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Abstract

Remote sensing is an essential technology in environmental science to study Earth surface processes. In optical remote sens-
ing, spectral indices (SI) are widely used to quantify the properties of specific surface characteristics. SI mathematically com-
bine reflectance values measured at different wavelengths. To gain an overview and access to such indices, comprehensive
catalogs have been published and implemented in various programming languages. However, there is no Julia-based tool avail-
able for efficiently managing and using these indices. Here we introduce SpectralIndices.jl, a Julia package designed to
retrieve and compute SI. Built on the Awesome Spectral Indices (ASI) catalog, our package enables rapid computation of SI
using native functions. The multiple dispatch capability of Julia optimizes data handling across various storage types, ensur-
ing quick load times. While primarily based on the ASI collection, SpectralIndices.jl also accommodates custom-made
indices, offering users the flexibility to explore and compare alternative indices. The software is open source and available on
github.com/awesome-spectral-indices/SpectralIndices.jl

1. Introduction

Remote sensing has become essential in many branches of sci-
ence and applications that deal with geospatial objects. In en-
vironmental science, remote sensing helps scientists to monitor,
assess for instance, ecosystem status via vegetation health (Kur-
eel et al., 2022), monitor aquatic systems, e.g., algae blooms
(Köhler et al., 2024), or manage natural resources (Pinter Jr et
al., 2003; Franklin, 2001), to name only a few. With the grow-
ing availability of optical Earth observation data, researchers
have developed many spectral indices (SI) to analyze specific
surface features and phenomena in areas such as vegetation
(Zeng et al., 2022), water bodies (Ma et al., 2019), urban en-
vironments (Zha et al., 2003), and snow-covered regions (Sa-
lomonson and Appel, 2004). Additionally, these indices are
used as a basis for environmental machine learning (ML) ap-
plications either as targets (Li et al., 2022; Luo et al., 2022;
Martinuzzi et al., 2023) or as features (Pabon-Moreno et al.,
2022; Montero et al., 2024).

The constantly increasing number of SI has made it essential
to develop comprehensive catalogs. The Awesome Spectral In-
dices (ASI; Montero et al. 2023) suite provides one solution by
offering a curated, machine-readable catalog of SI. Addition-
ally, the ASI suite includes a Python library that users can use
to query and compute these indices, along with an interface for
the Google Earth Engine JavaScript application programming
interface (Montero et al., 2022), catering to a diverse user base
and a variety of use cases.

There is, however, no SI package developed for Julia, a pro-
gramming language known for its high-performance comput-
ing capabilities (Bezanson et al., 2017). The Julia language has

fostered a growing community for geographic and climate ap-
plications, as demonstrated by the development of numerous
packages such as Oceananigans.jl (Ramadhan et al., 2020),
GriddingMachine.jl (Wang et al., 2022), and GeoStats.jl

(Hoffimann, 2018) among others. Given that Julia’s popular-
ity is rising in Earth and climate science, having no dedicated
package for computing SI is a major gap. So far, Julia users
can only use a workaround to access Python’s extensive lib-
raries and tools from Julia, including the specialized ASI Py-
thon package, through PyCall.jl(Johnson and PyCall Devel-
opment Team, 2013), but this comes at a cost of efficiency and
flexibility.

Here we introduce SpectralIndices.jl, a Julia package that
simplifies accessing and computing SI in remote sensing ap-
plications. SpectralIndices.jl provides a user-friendly, ef-
ficient solution to immediately access the collection of SI con-
tained in ASI and includes dedicated functions for their com-
putation. We designed it with flexibility in input data types,
ensuring ease of extension and maintenance.

This paper is organized as follows: Section 2 introduces the
SpectralIndices.jl package. It details how SI are collected
in Section 2.1, describes the computational processes in Sec-
tion 2.2, and outlines the supported data formats for input data
in Section 2.3. Section 2.4 provides an overview of the code
quality of the library. An applied use case is presented in Sec-
tion 3. Points of discussion are explored in Section 4, and con-
clusions are drawn in Section 5.

2. Library Overview

SpectralIndices.jl offers direct access to and enables the
computation of all SI available within the ASI suite. It is
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Figure 1. Code and dependencies structure. In panel a, we show the structure of offline and online building blocks of the library.
Dashed lines indicate that an action is required from the user, while full lines indicate that functions are executed automatically.

Starting from the top left, the function get indices() with the argument set as true retrieves the JSON file from the Awesome
Spectral Indices (ASI) GitHub page. This file is saved in data. The function create indexfun() builds the SI functions from the

formula strings and writes them into a indices funcs.jl in src. During runtime, three functions are executed, namely
create constants(), create bands(), create indices(). The results are loaded into namespaces and consist of three

dictionaries containing the built structs SpectralIndices, Bands, and Constants. These structs contain the information retrieved
from the ASI Github page. Not depicted is the additional loading into namespace of all the structs contained in indices. Panel b
shows the dependencies structure. The core dependencies are imported by default when SpectralIndices.jl is imported. In

contrast, the weak dependencies and the accompanying functions and methods are only loaded when the user explicitly calls them in
the namespace.

built around four key data structures (struct): SpectralIndex,
PlatformBand, Band, and Constant. The functions
compute index and compute kernel form the core of the
computational components. Additionally, helper functions
such as get indices, get dataset(), and load dataset()

provide further functionalities for the library.

2.1 Accessing and Importing Spectral Indices

SI are accessed and imported through the ASI collection. This
process is conducted offline using the get indices() function
with the argument true. If the argument is set to false ( de-
fault setting), the SI list is imported from the one saved in the
data folder. When new indices are added to ASI, the local list
is updated, and the package is subsequently released with a new
version number. With the addition of new indices, the function
list is updated through create indicesfun(). This function
reads formula strings from the JSON file and converts them into
native Julia functions.

When importing the library into a Julia session, the complete
list of SI is loaded in two distinct ways. The first method
imports a dictionary of SpectralIndex objects. A single
indices variable is added to the namespace, which contains the
comprehensive list of indices. In this dictionary, the keys are the
acronym of the index, and the values are the SpectralIndex

structs that contain the SI information sourced from ASI. Sim-
ilar dictionaries, named bands and constants, are also im-
ported. These contain information about the bands and con-
stants used in the SI computation. A schematic representation
of this process is shown in Figure 1a. In the second method, all
SpectralIndex structs included in the indices list are auto-
matically imported into the namespace, offering a quicker and

more convenient method to access information about a specific
SI. Calling the index acronym in the Julia read-eval-print loop
(REPL) will display its main features, such as the application
domain, bands, parameters, formula, and article reference.

2.2 Computing Spectral Indices

SpectralIndices.jl provides a primary function,
compute index(), to calculate SI. The first positional ar-
gument of this function specifies the index (or indices) the
user wishes to compute. This argument can be supplied in two
ways. The first method involves passing the index’s acronym
as a string, for example, compute index("NDVI"). However,
this method is limited as it does not accommodate indices not
present in the indices dictionary. The alternative method
allows users to specify a SpectralIndex struct directly,
such as compute index(NDVI). As discussed in 2.1, all the
indices’ structs are imported in the namespace as the library is
called. Moreover, to compute multiple indices simultaneously,
users can pass them as an array to the function, for instance,
compute index([NDVI, NDWI]). Unlike the first method, the
second one supports the computation of custom indices.

The second component of the compute index() function is
the reflectance data (bands) required to compute the SI. The
bands can be provided to the function in two ways. The first
method involves passing the data as the second positional ar-
gument: compute index(NDVI, params), where params is
a data structure containing the necessary bands for the NDVI
computation. This approach presumes adherence to specific
guidelines, such as using the same nomenclature for the bands
used in the struct information. For more specific details on
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data structures, please refer to the documentation. The altern-
ative approach employs keyword arguments, where using the
correct spectral band nomenclature as defined in the chosen
SpectralIndex struct for computation is necessary. It is im-
portant to note that, despite the differences in methodologies for
computing SI, all methods are equivalent in terms of computa-
tional speed. Many choices are given to accommodate a wide
range of potential applications.

Finally, the library offers a compute kernel() function for cal-
culating kernel-based indices, such as the kernel normalized ve-
getation index (kNDVI) (Camps-Valls et al., 2021). This func-
tion operates similarly to compute index(). The first posi-
tional argument specifies the kernel required for computation,
with options including linear, poly, and RBF. Parameters and
data necessary for the computation can be supplied as a second
positional argument or via keyword arguments.

2.3 Support for Data Formats

The library supports the computation of indices from bands
stored in multiple data formats. The integration of external data
types, such as Tables or DataFrames, is facilitated through
external dependencies. Packages declared external are treated
as conditional imports, meaning they are only loaded with
SpectralIndices.jl when explicitly invoked by the user in
the script. We use this feature of Julia to maintain a minimal
number of core dependencies in the library. Consequently, this
approach improves flexibility and ensures a fast load time for
SpectralIndices.jl. Figure 1b provides a schematic depic-
tion of this dependency structure.

The data types supported by the library, as of v0.2.9, include:

• Native formats: Single values, arrays, matrices, and named
tuples are comprehensively supported. These can be used
to perform either index or kernel computations in the de-
sired format.

• DataFrames: Leveraging DataFrames.jl (Bouchet-
Valat and Kamiński, 2023), this extension computes in-
dices in a two-dimensional, named format. It addi-
tionally supports the use and computation of data with
GeoDataFrames.jl.

• YAXArrays: This format computes three-dimensional
named arrays, implemented via YAXArrays.jl (Gans et
al., 2023).

2.4 Code Quality

The code is open source and hosted on GitHub. It under-
goes rigorous testing through the continuous integration tools
provided by the platform, covering over 90% of the codebase.
The test cases encompass various precision levels (Float64,
Float32, Float16) and all the implemented data types for in-
put bands (arrays, matrices, DataFrames, etc.). Furthermore, it
involves computation tests for each spectral index, individually
and in two random permutations. This thorough testing process
not only ensures robustness but also aids in identifying potential
errors in the upstream ASI collection. Finally, the tests incor-
porate Aqua.jl (Arakaki and Aqua Development Team, 2019),
an automated quality assurance test suite explicitly designed for
Julia packages.

The package documentation is available online and offers
straightforward copy-paste examples for quick starts and

more complex use cases to accommodate advanced applica-
tions. Additionally, it includes a detailed guide to the ap-
plication programming interface (API) that serves as a com-
prehensive resource for users. The documentation can be
accessed at https://awesome-spectral-indices.github.
io/SpectralIndices.jl/.

3. Case Study

We demonstrate the use of SpectralIndices.jl by predicting
the next time step for 16 different SI. The full list of the indices
used is available in Table 1. The prediction task is as follows.
Let yt be the SI at time t. The goal is to predict the SI at the
next time step t+ 1, denoted as yt+1. The predictive model, f ,
is given by

yt+1 = f(yt; θ), (1)

where θ represents all the model parameters, which are learned
from historical data through a training process. The function
f might be implemented using various ML techniques such as
neural networks, decision trees, or support vector machines. We
employ three prediction approaches. In the first approach, we
train the model using only the necessary bands. After predicting
these bands, we use SpectralIndices.jl to compute the SI.
In the second approach, we train the model on a single index
at a time and sequentially predict all 16, deliberately avoiding
parallel computing to simulate conditions where the process is
parallelized across different pixels. In the third approach, we
use all 16 bands to train the model.

3.1 Prediction Method

Echo state networks (ESNs; Jaeger 2001) are an efficient ML
model for prediction of time series (Kim and King, 2020;
Akiyama and Tanaka, 2022). They are based on expanding
the input data into a higher-dimensional space, called the reser-
voir. The computational power of an ESN is determined by
the size and spectral radius of the matrix that represents this
reservoir (Jiang and Lai, 2019). This reservoir is a recurrent
neural network with internal weights, which are set randomly
and remain fixed. After expanding the input data into higher-
dimensional states, linear regression is used to train only the
outer layer to make predictions. We chose ESNs for our demon-
stration due to their straightforward design and effective per-
formance in time series prediction. We implemented the ESNs
using ReservoirComputing.jl (Martinuzzi et al., 2022). Per-
formance is quantified by the root mean square error (RMSE),

defined as RMSE =
√

1
n

∑n
i=1(yi − ŷi)2, where n is the num-

ber of observations, yi is the actual value of the i-th observation,
and ŷi is the predicted value of the i-th observation.

All experiments were run on a Dell XPS 9510 fitted with an
Intel Core i7-11800H CPU and 16 GB of RAM. No GPU ac-
celeration was used.

3.2 Data

In this study, we used spectral bands from the moderate res-
olution imaging spectroradiometer (MODIS) (Vermote, 2015)
for the time period 2000-2017. We focused on time series data
from a single pixel at latitude 51.075 and longitude 10.425, loc-
ated in the Hainich Forest in central Germany. This forest pre-
dominantly consists of deciduous trees. We applied a Savitzky-
Golay filter with a 7-day window and a third-order polynomial
to smooth and denoise the data (Savitzky and Golay, 1964).
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Figure 2. Comparison of three approaches for predicting the next step of 16 spectral vegetation indices (VI). Approach 1 utilizes
spectral bands for training and prediction, followed by the calculation of VI using SpectralIndices.jl. Approach 2 involves

predicting each VI sequentially. In Approach 3, all VIs are used for both training and prediction. Panel a presents the computation
times for all three approaches, with mean times derived from an average of 100 runs. Panel b displays the next-step predictions for all
16 VIs from a single run for a pixel located in Hainich, Germany, in the year 2017. The predicted and original signals overlap. Panel c
quantifies the performance of the different approaches using the root mean square error (RMSE), with the mean RMSE calculated over

100 runs. The plot is done using Makie.jl (Danisch and Krumbiegel, 2021),

3.3 Results

Figure 2 presents the main findings of our case study. Compu-
tations using the bands only (approach 1) are performed faster
than the alternatives. Specifically, predicting the bands in se-
quence (approach 2) is about 5.9 times slower than predicting
the bands and then computing the indices (approach 1). Predict-
ing all 16 bands (approach 3) is 47 times slower than approach
1. This slower speed stems from the increased number of in-
put variables, which requires a larger reservoir matrix. Con-
sequently, matrix multiplications become more costly, increas-
ing the computation time.

Despite the gains in computational speed, there is no loss in
prediction accuracy. For example, the original time series for
the year 2017 and the corresponding single run prediction over-
lap, Figure 2b. Across a hundred runs, the RMSE indicates that
no single approach consistently outperforms the others, with all
approaches yielding comparable performance, Figure 2c. This
study case illustrates how using SpectralIndices.jl simpli-
fies SI calculations and can accelerate ML tasks, such as time
series prediction.

4. Discussion

This manuscript shows how SpectralIndices.jl can assist
practitioners in directly accessing SI computation. We illustrate
the package’s structure and modularity. In this section, we will
discuss how the package and its features can contribute to a
remote sensing scientist’s computational toolkit.

The library is integrated within the growing Julia community
and is dedicated to Earth system and climate software, specific-
ally designed to support remote sensing developers. Our case
study demonstrates how this package can reduce computational
costs in ML applications by minimizing the number of variables
required for training and prediction, Figure 2. More extensive
ML investigations could capitalize on the wealth of information
in the ASI collection by exploring various models and proper-
ties of SI (Reinhardt et al., 2024).

The software offers multiple data input options. However,
this selection is not exhaustive, and expanding these options
would increase the adaptability of the package. Plans for fu-
ture expansions are already in progress, including extensions
like Rasters.jl (Schouten and Rasters Development Team,
2019) and Tables.jl (Quinn et al., 2021), which will offer al-
ternatives for the existing extensions. Future data types that
are being considered for inclusion in SpectralIndices.jl

are AxisArrays.jl (Bauman and AxisArrays Development
Team, 2014), NamedDims.jl (White and NamedDims Devel-
opment Team, 2019) and NamedArrays.jl (van Leeuwen and
NamedArrays Development Team, 2013). A full list is available
in the SpectralIndices.jl Github repository in issue number
8. Additionally, computationally intensive applications benefit
from parallel computation, a feature not yet fully integrated into
SpectralIndices.jl. While it is possible to achieve parallel
computation of SI using Distributed.jl (Bezanson and Dis-
tributed Development Team, 2011) and adapting internal func-
tions with pmap, integrating this capability natively within the
package would improve its functionality.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024 | © Author(s) 2024. CC BY 4.0 License.

 
92



5. Conclusion

In this work, we introduced SpectralIndices.jl, a user-
friendly package to efficiently compute SI from the ASI col-
lection. Designed with modularity in mind, our software aims
to simplify the process for researchers. Our case study demon-
strates how this library can help streamline current research pro-
jects by facilitating easy access and computation of SI.
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Appendix

Index Bands Constants Formula Reference
NDVI N,R / N−R

N+R
(Rouse et al., 1974)

DVI N,R / N −R (Roujean and Breon, 1995)
GDVI N,R nexp Nnexp−Rnexp

Nnexp+Rnexp (Wu, 2014)
GNDVI N,G / N−G

N+G
(Gitelson et al., 1996)

SAVI N,R,L / (1.0 + L) ∗ N−R
N+R+L

(Huete, 1988)
SAVI2 N,R slb, sla N

R+slb/sla
(Major et al., 1990)

GSAVI L,N,G / (1.0 + L) ∗ N−G
N+G+L

(Sripada et al., 2005)
MSAVI N,R / 1/2(2N + 1−

√
(2N + 1)2 − 8(N −R)) (Qi et al., 1994)

NIRv N,R / N−R
N+R

N (Badgley et al., 2017)
NLI N,R / N2−R

N2+R
(Goel and Qin, 1994)

EBI R,G,B epsilon R+G+B

(G
B )·(R−B+ϵ)

(Chen et al., 2019)
ExG R,G,B / 2G−R−B (Woebbecke et al., 1995)
GRVI N,G / N/G (Sripada et al., 2005)
MNLI L,N,R / (1 + L) · N2−R

N2+R+L
(Gong et al., 2003)

SI R,G,B / ((1.0−B)(1.0−G)(1.0−R))
1
3 (Rikimaru et al., 2002)

TGI R,G,B / −0.5 · (190 · (R−G)− 120 · (R−B)) (Hunt et al., 2013)

Table 1. Vegetation indices used in the case study. The indices follow the naming standard from Awesome Spectral Indices: B for the
blue band, G for the green band, R for the red band, and N for the near-infrared band. Additionally, the constants are index specific.

For the experiments in the case study nexp is set to 2, slb is set to 0, sla is set to 1, and epsilon is set to 1

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W12-2024 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2024 – Academic Track, 1–7 July 2024, Tartu, Estonia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W12-2024-89-2024 | © Author(s) 2024. CC BY 4.0 License.

 
95

https://github.com/invenia/NamedDims.jl

	Introduction
	Library Overview
	Accessing and Importing Spectral Indices
	Computing Spectral Indices
	Support for Data Formats
	Code Quality

	Case Study
	Prediction Method
	Data
	Results

	Discussion
	Conclusion



