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Abstract 

 

Urban Heat Islands (UHIs), where urban areas exhibit elevated temperatures relative to their rural surroundings, pose growing 

challenges in the context of climate change, particularly for densely built, vegetation-scarce cities. Traditional methods for UHI 

detection, often based on empirical indices or statistical regressions, lack spatial resolution, scalability, and adaptability across 

diverse urban environments. This study introduces an open-source deep learning framework that integrates multi-source satellite 

imagery and urban geospatial data to detect, map, and analyse UHIs with high spatial fidelity. The framework leverages a U-Net 

convolutional architecture with attention mechanisms to predict land surface temperature (LST) and delineate UHI hotspots. Input 

features include NDVI, impervious surface area, building density, and land use classifications, processed through a reproducible 

pipeline built with open-source tools such as QGIS, TensorFlow, and GDAL. Applied to Lagos, Nigeria, a rapidly urbanizing 

tropical megacity, the model achieved high predictive performance, successfully identifying critical hot zones and spatial 

correlations with urban morphology. The results reveal strong associations between UHI intensity and impervious surfaces and 

inverse correlation with vegetation. The framework’s open architecture, combined with publicly released datasets and modular code, 

ensures adaptability for use in both data-rich and resource-limited settings. This research contributes a transparent, scalable, and 

participatory approach to UHI detection, offering actionable insights for climate adaptation, heat risk mitigation, and sustainable 

urban planning. It underscores the importance of open geospatial AI tools in promoting equitable and data-driven environmental 

governance. 

 

 

1. Introduction 

Urbanization has dramatically altered land surface 

characteristics and microclimatic conditions, leading to the 

widespread emergence of the Urban Heat Island (UHI) effect. 

Characterized by elevated temperatures in urban areas relative 

to surrounding rural zones, UHIs result from a combination of 

anthropogenic heat emissions, impervious surface expansion, 

vegetation loss, and complex urban geometries. As global urban 

populations are projected to exceed 68% by 2050 (United 

Nations, 2018), UHIs are increasingly recognized as critical 

contributors to public health risks, energy demand surges, and 

environmental degradation (Santamouris, 2020; Zhang et al., 

2022).  

Traditional UHI detection methods, typically based on empirical 

indices or linear statistical models, often fail to capture the 

spatial heterogeneity and non-linear interactions underlying 

urban thermal dynamics (Zhou et al., 2016). These approaches 

are particularly limited in their generalizability across cities 

with differing climatic zones, urban typologies, or data 

availability (Weng & Fu, 2022). Moreover, they generally lack 

automation and spatial scalability, restricting their usefulness in 

long-term climate adaptation planning or decision support (Feng 

et al., 2020). 

Recent advances in Earth observation and deep learning present 

new opportunities to address these gaps. Convolutional Neural 

Networks (CNNs), widely used in computer vision, have proven 

effective in modelling spatial hierarchies within satellite 

imagery and capturing complex, multivariate relationships 

between land surface temperature (LST) and urban form 

indicators such as vegetation cover (NDVI), impervious surface 

area (ISA), and population density (Li et al., 2021; Wang et al., 

2020). Despite their technical promise, many existing 

applications remain confined to proprietary platforms or ad hoc 

implementations, lacking transparency, reproducibility, and 

accessibility, particularly in resource-constrained regions 

(Chakraborty et al., 2019).  

To address these limitations, this study introduces an open-

source, CNN-based framework for UHI detection, designed to 

be scalable, reproducible, and adaptable to diverse urban 

environments. The model integrates multi-source satellite data, 

principally from Landsat and MODIS, with openly available 

urban datasets such as OpenStreetMap (OSM) and WorldPop. 

The framework is developed using open-source geospatial 

libraries (QGIS, GDAL, Rasterio, GeoPandas) and machine 

learning toolkits (TensorFlow, Keras), ensuring accessibility for 

a wide range of users including researchers, city planners, and 

public-sector agencies (Rey, Anselin, & Arribas-Bel, 2021).  

It is validated using a detailed case study of Lagos, Nigeria, one 

of the fastest-growing megacities in the Global South, 

characterized by a tropical coastal climate, rapid land cover 

change, and high UHI vulnerability (Abiodun et al., 2021). 

Lagos was selected for its representative challenges: high 

population density, informal urban expansion, limited 

vegetation coverage, and data intermittency due to cloud 

interference.  

The model demonstrates high predictive accuracy in this setting, 

achieving a root mean square error (RMSE) of less than 1.8 °C 

in LST estimation and identifying spatially explicit UHI 

patterns aligned with known urban structures. 
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The main contributions of this work include: 

1. An open-source deep learning framework for UHI 

detection using multi-source geospatial data 

2. Demonstrated applicability in a high-density, data-

limited urban setting 

3. A reproducible workflow that supports community-

driven climate adaptation planning. 

1.1 Objectives 

This study sets out to develop, implement, and evaluate an 

open-source deep learning framework for Urban Heat Island 

(UHI) detection using publicly available satellite and urban 

geospatial data.  

The primary objectives are: 

1. To design a scalable and reproducible deep learning 

framework that integrates multi-source satellite 

imagery and open urban datasets for detecting and 

mapping UHI patterns at high spatial resolution. 

2. To implement and validate the framework in a data-

scarce, tropical megacity, Lagos, Nigeria, 

characterized by high urban complexity and limited 

remote sensing accessibility due to persistent cloud 

cover. 

3. To promote accessibility and transparency by 

leveraging entirely open-source tools and releasing all 

components publicly, enabling community adaptation, 

academic use, and practical urban policy support. 

4. To assess the model’s operational viability by 

embedding its outputs into geospatial formats usable 

by planners, NGOs, and public-sector agencies for 

climate resilience planning. 

2. Deep Learning and Open-Source Tools in UHI Research 

Urban Heat Island (UHI) detection has evolved significantly in 

recent years, transitioning from empirical and statistical 

approaches to more advanced machine learning and deep 

learning models. Early methods largely relied on surface 

thermal indicators such as Land Surface Temperature (LST), 

Normalized Difference Vegetation Index (NDVI), and surface 

albedo extracted from satellite data (Voogt & Oke, 2003; Weng, 

2009). While effective for regional assessments, these 

approaches have limited scalability and generalizability, 

particularly across diverse urban morphologies and climatic 

zones (Weng & Fu, 2022). 

The increasing availability of high-resolution, multi-temporal 

satellite imagery from platforms like Landsat, MODIS, and 

Sentinel-3 has created new opportunities for fine-scale UHI 

monitoring (Li et al., 2021). However, the complexity and 

volume of such datasets necessitate more robust analytical tools. 

Traditional machine learning models, including Random 

Forests, Support Vector Machines, and Gradient Boosting, have 

improved prediction accuracy over statistical methods but are 

often constrained by manual feature engineering and limited 

spatial interpretability (Feng et al., 2020; Chakraborty et al., 

2019). 

Recent developments in deep learning, especially Convolutional 

Neural Networks (CNNs), have shown considerable promise in 

urban climatology. These models are well-suited to capture 

hierarchical spatial and spectral patterns in satellite imagery, 

offering superior performance in LST estimation and UHI 

delineation (Zhang et al., 2022; Wang et al., 2020). However, 

many existing applications remain tied to proprietary systems or 

cloud-based platforms with limited accessibility for low-

resource contexts. Tools like Google Earth Engine and UHeat 

have been impactful (Arup, 2021) but often rely on commercial 

infrastructure, creating barriers to reproducibility and local 

adaptation. 

A critical gap persists in the integration of deep learning with 

open-source geospatial software. Despite the maturity of tools 

like QGIS, Rasterio, and GeoPandas, few frameworks have 

fully leveraged them for end-to-end UHI detection. Moreover, 

open-access urban datasets such as OpenStreetMap, WorldPop, 

and the Copernicus Climate Change Service remain 

underutilized in reproducible deep learning pipelines for 

environmental monitoring. 

This study responds to that gap by presenting a fully open-

source, modular deep learning framework for UHI detection. 

Built using QGIS, GDAL, and TensorFlow, and released via 

GitHub and Zenodo, the framework enables high-resolution 

UHI analysis using free geospatial and urban datasets. It offers a 

scalable and transparent solution, particularly suited for 

adaptation in low-resource or underrepresented urban regions. 

3. Methodology 

3.1 Framework Development 

This study presents a modular, open-source deep learning 

framework for Urban Heat Island (UHI) detection, leveraging 

multi-source satellite data and open geospatial datasets. 

Designed for generalizability and reproducibility, the 

framework addresses limitations in traditional UHI models 

regarding scalability and data constraints. It follows a four-stage 

structure: (1) data acquisition and preprocessing, (2) model 

training, (3) validation and evaluation, and (4) open-source 

deployment. 

 
Figure 1. Urban Heat Island (UHI) Model Workflow. 

3.2 Data Acquisition and Processing 

The framework integrates Earth observation and publicly 

available urban data: 
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1. Thermal imagery: Landsat 8 (Band 10, 30 m) and 

MODIS LST composites (1 km) 

2. Vegetation index: NDVI derived from Landsat bands 

3. Built environment: Road and building density via 

OpenStreetMap (OSM) 

4. Population: WorldPop gridded population data 

5. Land use: ESA WorldCover (10 m) 

6. Climate zone: Köppen-Geiger classification 

A unified preprocessing pipeline ensures spatial and temporal 

harmonization across inputs, including radiometric correction, 

cloud masking (Fmask), bilinear resampling to 30 m, and 

feature normalization. All datasets are segmented into 

256 × 256-pixel tiles for training. 

Processing is conducted using fully open-source tools: GDAL, 

Rasterio, GeoPandas, Scikit-image, and QGIS. Scripts and 

containers (via Docker) are openly available on GitHub with 

DOI-backed archival via Zenodo. 

3.3 Model Architecture and Training 

The framework employs a modified U-Net CNN, selected for its 

spatial encoding-decoding capabilities. An attention mechanism 

enhances learning in heterogeneous urban zones. Input stacks 

include: 

1. NDVI 

2. Built-up and impervious surface density 

3. Land use and elevation layers 

4. Landsat- or MODIS-derived LST 

The model was trained on approximately 10 years of remote 

sensing data (2008 - 2018), using the Lagos metropolitan area 

as the primary study region due to its complex urban 

morphology and high UHI susceptibility. A random split 

(80/20) was applied for training and validation patches, and data 

augmentation (rotation, zoom, mirroring) was used to enhance 

generalization. 

Training was conducted using TensorFlow on an NVIDIA RTX 

3080 GPU for approximately 4.2 hours. Early stopping and 

dropout regularization helped mitigate overfitting. 

3.4 Validation and Evaluation 

The model was evaluated using standard performance metrics 

for regression and classification tasks: 

1. Mean Squared Error (MSE): 0.024 

2. F1-score: 0.91 

3. Intersection over Union (IoU): 0.83 

4. Correlation with ground station data: R² = 0.87 

Validation used MODIS LST products and Lagos-based 

weather station data. The model captured intra-urban heat 

variations with high accuracy, especially in high-density and 

low-vegetation zones. 

3.5 Open-Source Implementation 

A distinguishing feature of this study is its commitment to 

reproducibility and accessibility. The entire pipeline was built 

using open-source tools and released under an MIT license. Key 

tools include: 

1. QGIS for data visualization and vector data 

manipulation 

2. GDAL/Rasterio/GeoPandas for raster and vector 

processing 

3. TensorFlow/Keras for model training and inference 

4. Docker for environment reproducibility and 

scalability 

In addition to technical deployment, the framework includes 

community-facing resources: a documentation site with 

tutorials, a GitHub repository, and sample training datasets. 

While real-time deployment using IoT climate sensors was 

proposed as a future direction, it is not yet implemented in this 

version. This has been noted transparently to maintain 

methodological integrity. 

3.6 Operationalization and Monitoring  

Once validated, the model is deployed within real-world urban 

planning contexts, generating georeferenced raster outputs of 

land surface temperature and UHI intensity. These outputs are 

formatted for seamless integration into open-source GIS 

platforms (e.g., QGIS), supporting practical applications such 

as: 

1. Identification of thermal hotspots 

2. Planning of urban greening interventions 

3. Zoning adjustments based on thermal exposure 

4. Heat vulnerability mapping for climate adaptation 

Although real-time monitoring and automated alert mechanisms 

(e.g., for extreme heat events) are not currently implemented, 

the framework is designed with forward compatibility. Its 

architecture can accommodate future integration of live data 

streams from IoT microclimate sensors or satellite platforms 

like ECOSTRESS. 

By ensuring outputs are interoperable with existing spatial 

decision tools, the framework empowers local governments, 

NGOs, and researchers to incorporate climate intelligence into 

sustainable urban development strategies. 

3.7 Case Study Application 

Lagos, Nigeria, was selected as the principal case study for 

implementing the proposed UHI detection framework due to its 

rapid urbanization, heterogeneous land cover, and well-

documented vulnerability to heat stress. As one of the fastest-

growing cities in the Global South, Lagos presents a complex 

and data-challenging environment, characterized by high 

population density, informal urban expansion, coastal climatic 

influences, and frequent cloud cover that complicates remote 

sensing-based analyses (Abiodun, Lawal, & Ige-Elegbede, 

2021; Adelekan, 2016). 

This context provides a robust setting for testing the 

framework’s scalability and adaptability in tropical, high-

density urban environments with inconsistent data availability. 

Moreover, Lagos serves as a representative example of cities in 

low-resource settings where conventional UHI monitoring 

infrastructure and modelling capacity may be limited (Ajayi et 

al., 2021; Oloke et al., 2022). 

For this implementation, a 16-year archive of thermal satellite 

imagery (MODIS and Landsat 8) was curated, supplemented 

with auxiliary urban indicators from open-access datasets 

including OpenStreetMap (building and road networks), 

WorldPop (population density), and ESA WorldCover (land use 
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classification). These were harmonized to a 30 m resolution 

using the preprocessing pipeline described in Section 3.2 and 

structured into tiled raster inputs suitable for deep learning. 

The Lagos case fulfills two methodological objectives: 

1. To evaluate the framework’s operational performance 

under real-world constraints such as fragmented urban 

morphology, high spectral noise, and seasonal cloud 

interference (Ayanlade, Radeny, & Morton, 2017) 

2. To demonstrate its potential for replication in 

similarly data-limited, rapidly urbanizing 

environments across the Global South. 

4. Results and Evaluation 

4.1 Model Performance 

The Urban Heat Island (UHI) detection model strongly 

identifies areas of elevated surface temperature in urban 

environments. The U-Net architecture with attention 

mechanisms effectively captures the complex spatial 

relationships between urban features and heat distribution. 

Metric Value 

Mean Squared Error 0.024 

Accuracy 91.7% 

Precision 89.3% 

Recall 92.1% 

F1 Score 90.7% 

IoU (Intersection over Union) 0.83 

Table 1. Quantitative Metrics. 

The model achieved convergence after approximately 50 

epochs, with validation loss stabilizing at 0.032. The training 

accuracy curve showed consistent improvement without signs 

of overfitting, likely due to the effective data augmentation 

pipeline and dropout regularization implemented in the model 

architecture. 

4.2 Spatial Analysis Results 

The UHI detection results reveal several key patterns across the 

studied urban areas: 

1. Temperature Differential: The model successfully 

identified an average temperature differential of 4.7°C 

between urban cores and surrounding rural areas, 

aligning with established scientific literature on the 

UHI effect. 

2. HotSpot Identification: Critical urban hot spots were 

detected with high precision, particularly in areas 

with: 

-High building density 

-Limited vegetation coverage (low NDVI values) 

-Industrial zones 

-Large, paved surfaces like parking lots and 

commercial districts 

3. Temporal Variations: Time series analysis revealed 

that UHI intensity peaks during midday (1:00-3:00 

PM) and shows seasonal variations with maximum 

intensity during summer months. 

4.3 Correlation Analysis 

The model revealed strong correlations between UHI intensity 

and various urban parameters: 

Urban Parameter Correlation Coefficient (r) 

NDVI (vegetation index) -0.79 

Building density 0.83 

Impervious surface coverage 0.86 

Distance from urban center -0.72 

Population density 0.65 

Table 2. Correlation analysis. 

These findings confirm that vegetation plays a critical role in 

mitigating urban heat, while impervious surfaces and building 

density are the strongest contributors to UHI formation. 

4.4 Case Study Results: Lagos Metropolitan Area 

Analysis of the Lagos metropolitan area revealed: 

1. UHI intensity up to 6.2°C in the central business 

district 

2. Strong correlation between rapid urbanization and 

increasing UHI effect over the past decade 

3. Identifiable cooling effects from urban parks and 

water bodies 

4. Clear boundary effects at urban-rural transitions 

The model successfully identified microclimate variations 

within the urban landscape, detecting cooler areas associated 

with parks, water bodies, and areas with higher vegetation 

density. 

4.5 Model Validation 

The model's predictions were validated against: 

1. Ground truth measurements: Temperature readings 

from weather stations showed strong agreement with 

model predictions (r² = 0.87). 

2. Thermal infrared imagery: Visual comparison with 

thermal images demonstrated accurate identification 

of hot spots. 

3. External UHI studies: Results align with previous 

UHI research in similar urban environments. 

4.6 Computational Performance 

The model demonstrated efficient performance characteristics: 

1. Training time: 4.2 hours on a system with NVIDIA 

GeForce RTX 3080. 

2. Inference speed: 1.7 seconds per km² of urban area. 

3. Memory usage: 2.4GB for processing a typical urban 

area. 

4. Scalability: Successfully processed urban areas 

ranging from 10km² to 500km². 

4.7 Limitations and Uncertainty 

While the model performs well, several limitations were 

identified: 

1. Cloud cover interference: Satellite imagery with 

significant cloud cover reduced model accuracy by up 

to 15%. 

2. Seasonal variations: Model performance varies 

slightly between seasons, with higher accuracy during 

summer months. 

3. Spatial resolution constraints: The 30m resolution of 

Landsat 8 limits detection of fine-scale urban heat 

patterns. 
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4. Night-time UHI effects: The current model focuses on 

daytime UHI patterns and does not address nocturnal 

heat retention. 

 

Figure 2. UHI visualization. 

4.8 Future Directions 

The model’s performance confirms its potential as a planning 

tool, yet several enhancements are necessary for broader 

impact: 

1. Sensor integration: Leveraging higher-resolution data 

from ECOSTRESS, Sentinel-3, or CubeSats could 

improve spatial granularity 

2. Real-time monitoring: Linking with IoT sensor 

networks and reanalysis datasets (e.g., ERA5) can 

enable dynamic UHI alerts 

3. Cloud-native scalability: Migrating to platforms like 

Google Earth Engine or AWS Lambda could improve 

accessibility for cities with limited computational 

infrastructure 

4. Interdisciplinary modeling: Integrating public health, 

socioeconomic, and land-use policy layers would 

support cross-sectoral climate adaptation 

5. Transfer learning and fairness: Expanding to 

underrepresented cities through domain adaptation 

could address global inequities in urban climate 

resilience. 

5. Conclusion 

This study presents a scalable, open-source deep learning 

framework for Urban Heat Island (UHI) detection, leveraging 

multi-source satellite imagery and openly available geospatial 

datasets to deliver interpretable, high-resolution thermal 

anomaly maps. The model, structured around a U-Net 

architecture with attention mechanisms, achieved high 

predictive accuracy (IoU = 0.83; R² = 0.87) and demonstrated 

strong correlation with both ground-based temperature records 

and urban morphological indicators (Wang et al., 2020; Feng et 

al., 2020). 

The case study in Lagos, Nigeria, confirmed the framework's 

applicability in a data-scarce, high-density tropical urban 

context. It successfully identified spatial patterns of thermal 

heterogeneity, highlighted critical hotspots, and revealed the 

mitigating effects of vegetation and water bodies, offering a 

robust foundation for climate-resilient planning in vulnerable 

regions (Zhang et al., 2022). 

By integrating NDVI, impervious surface area, building density, 

and other contextual layers, the model bridges the technical 

complexity of remote sensing and deep learning with the 

operational needs of urban planners (Li et al., 2021; Weng & 

Fu, 2022). Importantly, the use of open-source tools, including 

QGIS, TensorFlow, and GeoPandas, ensures accessibility and 

reproducibility, encouraging adoption in both high- and low-

resource settings (Rey, Anselin, & Arribas-Bel, 2021). 

The study also highlights important limitations, such as cloud 

cover interference, restricted spatial resolution of public satellite 

data, and the current exclusion of night-time UHI effects. Future 

enhancements should include integration of higher-resolution or 

real-time thermal data (e.g., ECOSTRESS), support for 

nocturnal heat modeling, and expanded multi-city validations 

using transfer learning approaches (Weng & Fu, 2022). 

Beyond technical refinement, the framework's success 

underscores the value of open-source geospatial AI in 

democratizing climate intelligence. Coupled with participatory 

data practices and cross-sectoral collaboration, it offers a 

pathway toward more equitable and responsive urban heat 

mitigation. As global urbanization accelerates and extreme heat 

events intensify, tools like this one will be essential in guiding 

policy, protecting vulnerable populations, and fostering 

sustainable urban development (Santamouris, 2020; 

Chakraborty et al., 2019). 
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Appendix 

To support transparency, reproducibility, and broader adoption, 

the proposed Urban Heat Island (UHI) detection framework is 

accompanied by a set of open-access resources: 

1. GitHub Repository: A publicly available repository 

containing the full implementation of the framework, 

including model architecture, training configurations, 

and preprocessing scripts, available at: 

https://github.com/Mercy14846/Urban-Heat-Island-

Model 

2. Codebase for Custom Implementation: A subdirectory 

within the repository hosts cleaned and documented 

scripts for end-to-end data processing and UHI model 

training, available at:  

https://github.com/Mercy14846/Urban-Heat-Island-

Model/tree/main/OneDrive/Documents/Codeses/curso

r/UHI-Clean 

 

These resources aim to assist researchers, city planners, and 

educators in adapting the framework to their own urban 

contexts and expanding its application in climate resilience 

planning. 
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