin features, on
separate data sets. Screenshots of some of the interactive
examples are shown below.
Figure 6 shows an example use case of a multi-layered thematic
map created using the plugin, where two layers of different
vector types are present at the same time, all classified by the
plugin, with their respective legends displayed. The map shows
polygons distinguished by fill colour, and points distinguished
by symbol size. The two legends use different templating, for
demonstration purposes. The legend for capital population also
shows the number of features belonging in each class.

Figure 6. Multi-layered thematic map, with polygons as a
choropleth base and point features, distinguished by symbol

size. Basemaps: © OpenStreetMap, © CARTO.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-3-2024 | © Author(s) 2024. CC BY 4.0 License.

7

In Figure 7, point features were classified into five classes,
distinguished by symbol colour. The legend also has a footer for
data description.

Figure 7. Point features, distinguished by symbol colour.
Basemap: © OpenStreetMap, © CARTO. Data: Ministère de

l'Economie, de l'Industrie et du Numérique.

Figure 8 shows the classification of line features of two separate
data sets. The top map visualizes annual average daily traffic
around Seattle, making use of line colour-based distinction. The
bottom image shows the mean annual discharge of Danube and
its tributaries, with the legend reflecting change in line symbol
width between classes.

Figure 8. Line features, distinguished by line colour (top) and
line stroke width (bottom). Basemaps: © OpenStreetMap, ©

CARTO. Data: Washington State Department of Transportation,
International Commission for the Protection of the Danube

River.

In Figure 9, 3220 polygons are classified into four classes and
symbolized using polygon fill colours. A null value class is also
present, although only a few, rather small polygons belong to
this category.

Figure 9. Polygon features, distinguished by fill colour.
Basemap: © OpenStreetMap, © CARTO. Data: University of

Wisconsin Population Health Institute.

Figure 10 illustrates the use of hatch fills for polygons, provided
by the leaflet-hatchclass plugin. The example uses hatch angle
for distinction between features.

Figure 10. Polygon features, distinguished by hatch pattern fill.

Basemap: © OpenStreetMap, © CARTO. Data: Eurostat.

4.2 Performance

Processing time and overall performance was measured on a
desktop computer with an Intel i7-6700K CPU and 16GB
RAM, using a V8 JavaScript engine (Chrome 124) on Windows
10 64-bit. Overall processing and rendering time of the layer
was calculated as the sum of the time subprocesses took for the
whole layer. Measured subprocesses include loading attribute
values from GeoJSON, data normalization (if any), generating
classes, colours, symbol size ranges, applying symbology to
features and legend generation. Of the supplied GeoJSON data
sets bundled with the examples, three were used to measure
performance (with 109, 3220 and 4879 features, respectively).
Rendering of the larger data set comprising 3220 polygons,
using a quantile classification into four classes and fill colour
distinction, took 16.48 ms averaged over 50 runs (SD = 1.18).
In this case, loading attribute values, generation process of
classes, colours and legend were around 1-2 ms each. Due to the
large amount of features, applying symbology based on the
generated classes took 9 ms, still very fast.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-3-2024 | © Author(s) 2024. CC BY 4.0 License.

8

The smaller data set consisting of 109 line features, using a
natural breaks classification method into five classes and line
width distinction, took 6.8 ms averaged over 50 runs (SD =
1.31). Similarly to the previous case, the subprocesses usually
took around 1-2 ms (including symbology application), with
class generation taking around 3-4 ms occasionally.
Upon inspecting the processing time of the largest data set with
4879 line features, a longer rendering time could be observed.
Using a natural breaks (Jenks) classification into five classes
and line colour distinction, took 222.34 ms averaged over 50
runs (SD = 12.58). A large part of the total time was taken up
by generating classes, 204.50 ms (SD = 7.89). Since the
algorithm for natural breaks is more complex, with a lot of
values it clearly takes longer than other methods on the same
dataset, though not to an extreme degree. This was also
observed with the first, still large dataset. By using another
classification method for the same exact scenario, the running
time suddenly dropped (all other methods took ~1 ms for
generating classes, while the classification based on standard
deviation took 5 ms on average). Subprocesses took a negligible
amount time (0-1 ms), while applying symbology took 10-15
ms due to the higher number of objects (the only major factor
affecting this subprocess).
The very low rendering times of the plugin keep the interactive
visualization smooth and enjoyable, even with larger data sets
or more convoluted classification methods. The run time of
background processes remain negligible (1-2 ms), with some
settings, especially using the natural breaks algorithm causing a
moderate delay before rendering. Generating and displaying the
legend took the absolute lowest time overall, but it is
understandable, since it basically is just a construction of a
HTML element, which is then added to the Leaflet map as an
L.control object.

4.3 Dependencies

The plugin currently depends on various third-party libraries.
Naturally, it must be accompanied by Leaflet, as the plugin is an
extension of the web mapping library. Furthermore, the
following external dependencies must be included in the
environment: simple-statistics.js, chroma.js. Given the map
maker wishes to use hatch patterns for polygon fills, the
inclusion of the leaflet-hatchclass plugin is also required.

5. Conclusion, Further Plans

With the web being a platform that provides lots of features and
a high degree of customizability for creating web maps, web-
based thematic maps still require expertise to visualize
geospatial data in a way that highlights spatial differences in an
exact and cartographically comprehensive approach. The
popular open-source web mapping library, Leaflet, lacks a
straightforward approach to create thematic maps that adhere to
basic principles of thematic mapping. Even though it requires
the least amount of programming experience, as previous
research suggested, the feature-rich Leaflet library is quite
confusing for new users to build products with for more
complex web mapping scenarios. Leaflet does provide basic
examples for creating thematic maps, although they describe a
hard-coded, static method. By combining all the necessary
processes and adhering to most basic principles required in
thematic cartography, the authors developed a solution that
wraps the individual processes of data classification,
symbology, and creation of an appealing legend in an easy-to-
use Leaflet-plugin. The resulting thematic map created is
concise and visually attractive. This way, a user without any
cartographic or thematic mapping knowledge immediately gets

an initial product that is already presentable and pleasant to look
at by default. However, numerous options are available to
provide customization options for all underlying processes,
including classification and presentation. This highly
customizable plugin facilitates the creation of appealing and
clean thematic maps, hopefully increasing the availability and
accessibility of such interactive thematic maps on the web in the
future. Due to its client-sided nature, the extension can also be
suited for implementation in a programmatically controlled
environment (e.g. in a dynamic data visualization, where the
base dataset is remotely updated, and the visualization is
constantly updated).
The project is still ongoing, as some aspects and methods of
thematic data visualization are still missing. Future plans
include support for creating multivariate maps (bivariate
choropleth map), interactive class highlighting and support for
raster data. The latter might be realized in a separate plugin,
since this plugin heavily builds on extending L.geoJSON
specifically. Potentially, support for proportional symbols
(without data classification) could be implemented.

References

Agafonkin, V., 2023: Leaflet - a JavaScript library for
interactive maps, API reference version 1.9.4.
https://leafletjs.com/ (5 December 2023).

Bertin, J., 1967/1983: Semiology of Graphics: Diagrams,
Networks, Maps. University of Wisconsin Press, Madison, WI,
United States of America. ISBN: 978-0-299-09060-9.

Brewer, A.C., Hatchard, W.G., Harrower, A.M., 2003:
ColorBrewer in Print: A Catalog of Color Schemes for Maps.
Cartography and Geographic Information Science, 30(1), 5-32.
doi.org/10.1559/152304003100010929.

Brewer, A.C., 2003: A Transition in Improving Maps: The
ColorBrewer Example. Cartography and Geographic

Information Science, 30(2), 159–162.
doi.org/10.1559/152304003100011126.

Chroma.js, 2023. Chroma.js - JavaScript library for all kinds of
color manipulations: https://gka.github.io/chroma.js/ (5
December 2023).

Cromley, R.G., 1995: Classes versus unclassed choropleth
maps: A question of how many classes. Cartographica, 32(4).
15-27. doi.org/10.3138/J610-13NU-5537-0483.

Donohue, R.H., Sack C., Roth R.E., 2013: Time Series
Proportional Symbol Maps with Leaflet and jQuery.
Cartographic Perspectives, 76, 43-66.
doi.org/10.14714/CP76.1248.

Farkas, G. (2017). Applicability of open-source web mapping
libraries for building massive Web GIS clients. Journal of
Geographical Systems, Springer, 19(4), 273–295.
doi.org/10.1007/s10109-017-0248-z.

Gede, M., 2022: Hatch Fill on Webmaps – to Do or Not to Do,
and How to Do. Abstr. Int. Cartogr. Assoc., 5, 48,
doi.org/10.5194/ica-abs-5-48-2022.

Horbiński, T., Lorek, D., 2020: The use of Leaflet and
GeoJSON files for creating the interactive web map of the
preindustrial state of the natural environment. Journal of Spatial

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-3-2024 | © Author(s) 2024. CC BY 4.0 License.

9

Science, 67(31), 1-17.
doi.org/10.1080/14498596.2020.1713237.

Horbiński, T., Smaczyński, M., 2023: Interactive Thematic Map
as a Means of Documenting and Visualizing Information about
Cultural Heritage Objects. ISPRS International Journal of Geo-
Information, 12(7), 257. doi.org/10.3390/ijgi12070257.

Linfang, D., Liqiu, M., 2014: A comparative study of thematic
mapping and scientific visualization. Annals of GIS, 20(1), 23-
37. doi.org/10.1080/19475683.2013.862856.

MacEachren, A.M., 1995: How Maps Work: Representation,
Visualization, and Design. Guilford Press, New York, United
States of America.

Mersey, J.E., 1990: Color and thematic map design: the role of
color scheme and map complexity in choropleth map
communication. Cartographica 27, Monograph 41. University
of Toronto Press, Toronto, Canada.

Miller, G.A., 1956: The magical number seven, plus or minus
two: some limits on our capacity for processing information.
Psychological Review, 63(2), 343-355.

Morrison, J.L., 1974: “A Theoretical Framework for
Cartographic Generalization with the Emphasis on the Process
of Symbolization.” International Yearbook of Cartography, 14,
115-127.

Osaragi, T., 2002: Classification methods for spatial data
representation. CASA Working Papers (40). Centre for
Advanced Spatial Analysis (UCL). London, United Kingdom.

Roth, R.E., Donohue, R.G., Sack, C., Wallace, T.R.,
Buckingham, T.M.A., 2014: A Process for Keeping Pace with
Evolving Web Mapping Technologies. Cartographic
Perspectives, 78, 25-52. doi.org/10.14714/CP78.1273.

Roth, R.E., 2017: Visual Variables. The International
Encyclopedia of Geography: People, the earth, environment
and technology, John Wiley & Sons, Ltd, 1-11.
doi.org/10.1002/9781118786352.wbieg0761.

Simple-statistics.js, 2023. Statistical methods in readable
JavaScript for browsers, servers, and people. http://simple-
statistics.github.io/ (5 December 2023).

Tanner, J., 2023: classybrew (tannerjt, on GitHub):
https://github.com/tannerjt/classybrew (5 December 2023).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-3-2024 | © Author(s) 2024. CC BY 4.0 License.

10

