
A standardised approach for serving environmental monitoring data compliant with OGC
APIs

Juan Pablo Duque1, Angelly de Jesus Pugliese1, Maria Antonia Brovelli1

1 Department of Civil and Environmental Engineering (DICA), Politecnico di Milano –
(juanpablo.duque,angellyde.pugliese,maria.brovelli)@polimi.it;

Keywords: environmental monitoring,OGC API,open data,geospatial information standards

Abstract

Highlighting the importance of environmental monitoring data and its management, and the usage of standards for providing
interoperability to geospatial information, we present and document the implementation of ROSE-API (Reusable Open Source
Environmental-Data-Management OGC API), an OGC API-compliant web service for exposing feature data and georeferenced
timeseries, as the ones usually generated by environmental monitoring networks. Multiple OGC API standards that align with
the goal of exposing environmental data were implemented, in particular OGC API - Features, Environmental Data Retrieval
(EDR), and Processes. With interoperability and flexibility in mind, ROSE-API allows discovery and processing capabilities for
environmental monitoring data, exposing it in standardised formats and structures suitable for modern internet usage, allowing
spatial and non-spatial filtering, and providing server-side processing capabilities. We tested our implementation with 13 years of
air quality observations, consisting of more than 50 million data points, to address its compliance with the implemented OGC APIs,
performance metrics, and processing capabilities.

1. Introduction

Environmental monitoring is a relevant task in order to cope
with climate change. The spatial authoritative data needed for
such purpose is generated by different sources, e.g., local or
national organisations. In order to assess the environment as
a whole it is fundamental to allow interoperability among the
different sources of data, hence, standards are required.

The Open Geospatial Consortium (OGC) is an organisation which
has been providing geospatial standards throughout the years.
OGC standards have been extensively used by local authorit-
ies and organisations to share their data. OGC Web Services
(OWS) are a family of standards for sharing different formats
of spatial data. Although they are used extensively, they are
based on technologies that are not suitable for modern internet
usage (e.g., XML language); furthermore, OWS services are
not indexed by search engines (Santana and Davis, 2023).

The evolution of OWS is a family of standards called OGC
APIs. They are based on state-of-the-art web technologies such
as REST, JSON, and OpenAPI, which are more suitable for the
modern internet. Among the OGC API standards, the OGC API
- Features, OGC API - Environmental Data Retrieval (EDR),
and OGC API - Processes, are especially useful for managing
and exposing georeferenced environmental data. These stand-
ards will be further described in the following sections.

Although OGC APIs have not reached mainstream adoption,
multiple organisations are already following OGC API stand-
ards for exposing their environmental data. Such is the case
of the Meteorological Service of Canada (MSC) which exposes
historical and real-time weather, climate and water datasets through
the GeoMet API (Environment and Climate Change Canada
(ECCC), 2020). In addition to these services, testbeds have
been implemented for supporting the integration of OGC stand-
ards with existing authoritative data, e.g., an OGC testbed plat-
form for Switzerland (Blanc et al., 2022), and the Geonovum
OGC API Testbed (Geonovum, 2021).

It is important to acknowledge the complexity of maintaining
a service for exposing environmental data, e.g., meteorological
data at the regional or national level, and the effort of adopt-
ing new standards to comply with the OGC API specifications.
Therefore, we propose ROSE-API (Reusable Open Source En-
vironmental Data Management OGC API) as a general frame-
work which follows multiple OGC API standards for data dis-
covery, querying, and processing of common tasks such as out-
lier removal and data aggregation. This approach can be (re)
used by an organisation for ingesting and later exposing their
data through OGC API standards.

As a case study, we showcase the use of ROSE-API with the
data of ARPA Lombardia (Regional Agency for Environmental
Protection (ARPA Lombardia), 2024), the local environmental
agency of the Lombardy region in Italy. Air quality monitoring
data was ingested and exposed following OGC API standards.

The upcoming sections are three. Section 2 includes the theor-
etical framework where we define what is the OGC, the stand-
ards that we implemented on ROSE-API, and explain how these
standards are relevant for environmental data monitoring. Sec-
tion 3 provides a complete description of the developed soft-
ware, including the system architecture and components. Fi-
nally, section 4 documents the implementation of the aforemen-
tioned case study as a test of the capabilities of ROSE-API with
respect to the existing ARPA Lombardia API (Open Data Lom-
bardia, 2023).

2. Theoretical Framework

2.1 OGC, OGC Web Services and OGC APIs

The Open Geospatial Consortium (OGC) is an international or-
ganisation committed to improve the access to geospatial data.
For this purpose, it has proposed over the years a series of stand-
ards to apply FAIR principles (Findable, Accessible, Interop-
erable, and Reusable) to spatial information. Such standards

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-51-2024 | © Author(s) 2024. CC BY 4.0 License.

 
51



allow interoperability across organisations and maximise the
value of geospatial data. OGC Standards have been used ex-
tensively in academia, governmental institutions, and industry.
The most established standards are the web services, while the
API-based ones are still gaining traction.

2.1.1 OGC Web Services: The OGC Web Services (OWS)
refer to a set of standards which define a core model for expos-
ing geospatial data and its processing. The OWS include the
commonly used Web Map Service (WMS), Web Feature Ser-
vice (WFS), Web Coverage Service (WCS), Web Processing
Service (WPS), Sensor Observation Service (SOS), among oth-
ers.

WFS is a standard which provides an interface for requesting
georeferenced features. It allows a series of operations for the
discovery, querying, management, locking, and transactional
operations over feature data. WPS is a standard for defining the
requests and responses of geospatial data processing services.
It provides processing capabilities to GIS servers by enabling
interfaces that execute server-side functions. SOS is a standard-
ized service for the management of sensor networks and access
to sensor observations.

This brief definition of the WFS, WPS, and SOS standards was
provided to contextualise the reader with those standards and to
show in the next section how they are enhanced and technolo-
gically updated in the context of OGC APIs.

2.1.2 The OGC APIs – Features, EDR, and Processes:
OGC API - Features (Open Geospatial Consortium, 2022)
is a multi-part standard which enables the creation, modi-
fication, and query of spatial feature data. It provides ac-
cess to collections of geospatial data. The standard re-
quires a basic set of interfaces or endpoints for expos-
ing the data. The first is /collections which lists the
available collections that can be eventually queried, along-
side their metadata including the id, description, and spatial
and temporal extent. A collection can be queried through
/collections/collectionId/items?queryParams. The
request can receive multiple filters through the query para-
meters, allows pagination, and format selection (e.g., HTML,
GeoJSON (feature collection), or GML). A single feature
from a collection can be retrieved through the endpoint
/collections/collectionId/items/featureId.

OGC API - Environmental Data Retrieval (EDR) (Open
Geospatial Consortium, 2023b) is an extension of the
previously described API that includes multiple ways of
spatially querying environmental data. The OGC API -
EDR standard includes all the endpoints of OGC API -
Features but adds more ways to query data by enabling end-
points such as /collections/collectionId/position,
/collections/collectionId/cube, or
/collections/collectionId/area.

OGC API - Processes (Open Geospatial Consortium, 2021)
is a standard that allows the execution of server-side com-
putational procedures over the collections’ data or user in-
put. The procedures ingest spatial data, vector and/or cover-
age, and return an output according to the specified function-
ality. The list of processes available can be obtained from
/processes, the description and metadata of each process at
/processes/process-id, and can be executed through the
endpoint /processes/process-id/execution. A process

can be synchronous or asynchronous to handle any type of re-
quest. Processes are handled through jobs which describe a
process execution. A new job is added to the jobs list when
a process is executed. The endpoints for handling the jobs are
/jobs which returns the list of jobs, /jobs/job-id which re-
turns the status of a single job, and /jobs/job-id/results

which returns the result of a job.

2.2 Environmental data monitoring

Environmental data refers to the state of the environment at a
specific time and place. It regards, among others, meteorolo-
gical, air quality, water, biodiversity, and waste. Environmental
data monitoring is a practice useful for assessing, analysing and
forecasting the trends of environmental conditions (United Na-
tions Economic Commission for Europe (UNECE), 2003). The
monitoring of the environment supports decision-makers and
helps in the assessment of policy implementation.

The Infrastructure for Spatial Information in Europe (INSPIRE)
aims to create a spatial data infrastructure for the European
Union with the purpose of sharing environmental spatial in-
formation among European public organisations. One of IN-
SPIRE’s principles is the possibility to combine spatial inform-
ation from different sources and share it with users and ap-
plications. INSPIRE proposes a set of guidelines for adding
specific metadata to a dataset to be discoverable and findable
to INSPIRE services and end users. The INSPIRE geoportal
provides an overview and access to datasets that are compliant
with INSPIRE metadata standards.

INSPIRE recognizes the importance of environmental monitor-
ing as it considers them ”High Value” datasets. This includes
environmental monitoring facilities and their underlying obser-
vations e.g., air quality, meteorological, and marine monitoring
networks. This is an initial step for metadata agreement towards
interoperability. Following this idea, having services, such as
OGC APIs that can provide interoperable data access to multi-
source environmental monitoring data is fundamental.

3. Software Description

In this section, we describe the software architecture, the tech-
nologies that were used, and the functionalities of each of the
components of our OGC API implementation. ROSE-API (Re-
usable Open Source Environmental-Data-Management OGC
API) is a server-side web application for managing, processing,
and exposing environmental monitoring data using multiple
OGC API standards (Features, Environmental Data Monitor-
ing - EDR, and Processes). With reusability in mind, our API
is highly configurable and dynamic.

ROSE-API features several dynamic components. By dynamic
we intend to say that metadata and models are built on runtime
based on a specific configuration without doing any modifica-
tions to the source code.

The dynamic behaviour of ROSE-API includes three strategies,
the first is the dynamic generation of collections based on the
database tables which store environmental and feature data, the
second is the modular aggregation of new processes where user-
defined Python scripts with a specific structure are interpreted
by the server, and the third is the dynamic generation of the
OpenAPI document where the different endpoint descriptions
for collections and processes are automatically created.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-51-2024 | © Author(s) 2024. CC BY 4.0 License.

 
52



This implementation is presented as open-source software and
relies on multiple open-source technologies such as Python,
PostgreSQL, and PostGIS, as well as on open standards such
as the aforementioned OGC APIs and OpenAPI.

3.1 System architecture and technologies

ROSE-API showcases a server-side web application connected
to a geospatial database for the management and exposure of
environmental data. Figure 1 shows the overall software archi-
tecture of the system.

Figure 1. ROSE-API software architecture and components.

The system is composed of two macro components, a geospa-
tial database and a web application. The geospatial database
is a PostgreSQL instance where data and configuration para-
meters are stored. The PostGIS extension is enabled to provide
geospatial support, which allows the storage and processing of
geometries. The web application provides the API structure and
the server functionalities. It was developed with Django, which
is a Python-based web framework. It presents a set of dynamic
modules alongside a component for each of the OGC APIs that
are implemented.

Among the general characteristics of the API, it is worth men-
tioning the following:

• Content negotiation: The format of the response is
defined by the client by sending the desired format as an
HTTP header or through the “f” query parameter. By de-
fault, all endpoints allow responses in HTML and JSON.
Any endpoint with spatial capabilities allows GeoJSON
responses.

• Web Linking: Every response is always accompanied
by multiple links (e.g., the same request in a different
format, the landing page, the parent request). They work
as metadata and allow a smoother navigation through the
API for both human users and machines.

• Pagination: As some collections may contain massive
amounts of data, all endpoints that return lists of elements
allow pagination. With pagination, it is possible to retrieve

a subset of the whole data that matches a specific set of fil-
ters. Pagination is enabled by two parameters, limit and
offset. Limit specifies the maximum number of elements
to be returned in a response, while offset specifies the posi-
tion of the first element to be returned, considering that the
whole set of elements is a list. In this way, it is possible to
retrieve a complete list of elements in “pages”. Each page
corresponds to a single request. A client is in charge of
reconstructing the complete list of elements.

3.2 Components

ROSE-API features the following dynamic modules and com-
ponents.

3.2.1 Dynamic Collection Engine: Datasets in OGC APIs
are based on the concept of collection. A collection is a geospa-
tial resource, such as a feature collection, a set of georeferenced
sensor observations, or a GeoTIFF image. Collections describe
the data structures that are managed by the server and the indi-
vidual features or data points that are stored in each of the col-
lections. For ROSE-API, collections are a set of features that
could correspond to spatial entities (e.g., a monitoring station,
the locations of cities, etc.), but also could correspond to sensor
observations or georeferenced timeseries. These collection cat-
egories correspond to feature collections and EDR collections,
respectively.

For this matter, creating a reusable and configurable OGC API
that could potentially manage any kind of dataset structure re-
quires collections to be managed dynamically. The Dynamic
Collection Engine allows the definition of a collection using a
JSON-based configuration where each field of the collection is
described. In this way, collections can be managed independ-
ently from the source code. The configuration for each col-
lection is stored in the database and a new table is created to
store the features related to the collection. Finally, the Dynamic
Collection Engine creates Django models on runtime based on
the collection configuration to enable the usage of Django and
Python features, such as serializers which format the API re-
sponses, and the ORM (Object-Relational Mapper) for query-
ing the database.

3.2.2 OGC API - Common Component: This component
exposes some general-purpose endpoints which are specified
in the OGC API - Common standard (Open Geospatial Con-
sortium, 2023a). The Common endpoints are one of the main
building blocks of the OGC API specification and are shared
among all types of APIs. The Common component provides a
landing page with information about the server in both human-
readable (HTML) and machine-readable (JSON) formats, a list
of the conformance classes of the API, and a complete de-
scription of the API through a dynamically generated OpenAPI
document. The endpoints provided by this component are de-
scribed in table 1.

3.2.3 OGC API - Features component: This component
enables the discovery and management of feature collections.
It follows the OGC API - Features specification (Open Geo-
spatial Consortium, 2022) and offers a set of endpoints for the
exploration and filtering of feature data. Feature collections can
store any kind of vector data, such as points or polygons. Ex-
amples of feature collections include lists of sensors or cadastral
parcels.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-51-2024 | © Author(s) 2024. CC BY 4.0 License.

 
53



Endpoint Description
/ The landing page of the API. This is the

entry point of the system and provides
a machine and human-readable way to
explore the API.

/api/ Provides the API description through a
dynamically generated OpenAPI doc-
ument. This document is provided in
JSON format following the OpenAPI
standard. It is automatically generated
using a common base and adding dy-
namically the collections and processes
endpoint descriptions.

/conformance Provides a list of the conformance
classes that this API complies with.
Each element of the list points to a URL
with the specification of the implemen-
ted standard.

Table 1. Endpoint description for OGC API - Common
component.

The features component also provides several querying capab-
ilities to extract and retrieve the collections’ data from the data-
base. It supports spatial filtering through a bounding box, tem-
poral filtering by date ranges, and attribute filtering by the data
fields of the collection. Feature collection data can be retrieved
in multiple formats, including HTML, JSON, and GeoJSON.
Pagination is also available.

This component not only provides reading capabilities but also
the management of collections. It provides creating, retrieving,
updating, and deleting (CRUD) capabilities to the collections
and the collection’s data.

The endpoints provided by the features component are de-
scribed in table 2, while the filtering parameters are described
in table 3.

Endpoint Description
/collections List the metadata of all available

feature collections. It also al-
lows the management of the col-
lection configuration (i.e., cre-
ate, update, and delete collec-
tions).

/collections/:cID Retrieves the metadata of a
single feature collection by its
ID. Also allows the management
of a feature collection by allow-
ing insertion or deletion of the
collections’ data.

/collections/:cID
/items

Retrieves features for a feature
collection. Allows multiple fil-
tering capabilities through URL
parameters. Available filter-
ing parameters are displayed in
table 3.

/collections/:cID
/items/:fID

Retrieves the data of a single
feature from a feature collection.

Table 2. Endpoint description for OGC API - Features
component.

3.2.4 OGC API - EDR Component: This component al-
lows the exploration and management of EDR collections.
These collections share the same characteristics as feature col-
lections, but their underlying data and structure may be dif-
ferent. EDR collections can include massive datasets such as
sensor observations and georeferenced timeseries which span
across multiple years and have multiple instances of the same

Parameter Description
datetime Enables filtering a collection based on a spe-

cific date or a range of dates.
Example: 2020-01-01/2024-01-01.

bbox Enables filtering a collection based on a
bounding box. A bounding box is a list of
2 coordinates that indicates the top-left and
bottom-right corners of a rectangle.
Example: 9.00,45.37,92.36,45.56

Field-
specific
filters

Enables filtering by specific data fields. For
instance, if a collection contains a data field
named “id”, it would be possible to retrieve
only the elements matching a specific ID by
sending the parameter “id=value”.

Table 3. URL Query parameters for a “/collections/:id/items”
endpoint.

dataset. Additionally, to lower the size of EDR collections, ob-
servations may not have a location as a geometry, but as a ref-
erence to a different collection (e.g., a feature collection that
contains sensor information).

Given the unique characteristics of environmental data, the
OGC API - EDR standard (Open Geospatial Consortium,
2023b) provides a set of endpoints that allow discovery and data
querying by enabling multiple spatial query types. Each query
type corresponds to an endpoint of the EDR specification.
Those endpoints follow the structure “/collections/:id/query”,
where the variable “query” can be one of the following:

• items: Query the EDR collection as a feature collection.
This endpoint corresponds to the OGC API - Features spe-
cification.

• position: Query by a single position (point).

• radius: Query by a buffer around a single point. The units
of measurement and buffer size can be specified with para-
meters.

• area: Query features within a user-defined polygon.

• cube: Special case of the area query, where the polygon is
a 2D or 3D rectangular geometry.

• trajectory: Query features that lie on a linear geometry or
path.

• corridor: Query using a linear geometry and a 3D buffer
along the path.

• locations: Query the items of the collection by using a
field that specifies the location of an object. The location
is not spatial, but an identifier of a location.

• instances: Select, if available, one or multiple versions of
the same dataset. For example, a single collection could
store raw and reprocessed data in different instances.

3.2.5 OGC API - Processes Component: The Processes
component in our implementation allows the creation of scripts
and functions to perform operations over the collections stored
on the database or over any kind of input data that is sent to
the process in compliance with OGC API - Processes standard
(Open Geospatial Consortium, 2021).

Processes in ROSE-API are defined as Python scripts that fol-
low a certain structure. The structure includes metadata related

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-51-2024 | © Author(s) 2024. CC BY 4.0 License.

 
54



to the process (e.g., input types, output structure, version, de-
scription, title, etc.) and a function to be executed when the
process is called. Discovery and execution of processes are per-
formed by the Dynamic Processing Engine module. To manage
the process execution and posterior results, this component uses
a job list. A job is an abstraction of the execution of a process
and contains multiple information about it, such as the status,
unique identifier, and starting date and time. They are created
when a process is executed and stored on the database.

Process execution could take seconds for simple operations, but
may take a long time to finish, depending on the amount of input
data and the complexity of the operations to be performed. Ac-
cording to the OGC API - Processes standard, to overcome this
issue, process execution may be synchronous or asynchronous.
A synchronous execution will wait until the process execution
is over for the server to return a result. An asynchronous execu-
tion will run in the background and return the unique identifier
of the job that was created with the process execution. When the
execution is completed, the result is saved to a file on disk and
is made available through the job results. This type of execu-
tion does not block the server and is more suitable for complex
processes.

Independently of the execution type (i.e., asynchronous or syn-
chronous), each time a process is executed a new job is created
on the database. After the execution finishes, the result is per-
sisted on disk, and the job saves the location of the resulting file
as the execution result. Results are not saved to the database,
as they constitute a document and are not suitable for being
stored on a relational database. Additionally, process results
could generate big files and clutter the database. When job res-
ults are requested, the server sends the contents of the results
file. The endpoints provided by the Processes component are
described in table 4.

The processes component allows the API to have processing
capabilities. The creation of ad-hoc Python functions enables
the extension of the API, as well as the usage of the underlying
data through the ORM and other utility functions.

4. Case Study

To showcase the capabilities of ROSE-API for the exposure and
management of environmental monitoring data we downloaded
the catalogue of air quality monitoring data of ARPA Lom-
bardia and ingested it into an instance of ROSE-API. ARPA
Lombardia is the environmental authority of the Lombardy re-
gion in Northern Italy (Regional Agency for Environmental
Protection (ARPA Lombardia), 2024). This organisation main-
tains an environmental monitoring network of meteorological
and air quality sensors. The monitored pollutants are NOX,
SO2, CO, O3, PM10, PM2.5 and benzene, the number of active
stations is 87. A single station may contain one or more sensors
which measure a single pollutant.

The datasets that we included into ROSE-API for this case
study are the list of air quality monitoring stations of the en-
tire region, and the observations of those sensors. The dataset
with air quality monitoring stations includes multiple metadata
of each station, such as its location, altitude, and pollutant type.
The sensor observations are provided in multiple datasets that
are organized by year ranges. For instance, observations are or-
ganized in one dataset for observations from 2000 to 2009, one
from 2010 to 2017, and one from 2018 to the present year.

Endpoint Description
/processes Lists basic metadata for every process

available on the server. The list of pro-
cesses is dynamically generated based
on the user-defined Python scripts.

/processes
/:pId

Displays the complete metadata for a
specific process by its ID. Complete
metadata includes the input and output
parameter schemas. The ID of a pro-
cess is specified on the process Python
script as metadata.

/processes
/:pId/
execution

Executes a process specified by its ID.
To execute a process, the Dynamic
Processing Engine loads the Python
script as a module and executes its
main method. Execution can be syn-
chronous or asynchronous. When a
process gets executed, a job is created
on the database, and when it finishes,
the results are stored in a file.

/jobs Lists all the jobs that have been ex-
ecuted by the server.

/jobs/:jId Displays information of a specific job,
identified by its unique identifier. In-
formation includes its status, starting
date and time, progress, process type,
etc.

/jobs/:jId
/results

Displays the result of the process ex-
ecution associated with the job identi-
fied by a unique ID. This endpoint for-
wards the contents of the result file as-
sociated with the job as the response.
In case the results are not yet available,
this endpoint responds with an error.

Table 4. Endpoint description for OGC API - Processes
Component.

The observations do not contain location information, but the
ID of the sensor that took the measurement is provided as one
of the data fields. Then, it is possible to reconstruct the location
of the observation by extracting the sensor information from
the air quality monitoring stations dataset. This dataset organ-
ization is useful for maintaining and organizing big amounts
of data but falls short for performing queries that span across
dates in multiple datasets. For instance, to query information
for years in two different time ranges it is necessary to down-
load or query two different datasets and then join the results.
It is also not possible to perform spatial queries directly on the
sensor observations due to the lack of location information or
capabilities to extract the location of a related dataset using a
single query.

These two limitations were addressed using ROSE-API. For
this, we created two collections, one for the sensor information
called “airqualitysensor” and a second collection for storing the
observations called “airqualitymeasurement”. Figure 2 shows
the database representation of both collections and their data
fields. The air quality sensor collection (“airqualitysensor”) is
a feature collection and contains all the information from the
sensors, including its location. The air quality observations
collection (“airqualitymeasurement”) is an EDR collection and
contains the observations from the air quality monitoring net-
work. It includes the measured value, the date and time of the
measurement and the ID of the sensor that took the measure-
ment. This ID is connected to the air quality sensor collection
for extracting additional information about the measurement.
This relationship allows to perform spatial queries directly on
the air quality measurements collection.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-51-2024 | © Author(s) 2024. CC BY 4.0 License.

 
55



Figure 2. Entity relationship diagram of the ROSE-API
collections with the air quality data from ARPA Lombardia.

We downloaded and processed the complete dataset of air qual-
ity monitoring stations and their observations from the year
2010 to the year 2023. The observations are located in two
different datasets provided by ARPA Lombardia (i.e., 2010 to
2017 and 2018 to the present year). The number of air quality
monitoring sensors ingested by ROSE-API is 982, active and
historical, while the number of observations is 55.148.502. Air
quality data is sampled with an hourly frequency, meaning that,
approximately, a single sensor produces 24 data points per day.
A map showing the position of the monitoring stations is dis-
played in figure 3.

Figure 3. ARPA Lombardia air quality monitoring station
locations.

ROSE-API provides processing capabilities through OGC API
- Processes. To extend the default functionalities of the API, we
implemented a set of functions for enabling data preprocessing
directly on the server. It includes outlier removal and data ag-
gregation functionalities.

As ARPA Lombardia data is widely used for research within
the Geolab research group at Politecnico di Milano (Cedeno-
Jimenez et al., 2023, Puche et al., 2023), by using ROSE-API
for maintaining a local copy of ARPA data we can improve the
research process using the previously mentioned data prepro-
cessing capabilities such as outlier removal, data aggregation
per unit of time (i.e., day, week, month, and year) and/or space,
and powerful querying capabilities.

4.1 Results

We compared some of the data discovery and retrieval capabil-
ities of ROSE-API with respect to the API provided by ARPA
Lombardia through their Open Data Portal (Open Data Lom-
bardia, 2023). ARPA’s API is provided through an open data
platform named Socrata (Tyler Technologies, n.d.). It provides
a complete data management platform and a fully-featured API
with discovery and filtering capabilities. Our implementation
excels at the following:

• Querying: Both APIs can perform simple and advanced
queries, however, ROSE-API is capable of doing spatial
queries directly on the observations through the OGC API
- EDR endpoints that are described in section 3.2.4, e.g.,
filter by buffer, bounding box, etc. Also, it allows complex
querying based on properties of related datasets.

• Response metadata: ROSE-API provides multiple
metadata information per response, including web linking
(e.g., URL to parent collection, next and previous page
URLs, alternative formats), number of matched and re-
trieved records, and the timestamp of the request.

• Processing capabilities: Through OGC API - Processes
(see section 3.2.5) it is possible to extend the capabilities
of the API. We created processes for data cleanup and ag-
gregation based on multiple spatial and non-spatial filters.

However, it falls short in the following:

• Response times: ROSE-API is slower in comparison to
ARPA’s API. We performed a benchmark for calculating
response times in both APIs by doing 50 requests for mul-
tiple limit sizes.

We conducted a series of tests for the querying capabilities, re-
sponse metadata, processing capabilities, and response times,
which are described in the following sections.

4.1.1 Querying: Both APIs can perform simple queries
where filtering parameters are within the observation properties
(e.g., filtering by a date range or observation value). Nonethe-
less, ROSE-API can perform requests for filtering observations
with respect to related data, such as the location of the obser-
vation, in a single request. This is possible due to the ability of
ROSE-API to interconnect collections. For the API of ARPA it
is still possible to perform those types of queries, but it requires
multiple steps. It is first necessary to query the sensors’ dataset,
extract the sensor IDs given a specific filter, and then filter the
observations’ dataset by that list of sensors.

A set of queries were performed for each of the APIs on the
datasets containing the air quality observations. We tested the
possibility of retrieving a specific set of observations using only
API requests for both services, and also the possibility to re-
trieve the same data using a single API request. The results are
reported in table 5.

Due to the capability of relating collections of ROSE-API, it is
possible to perform complex queries in a single request, har-
nessing the power of relational databases. ARPA’s API is still
able to perform complex queries but requires additional steps
and user processing.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-51-2024 | © Author(s) 2024. CC BY 4.0 License.

 
56



Query AP AS RP RS
Retrieve observations for the entire
year 2018

X X X X

Retrieve observations from
01/06/2017 to 01/06/2018

X X X X

Retrieve observations for the entire
year 2018 using a bounding box.

X X X X

Retrieve observations for the entire
year 2018 for the pollutant PM10.

X X X X

Retrieve valid observations (differ-
ent than -9999).

X X X X

Observations as GeoJSON format
without geometry.

X X X X

Observations as GeoJSON format
with geometry.

X X X X

Table 5. Ability to perform complex queries by the ARPA API
and ROSE-API. The columns stand for ARPA Possible (AP),
ARPA Single (AS), ROSE Possible (RP), ROSE Single (RS).

4.1.2 Response metadata: ROSE-API returns certain
metadata in each response in compliance to the specifications
of OGC API standards. Multiple links are provided in each
response for facilitating navigation within the API (such as the
URLs of the parent collection and alternative formats), and for
pagination, providing the URL of the next and previous pages
based on the limit and offset parameters of the current request.

In addition, ROSE-API provides the total number of records
matched by a query for facilitating pagination. An example
of the metadata contained in a ROSE-API response is shown
in figure 4. The property “numberMatched” represents the total
number of records that fulfil the query filters, while the property
“numberReturned” represents the number of records that are
present in the response. An example of a “next” link is also
displayed, where the “limit” and “offset” parameters control the
pagination of results.

Figure 4. Example of response metadata in ROSE-API.

None of these metadata is returned by the responses of ARPA’s
API. To see the total number of records matched by a filter it
would be necessary to perform an additional request counting
the result records. Then, pagination is managed by the user by
using the page size (limit) and the total number of records.

4.1.3 Processing capabilities: To provide additional mean-
ing to data, processing is necessary. By expanding the basic
capabilities of an API it is possible to improve the data pro-
cessing. ROSE-API allows the expansion of the discovery and
querying capabilities of the API by offering the possibility to
create ad-hoc functionalities using Python scripts. We created
an ad-hoc process for data aggregation that performs the oper-
ations directly on the database. This process allows the data
aggregation from the “airqualitymeasurements” collection by

year, month, or date, as well as applying spatial and non-spatial
filters.

As an example, we retrieved the monthly aggregation of PM10
observations for sensors located in the city of Milan using a
single request to the API. The result consists of a list of 527
observations corresponding to the monthly average PM10 con-
centration for 6 different sensors over 9 years. Note that the
total number of records should correspond to 648, however, not
all sensors recorded observations for the whole 9 years. Figure
5 shows a time-series plot of the aggregated data.

Figure 5. Plot of aggregated monthly average PM10
concentration per sensor in Milan from 2015 to 2023 using data

processed by ROSE-API.

To perform such an aggregation using ARPA’s API it would be
necessary to perform a spatial query to the air quality sensors
dataset to retrieve the sensor IDs of PM10 sensors located in
Milan. Then, extract the data from the datasets of air quality
observations of 2010 to 2017 and of 2018 onwards using the
sensor IDs as filters. Finally, the downloaded data would have
to be combined and processed locally.

4.1.4 Response times: Response times for ARPA’s API are
better with respect to our implementation. A test was carried
out where both APIs were queried 50 times requesting an in-
creasing number of features (1000, 10000, 100000). The results
are reported in figure 6.

In general, ARPA responses are faster than ROSE-API, but for
larger requests, the standard deviation is larger in ARPA. This
means that response times for large requests are not stable, and
could end up taking more time than expected, even surpassing
the ROSE-API responses. The standard deviation for ROSE-
API is smaller and the variability of response times among re-
quests of the same size is very small. Nevertheless, the differ-
ence in response times between both APIs is less than 1 second
for each request size.

4.2 Compliance Tests

For an implementation of any OGC standard, there is a set of
requirements that must be fulfilled. The Compliance Interoper-
ability & Testing Evaluation (CITE) is a subsection of OGC that
creates and maintains the test sets to be performed to an imple-
mentation of a standard. To test the compliance of ROSE-API,
we tested the endpoints of the Features and EDR components.

ROSE-API was tested against part 1 (core) of the OGC API -
Features standard and against part 1 of the OGC API - EDR
standard. The tests were performed using the ROSE-API in-
stance with the ARPA Lombardia data used for the case study.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-51-2024 | © Author(s) 2024. CC BY 4.0 License.

 
57



Figure 6. Box plot of response time for multiple requests sizes.

Compliance testing was performed using the testing suites
provided by OGC.

For OGC API - Features, all the tested endpoints passed. Tests
included validation of the OGC API - Common interfaces
(OpenAPI document, compliance, and landing page), collection
metadata validation, and query parameters available for each
endpoint. For OGC API - EDR, all the tested endpoints passed.
The corridor test was skipped as it was not implemented, and
the cube endpoint test failed due to a known issue with the test-
ing suite. EDR tests included JSON and GeoJSON format val-
idation, query parameters for each spatial query type, and col-
lection metadata.

5. Conclusion

Geospatial standards are necessary for interoperability which
supports environmental data monitoring and management. The
OGC has recently proposed the OGC API standards which
provide specifications for environmental data discovery, query-
ing, and processing.

The adoption of such standards by environmental organisations
is key for ensuring interoperability, however, their implementa-
tion requires an effort. We propose ROSE-API (Reusable Open
Source Environmental-Data-Management OGC API), a web
service which is able to ingest environmental data and expose
it using the OGC API standards, i.e., features, EDR, and pro-
cesses. The proposed API is dynamic and modular. It dynam-
ically generates the collections based on the database tables on
runtime, allowing the querying of data. Ad-hoc data processes
can be added in a modular way following a specific structure to
be interpreted by the server. Finally, the OpenAPI document is
dynamically generated, providing the endpoint descriptions for
the mentioned collections and processes.

As a case study to showcase ROSE-API’s capabilities for the
discovery and query of environmental data, we ingested air
quality monitoring data into an instance of ROSE-API. The data
consists of hourly concentrations of 7 pollutants in 87 stations
from 2010 to 2023 in the Lombardy region, Italy. ROSE-API
allows to perform simple and advanced queries in addition to
spatial queries and geometry retrieval. The API responses re-
turned also specific metadata useful for pagination. Further-
more, ad-hoc processes were created to perform the temporal
and spatial aggregation of the air quality observations.

References

Blanc, N., Cannata, M., Collombin, M., Ertz, O., Giuliani,
G., Ingensand, J., 2022. OGC API STATE OF PLAY - A
PRACTICAL TESTBED FOR THE NATIONAL SPATIAL
DATA INFRASTRUCTURE IN SWITZERLAND. Interna-
tional Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences - ISPRS Archives, 48, 59 - 65.
doi.org/10.5194/isprs-archives-XLVIII-4-W1-2022-59-2022.

Cedeno-Jimenez, J., Pugliese-Viloria, A., Brovelli, M. A.,
2023. Estimating Daily NO2 Ground Level Concentrations Us-
ing Sentinel-5P and Ground Sensor Meteorological Measure-
ments. ISPRS International Journal of Geo-Information 2023,
Vol. 12, Page 107, 12, 107. doi.org/10.3390/ijgi12030107.

Environment and Climate Change Canada (ECCC),
2020. MSC GeoMet API and geospatial web ser-
vices. https://www.canada.ca/en/environment-climate-
change/services/weather-general-tools-resources/weather-
tools-specialized-data/msc-geomet-api-geospatial-web-
services.html (21 September 2020).

Geonovum, 2021. Geonovum ogc api testbed - ogc-api-testbed
documentation. https://apitestdocs.geonovum.nl/ (2021).

Open Data Lombardia, 2023. ARPA Lombardia — Open Data
Lombardia. https://www.dati.lombardia.it/.

Open Geospatial Consortium, 2021. OGC API - Processes -
Part 1: Core. http://www.opengis.net/doc/IS/ogcapi-processes-
1/1.0 (20 December 2021).

Open Geospatial Consortium, 2022. OGC API - Features - Part
1: Core. http://www.opengis.net/doc/IS/ogcapi-features-1/1.0.1
(11 May 2022).

Open Geospatial Consortium, 2023a. OGC API - Common -
Part 1: Core. http://www.opengis.net/doc/is/ogcapi-common-
1/1.0 (28 March 2023).

Open Geospatial Consortium, 2023b. OGC
API - Environmental Data Retrieval Standard.
http://www.opengis.net/doc/IS/ogcapi-edr-1/1.1 (17 July
2023).

Puche, M., Vavassori, A., Brovelli, M. A., 2023. Insights into
the Effect of Urban Morphology and Land Cover on Land
Surface and Air Temperatures in the Metropolitan City of
Milan (Italy) Using Satellite Imagery and In Situ Measure-
ments. Remote Sensing 2023, Vol. 15, Page 733, 15, 733.
doi.org/10.3390/rs15030733.

Regional Agency for Environmental Protection (ARPA
Lombardia), 2024. ARPA Lombardia — Home. ht-
tps://www.arpalombardia.it/.

Santana, I. L., Davis, C. A., 2023. Comparative Performance
Evaluation of OGC API and OGC Web Feature Service. Pro-
ceedings of the Brazilian Symposium on GeoInformatics, 134 -
143.

Tyler Technologies, n.d. Socrata Developers — Socrata. ht-
tps://dev.socrata.com/.

United Nations Economic Commission for Europe (UN-
ECE), 2003. ENVIRONMENTAL MONITORING AND
REPORTING. https://unece.org/sites/default/files/2020-
12/Final.English.Rev.2.01.12.05.pdf(2003).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-51-2024 | © Author(s) 2024. CC BY 4.0 License.

 
58




