
A streamlined GIS interface for Citizen Science activities: QGIS Light

Serkan Girgin1, Jay Gohil1, Indupriya Mydur1

1 Faculty ITC, University of Twente, 7522 NH, Enschede, The Netherlands – (s.girgin, j.h.gohil, i.mydur)@utwente.nl

Keywords: Citizen Science, Data Literacy, GIS, QGIS, User Experience, Usability.

Abstract

Citizen science has emerged as a powerful way to involve the public in scientific research, especially in domains like environmental

sciences, where participants actively collect data in the field. However, citizen scientists can contribute beyond data collection by

engaging in data analytics to generate meaningful insights in collaboration with researchers. To support this broader participation,

user-friendly and accessible tools for data visualization and analysis are essential. This study addresses this need in geospatial tools

by introducing QGIS Light, a simplified version of the most widely used free and open-source desktop GIS software, QGIS.

Developed as a plugin to QGIS, QGIS Light offers a streamlined working environment by simplifying the user interface, removing

non-essential and advanced features, and introducing additional tools by default to support basic needs, such as accessing base maps

and creating charts. The paper begins with an analysis of the QGIS user interface with a focus on simplicity of use. It then outlines

the specific actions required to enhance the user experience for non-technical users. The logic and technical implementation of the

QGIS Light plugin are subsequently described in detail. Finally, additional user interface challenges in QGIS that affect overall

usability are discussed. The findings highlight the value of critically evaluating existing interface elements and refining them into a

more cohesive and standardized experience. QGIS Light is a first step in this direction to enhance usability of QGIS and may also

guide similar simplification efforts in other GIS software, helping to lower their typically steep learning curves.

1. Introduction

Citizen science has become a powerful approach for engaging

the public in scientific research, particularly in environmental

monitoring (Conrad and Hilchey, 2011). Activities such as

tracking air quality, mapping biodiversity, and assessing water

quality benefit significantly from citizens going outdoors to

collect data. In this regard, geospatial tools are essential for

ensuring precise and efficient data collection (Arias de Reyna

and Simoes, 2016). Beyond data collection, geospatial tools also

enable effective data visualization and exploratory data analysis,

allowing users to overlay different datasets, revealing spatial

relationships and trends that may not be immediately apparent.

This analytical capability empowers citizens to help generate

meaningful insights and support evidence-based policies

together with researchers and policymakers (Kocaman et al.,

2022). Such a progression from data collector to data analyst

fosters deeper engagement and motivation, further reinforcing

the impact and sustainability of citizen science initiatives.

However, a key challenge in supporting these more advanced

activities is making spatial analysis functions easily accessible

to non-experts. Many GIS software offer powerful features that

can support citizen science by allowing users to explore real-

world datasets and analyse spatial relationships. But non-

technical users with limited exposure to geospatial software

often struggle with complex interfaces and the technical nature

of these tools. This is especially the case for elders and young

students, who may have limited data literacy or experience with

data analysis methods (Haklay, 2013). Tasks like accessing and

managing datasets, performing spatial analyses, and visualizing

results typically require specialized training and guidance due to

the steep learning curves of technical user interfaces and

exposure to advanced concepts. Case studies have demonstrated

that more accessible interfaces can enable previously

underserved groups to participate more actively in citizen

science activities (Bonney et al., 2014). Therefore, developing

intuitive and simple interfaces for core GIS functions can lower

barriers to spatial data exploration and increase participation

from such groups in geo-citizen science initiatives.

Free and Open-Source Software (FOSS) plays a vital role in

these activities by providing accessible spatial analysis tools to

researchers, citizen scientists, NGOs, and budget-constrained

agencies, helping them avoid vendor lock-in and licensing costs

(Coetzee et al., 2020). QGIS is the leading FOSS desktop GIS

application used for viewing, editing, and analysing geospatial

data. It supports a wide range of vector, raster, and database

formats, and is highly extensible through a robust plugin system

(QGIS.org, 2025). It is widely adopted due to its rich feature

set, active development community, and strong support for open

standards. However, QGIS’s interface is designed for users who

need full control over GIS data manipulation and analysis. As a

result, it includes dozens of menus and toolbars with many

icons and dropdowns, multiple dockable panels, hundreds of

processing tools, and a high number of customization options. A

typical QGIS session can include layers panel, browser panel,

attribute table, processing toolbox, map composer, and more, all

of which can clutter the screen. While useful for advanced

users, this sheer volume of components and tools with various

configuration options adds complexity and increases the chance

of getting “lost” in the interface for someone new to GIS.

For citizen science initiatives aimed at non-technical audiences

across diverse demographics, particularly youth and seniors, a

simplified, less overwhelming interface is essential, as

recommended by established best practices (Skarlatidou et al.,

2019). This is especially important considering that they need to

understand at the same time core concepts, such as coordinate

reference systems (CRSs), vector and raster data, or attribute

tables. To reduce this barrier, we developed a QGIS plugin,

QGIS Light, which simplifies its user interface and tailor it to

the specific needs of non-technical users. We started by defining

user stories that capture the user needs and translated them into

technical design constraints. Next, we assessed the functionality

and complexity of QGIS components and features against these

requirements. Based on this assessment, we determined the

essential steps to simplify and improve the user experience for

the target audience. These steps were implemented through a

user-friendly QGIS plugin that enables seamless switching to a

simplified interface and perform basic GIS tasks with ease.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-127-2025 | © Author(s) 2025. CC BY 4.0 License.

127

This paper presents our experience in designing a practical and

intuitive user interface for QGIS that facilitates quick learning

and user-friendly interaction. It begins with an overview of the

QGIS user interface and its existing customization capabilities,

outlining both their strengths and limitations. We introduce the

user stories and corresponding technical design constraints that

shaped our development approach, followed by a presentation

of the actions taken to simplify the interface. We then provide a

detailed explanation of the logic and technical implementation

of the QGIS Light plugin. The paper concludes with a

discussion of broader usability challenges in QGIS and outlines

directions for future improvement.

2. Analysis of the QGIS User Interface

QGIS uses Qt, a cross-platform FOSS widget toolkit, as the

framework for its graphical user interface (GUI) (The Qt

Company, 2018). Qt provides ready-made widgets (e.g.,

buttons, sliders, menus, etc.) and tools to build a modern and

complex GUI, and enables QGIS to run seamlessly on

Windows, macOS, and Linux without rewriting the GUI for

each system. It is also used by QGIS plugins, especially those

written in Python, to build custom dialogs and forms, allowing

developers to extend QGIS with sophisticated interfaces.

A typical Qt application has a menu bar with text menus at the

top, a set of toolbars with icon-based buttons for quick actions,

side panels that can be docked, moved or hidden, a main content

area, and a status bar at the bottom showing real-time feedback.

QGIS uses these components to provide a flexible user interface

for working with spatial data (Figure 1). Main components are:

• Menu bar provides access to all functions grouped under

menus like Project, Edit, View, Layer, Settings, etc.

• Toolbars offer quick access to common tools for

navigation, editing, measuring, and managing layers.

• Layers panel displays a list of loaded layers (e.g., vector,

raster, etc.) and allows users to manage their visibility,

order, grouping, and styling.

• Map canvas reflects the active layers and map extent. It is

the central area where spatial data is visualized and

interacted with.

• Browser panel allows users to browse and load spatial

datasets from local files, databases, and online services.

• Status bar shows coordinate information, map scale,

rendering status, and access to CRS settings.

• Processing toolbox provides access to geoprocessing tools,

including analysis, conversion, and data management

algorithms.

Furthermore, QGIS includes various task-specific panels, such

as those for layer styling, managing spatial bookmarks,

performing undo/redo operations, and editing vertices. Some

components allow multiple instances. For example, users can

create additional map canvases linked to the main canvas to

enable secondary views for navigation or comparison. Some

advanced features have their own full-window interfaces, such

as the Print Layout for producing high-quality cartographic

outputs or the Model Builder for developing geospatial models

interactively. This study, however, focuses on simplifying the

main QGIS GUI and does not cover these specialized interfaces.

Figure 1. A typical QGIS session.

QGIS provides several GUI customization options to tailor the

environment to specific workflows, preferences, and user needs.

Leveraging standard Qt capabilities, users can show or hide

toolbars and panels, dock or undock them, and reposition these

elements to create a personalized workspace layout. Through

the Options… dialog found under the Settings menu, the overall

appearance of the interface can be modified by selecting

different visual styles, either native (e.g., Windows) or cross-

platform (e.g., Fusion), as well as UI themes like Night

Mapping. Users can also adjust font type and size, configure

icon sizes, and customize various map canvas settings, colour

schemes, and rendering options. Additionally, the GUI language

can be set, which is especially useful in multilingual settings or

training scenarios; changing the language also affects the

display format for numbers, dates, and currencies.

Interface Customization… dialog, also located under Settings

menu, allows users to enable or disable specific data sources,

panels, menus, toolbars, status bar elements, and even

individual widgets. Disabling an item removes its functionality

across all related interfaces. For example, turning off a widget

also disables its corresponding menu entry and toolbar button.

Alongside layer details, map canvas states, and plugin statuses,

layout and interface customizations are saved within QGIS

project files. This ensures a consistent user experience across

sessions when working on the same project. Moreover, QGIS

remembers the last layout settings and automatically restores

them in the following session. To support customized and

consistent preferences across different projects, QGIS

introduced user profiles in version 3.2. This feature enables

users to create and manage multiple profiles, each with distinct

settings, plugins, and configurations. Later releases, such as

version 3.32, enhanced this functionality by adding a user

profile selector, simplifying profile switching directly from the

interface.

Despite offering extensive customization, QGIS has some

notable limitations. A major gap is the lack of a built-in tool for

creating custom toolbars to reorganize or group existing tools.

This shortcoming is somewhat mitigated by the Customize

ToolBars plugin (Raga, 2019), which permits users to build new

toolbars by adding menu items, toolbar buttons, and processing

algorithms. However, the plugin cannot modify existing

toolbars or group buttons into dropdown menus, which are

features that are crucial for decluttering the interface and

making it more accessible, particularly for novice users.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-127-2025 | © Author(s) 2025. CC BY 4.0 License.

128

In addition to the user interface, a crucial element influencing

user experience and facilitating effective use of an application is

the availability of comprehensive and easy-to-understand help

resources and documentation. While extensive documentation

exists for QGIS, it is often technical for younger or older

learners who prefer visual, hands-on learning experiences. The

integration of documentation within the application is also

limited, as it is often shown in a separate web browser window

outside of the application itself. Moreover, QGIS does not offer

in-app tutorials or progressive onboarding. There is little real-

time feedback or coaching to help users learn by doing.

The geospatial data analysis and processing features of QGIS

are primarily accessed through the Processing Toolbox panel,

which offers hundreds of algorithms from QGIS itself as well as

third-party providers like GRASS and GDAL. The toolbox

interface uses a tree view structure similar to a file browser,

organizing algorithms into many general (e.g., cartography,

raster analysis, vector analysis) and specialized categories (e.g.,

network analysis, 3d tiles). Although a search function is

available, it remains difficult for users to fully understand the

range of tools offered or their specific functionalities.

Additionally, each third-party provider, including plugins,

maintains its own set of categories that sometimes overlap with

standard ones, preventing similar tools from being conveniently

grouped together for easy comparison and assessment. While

powerful, the toolbox exposes users to functions that are far

beyond beginner level and makes it easy to apply the wrong

process to the wrong data, which can lead to confusion or

frustration without providing clear feedback or error handling.

Another aspect of QGIS that significantly influences the user

interface and overall user experience is its plugin system. This

system is highly versatile, allowing developers to enhance

QGIS’s core functionality by adding new tools, features, and

algorithms. This facilitates rapid innovation and the sharing of

new capabilities, empowering users to customize QGIS

according to their specific workflows and creating a highly

personalized GIS environment. However, the graphical interface

design of plugins lacks standardization and is often inconsistent.

While some plugins offer user-friendly and well-documented

interfaces, others can be confusing or poorly supported.

Additionally, managing plugin installation, updates, and

dependencies can be technically demanding, posing a barrier for

less experienced users, such as citizen scientists.

Overall, while QGIS offers extensive options for customizing

the user interface, certain gaps remain that need to be addressed

to support broader adoption by non-technical users. Therefore,

efforts to simplify the interface are necessary.

3. Simplification of the QGIS Interface

To simplify QGIS, first, an analysis of the user needs is

performed considering the target user group, which is non-

technical people with limited geospatial data literacy and, in

some cases (e.g., senior citizens), limited experience with

desktop applications. It is assumed that users receive a basic

introduction to core geospatial concepts, such as raster and

vector data, map projections, and fundamental cartographic

principles, prior to using QGIS, for example through a brief

training session. It is also assumed that users possess basic

familiarity with using desktop applications.

The identified needs are translated into the user stories below,

which guide the design and development process:

S1. As a user, I want QGIS to open with a clean and simple

interface, so that I can get started without feeling

overwhelmed.

S2. As a user, I want to get brief tips or guidance the first time

I use a feature, so that I can learn how to use it without

needing a manual.

S3. As a user, I want to open map data from my computer or

access it from online sources, so that I can view and work

with geospatial information.

S4. As a user, I want to explore and use map layers in two

dimensions like a paper map, so that I can easily

understand the spatial patterns.

S5. As a user, I want to work with one map at a time, so that I

stay focused.

S6. As a user, I want to view my data clearly on the screen, but

I don’t need to create printable maps or professional

layouts.

S7. As a user, I want to use simple tools for exploring data, so

that I’m not overwhelmed by complex functionality.

S8. As a user with basic map knowledge, I want to set or adjust

the coordinate system if needed, so that my data lines up

correctly.

S9. As a user, I want to add base maps like OpenStreetMap, so

that I can see my data in context that I’m familiar with.

S10. As a user, I want to make simple charts from my data, so

that I can better understand patterns or values.

Because the design is for non-technical users with limited

knowledge on the capabilities of a modern desktop GIS, i.e.

since users don’t know what they don’t know, the user stories

are rather simple. Hence, considering these user stories,

additional technical design constraints are introduced for better

scoping of necessary simplifications, which are listed below.

Related user stories are indicated in parentheses for each

constraint:

C1. Default to a minimal interface with only essential toolbars

and panels visible (S1).

C2. Include optional tooltips or guided popups to reduce

reliance on external documentation or long tutorials (S2).

C3. Support for loading local vector and raster data files (e.g.,

Shapefile, GeoJSON, GeoTIFF) (S3).

C4. Support for web-based data access via OGC services

(WMS, WMTS, WFS) (S3).

C5. No support for direct connections to spatial databases (e.g.,

PostGIS, MS SQL, Oracle) (S3).

C6. Only 2D vector (points, lines, polygons) and raster data are

supported (S4).

C7. No support for 3D visualization, Z/M values, point clouds,

meshes, or temporal data cubes (S4).

C8. No support for multiple map views for comparison (S5).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-127-2025 | © Author(s) 2025. CC BY 4.0 License.

129

C9. No access to the layout manager or print layout tools (S6).

C10. No advanced cartographic styling (S6).

C11. No access to model builder, advanced spatial analysis

tools, or advanced processing algorithms (S7).

C12. Allow basic CRS selection and data re-projection, keeping

CRS options minimal and easy to understand (S8).

C13. Provide a simple interface to add common base maps, such

as OpenStreetMap, Bing, Google Maps (S9).

C14. Enable easy creation and updating of basic plots (e.g., bar,

pie, histogram) from attribute data without the need for

external charting application (S10).

Based on the identified user stories and technical design

constraints, a detailed analysis was conducted on all QGIS

features, including menus, toolbars, panels, and processing

algorithms, to identify non-essential and redundant components.

This analysis focused on the following key aspects:

1. Elimination of multiple access points for the same

functionality. In QGIS, it is common for a single function

to be accessible through a menu item, a toolbar button, and

a processing toolbar entry. While this approach is intended

to improve accessibility, it often causes confusion and adds

unnecessary complexity for new users. It can also

complicate communication, such as during training

sessions. In this study, all multiple access points are

regarded as redundant, and only one access method is

chosen to simplify function access, which is tool buttons.

2. Elimination of multiple tools with identical or similar

functionality. In addition to offering native tools and

algorithms for data analysis and processing, QGIS supports

third-party processing providers. These providers are free

to offer any processing capabilities, including those already

available in QGIS. For example, the default QGIS

installation includes powerful providers like GDAL and

GRASS, which are well-established geoprocessing

platforms with numerous tools that often overlap with

QGIS’s native tools. Although this can be advantageous by

providing more advanced or efficient tools, it also adds

unnecessary complexity for new users, complicating the

selection of the most suitable option among similar

choices. Because many third-party providers are closely

integrated into QGIS, users often view them as standard

QGIS tools, making multiple “standard” options confusing.

This study tackles the issue by eliminating these redundant

tools. If multiple tools offer similar functionality, the

simpler one with the least complex features, yet still

providing the minimum viable functionality, was chosen.

This approach contrasts with the typical practice of

selecting the most comprehensive tool with the greatest

number of features. But the goal is to simplify the user

experience rather than complicate it with additional

technical details that are largely unfamiliar and irrelevant

to the target audience. While advanced options are

valuable for more precise geospatial analysis, they tend to

overwhelm beginner-level users and cause confusion.

3. Elimination of advanced tools and functionality. To

provide a simple user interface to perform basic GIS tasks,

all advanced tools and functions should be removed. In this

study, this is done by hiding such tools and functionalities.

Based on the findings of this assessment, the following actions

have been identified as beneficial and essential for simplifying

QGIS and enhancing its user experience for the target audience:

• No menu bar. All menu items should be removed and

necessary features linked to menu items should be

provided as tool buttons.

• Less toolbars. The number of toolbars should be reduced

to two, one for core data access, query and visualization

functions, and another one for editing purposes. Besides

removing unnecessary toolbars, common functions that are

provided by multiple tool buttons (e.g., zoom in, zoom out,

zoom full, zoom to selection, etc.) should be grouped and

made available through dropdown tool buttons, which

occupy less space and provide a compact yet efficient

interface (Figure 2).

Figure 2. Example compact dropdown tool group

• Less panels. Only the overview and layer panels should be

made visible by default. The rest should be hidden and

became visible only if they are needed, i.e. a related

function is requested. Besides enabling more space for the

map canvas, less panels also facilitates more focused user

experience by removing unnecessary distractions.

• Fixed layout of the toolbars and panels. The locations of

GUI components should be fixed and the capability of the

user to change the layout of the working environment

should be disabled, preventing to move or float toolbars

and panels. This is to ensure a consistent and identical user

experience among the users, which is especially important

when, e.g., training non-technical users.

• No processing toolbox. All essential processing algorithms

should be made accessible via dropdown tool buttons

added to the main and editing toolbars. This enables a

single, standardized method to access processing functions,

and increases the space available for the map canvas.

• Limited set of data sources. The ability to read complex

geospatial data, such as mesh and point clouds, and to

connect to local and remote databases (e.g., PostgreSQL,

Oracle), tile sets (e.g., vector, raster, 3D), and specialized

geodata servers (e.g., ArcGIS Server) should be disabled.

These advanced data sources are often unnecessary for

novice users, particularly in citizen science applications.

Instead, data sources should include standard raster and

vector formats, OGC web services (WMS, WFS, WCS),

and formats relevant to citizen science such as

SensorThings for sensor and IoT data and STAC for cloud-

native data access.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-127-2025 | © Author(s) 2025. CC BY 4.0 License.

130

• Less processing algorithms. The algorithms that are

classified as advanced, duplicate, or unnecessary should be

removed. Based on our analysis, these should include SQL,

Z/M, database, TIN, mesh, tile, curve, GPS, cartography,

random, fuzzify functions, as well as modeler tools and

functions provided by GRASS and PDAL as summarized

in Table 1. A comprehensive list of all algorithms available

in QGIS, along with justifications for their inclusion or

removal, is provided in the documentation section of the

QGIS Light code repository1. Common reasons for

excluding certain algorithms include limited applicability,

availability of equivalent functionality in other parts of the

interface (e.g., attributes table, raster calculator),

duplication with similar algorithms, reliance on external

applications (e.g., for displaying output), and relevance

primarily to advanced use cases.

Category Examples of unnecessary algorithms

Cartography Align points to features, Combine style

databases, Export atlas layout, etc.

Curve Convert to curved geometries, etc.

Database Execute SQL (SpatiaLite, PostgreSQL),

Export to SQL (PostgreSQL), etc.

Fuzzify Fuzzify raster (gaussian, linear, etc.)

GPS Convert GPS data, Download GPS data, etc.

GRASS General (g.*), Imagery (i.*), Raster (r.*),

Vector (v.*) functions

Mesh Export contours, Export mesh edges, Rasterize

mesh dataset, Surface to polygon, etc.

Modeler

Tools

Create directory, load layer into project, set

project variable, feature filter, etc.

Point cloud Point cloud data management, Point cloud

conversion, Point cloud extraction functions

Random data

generation

Create random raster layer (binomial,

exponential, etc.), Random points functions

Tile Download vector tiles, Generate XYZ tiles

(Directory, MBTiles), etc.

TIN TIN interpolation, etc.

Z/M Set Z value, Drop M/Z values, etc.

Table 1. A short list of unnecessary algorithms.

• Additional features. To enhance the user experience, the

following features should be added to the interface by

default via existing plugins:

Plotting functions should be replaced with Data Plotly, a

QGIS plugin that supports the creation of interactive charts

with features like zooming and hover-based information

display (Ghetta, 2024). It allows users to easily modify

chart settings, such as type, colour, and axes, and offers a

wider variety of plot types than QGIS. Additionally, it

integrates directly with the map canvas, enabling dynamic

updates based on user-selected features and eliminating the

need to open external files to view plots, as required by

QGIS’s default approach. This significantly enhances the

user experience. Plots can also be exported in a range of

image and vector formats, with the latter supporting easy

post-processing and improved interoperability.

Common base maps should be provided by using the

QuickMapServices plugin (NextGIS, 2024), which

integrates with popular map providers and offers a wide

selection of base maps that can be added as layers easily.

1 https://github.com/ITC-CRIB/qgis-light/tree/main/docs

4. QGIS Light Plugin

To provide access to a simplified and streamlined user interface

for QGIS by implementing the necessary actions listed in the

previous section, QGIS Light was developed as a QGIS plugin.

The plugin utilizes customization options available in QGIS

and, when necessary, interacts directly with Qt to enable

advanced customizations not natively supported by QGIS.

Users can easily adjust the applied simplifications by editing a

configuration file to disable specific simplifications or enable

new ones. The plugin is available on the QGIS plugin

repository, making it easy to install through the QGIS plugin

manager2. The source code is open access under the GPL 3.0

license (Girgin, 2024), and the open-source code repository is

hosted on GitHub to facilitate collaboration, which is available

at https://github.com/ITC-CRIB/qgis-light. For long-term

preservation, the source code is also archived on Zenodo3.

Once installed and enabled by using the plugin manager, QGIS

Light does not immediately simplify the GUI. Instead, it adds a

QGIS Light button with a plain QGIS logo to the Project

toolbar. Clicking this button or selecting the Toggle QGIS Light

option in the View menu activates the simplified interface

(Figure 3). QGIS remembers this setting and automatically

launches the simplified GUI in future sessions unless it is

disabled. To disable the plugin, the colourful QGIS tool button

on the Main toolbar of the simplified interface can be utilized.

Figure 3. QGIS Light user interface, a) Map canvas, b) Layers

panel, c) Overview panel, d) Main toolbar, e) Editing toolbar, f)

Status bar.

Once activated, QGIS Light performs the following

simplifications in the order listed:

1. Menu bar is hidden.

2. Contextual menu is disabled. This prevents toolbars and

panels to be customized by the user.

3. A record of the currently visible toolbars and their

positions is created, and then the toolbars are hidden.

4. Simplified toolbars are created and then displayed.

5. A record of all panels is created, capturing their location,

properties (e.g., dockable, movable) and visibility status.

2 https://plugins.qgis.org/plugins/qgis-light/
3 https://doi.org/10.5281/zenodo.13844843

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-127-2025 | © Author(s) 2025. CC BY 4.0 License.

131

https://github.com/ITC-CRIB/qgis-light/tree/main/docs
https://github.com/ITC-CRIB/qgis-light
https://plugins.qgis.org/plugins/qgis-light/
https://doi.org/10.5281/zenodo.13844843

6. Panels of the simplified GUI are layout and made visible,

and the other panels are hidden.

7. Data source managers and data item providers are set up.

8. Status bar is set up.

When QGIS Light is activated, information on the current state

of the toolbars and panels are saved in the QGIS registry. This

allows the GUI to be restored to its original state in the future,

ensuring consistency across sessions. When the plugin is

deactivated, the interface is reverted by removing the simplified

toolbars and restoring and enabling components hidden or

disabled by the plugin. Due to limitations with data source and

data item providers, restarting QGIS is necessary to fully restore

the original list of providers. A notification is shown to inform

the user of this requirement.

The QGIS Light user interface consists of six components: the

map canvas, layers panel, overview panel, main toolbar, editing

toolbar, and status bar (Figure 3). The map canvas and the two

panels are the same as in standard QGIS, with the difference

that their positions are fixed to the left and right of the main

window, respectively, though their sizes can be freely adjusted.

The status bar at the bottom is largely unchanged, except that

widgets related to map rendering, such as rotation control and

rendering checkbox, have been removed. The main toolbar,

positioned at the top, contains tools for project management,

adding and creating data layers, navigating maps, selecting and

measuring features, accessing attribute data, processing data,

plotting, and getting help. This toolbar also features the QGIS

Light toggle button, enabling users to switch back to the default

interface. The editing toolbar, located on the left, includes tools

for managing editing sessions (e.g., start editing, save, rollback),

modifying and transforming features (e.g., cut, paste, rotate,

scale), creating features (e.g., polygon, circle, rectangle), and

editing attribute data. To maintain a compact design, tools are

organized by function and, when appropriate, grouped into

drop-down menus in both toolbars. Only the most commonly

used tools are shown as individual buttons.

Most of the simplifications listed above can be customized by

editing the configuration file (config.json) located in the plugin

directory. The configuration file is divided into five sections:

toolbars, panels, algorithms, providers, and statusbar. A

simplified example configuration file is shown in Figure 4,

where certain parts are replaced with ... due to space limitations.

The toolbars section defines which toolbars will appear in the

simplified GUI. Each toolbar is specified by a unique identifier

(e.g., mMainToolBar), which must not conflict with those used

by QGIS or other installed plugins. Each toolbar entry includes

a title, a location (e.g., top, left), and a list of items to display.

An item typically represents a tool from an existing toolbar,

referenced by combining the original toolbar id and the tool's

action id with a colon (e.g., mFileToolbar:mActionNewProject).

When multiple such identifiers are listed in an array, they are

grouped into a drop-down button, with the first item shown as

the default. Similarly, groups of algorithms defined in the

algorithms section can also be presented as drop-down buttons.

A separator item can be added between tools, tool groups, or

algorithms to visually separate them. By default, the

configuration file includes two toolbar definitions, one for the

main toolbar and another one for the editing toolbar. Additional

toolbars can be added, or existing ones can be modified to

further customize the simplified interface.

The algorithms section allows processing algorithms provided

by QGIS to be organized into tool groups that can be added to

toolbars. Each algorithm group is identified by a unique id and

includes an icon along with a list of algorithm items. Like tool

items, algorithm items are identified by two-part identifiers: one

part designates the processing provider, and the other specifies

the algorithm itself (e.g., native:buffer). Currently, algorithms

are categorized into two groups as raster or vector based on the

data type they operate on. All core raster and vector processing

algorithms provided by QGIS either natively or by using GDAL

are included and separated by section headings for easier

navigation. The lists represent an initial selection and may be

revised in the future based on community feedback.

The panels section enables specifying which panels will be

available in the simplified interface, along with their placement

and initial visibility. Any panels not included in this section are

hidden by the plugin, and their associated functionalities, such

as tools and algorithms, are also disabled. The providers section

allows data source and data item providers enabled in the

simplified interface to be specified. Data source providers are

components that enable QGIS to connect to and read data from

various data sources, whereas data item providers handle how

the data is represented, managed, and interacted with once

loaded within the QGIS environment. They can be enabled by

adding their identifiers to the list of data sources or data items in

this section. Finally, the statusbar section enables certain

widgets to be disabled. QGIS Light features utility methods to

retrieve the ids of toolbars, tool actions, algorithm providers,

algorithms, data source providers, data item providers, and

status bar widgets to facilitate easy configuration.

Figure 4. An example configuration file (shortened).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-127-2025 | © Author(s) 2025. CC BY 4.0 License.

132

5. Additional Usability Challenges in the QGIS Interface

Although this study and the QGIS Light plugin primarily focus

on simplifying QGIS’s user interface elements, the assessment

of QGIS components revealed additional insights aimed at

enhancing a more consistent and user-friendly experience. Some

observations highlighting inconsistencies and areas for potential

improvement are outlined in this section below. It is important

to note that these points are not limited to non-technical users

but are generally relevant for all users:

• Terminology is often inconsistent across algorithms that

perform similar tasks, and even within the same algorithm

when describing parameters. For example, terms like

create, calculate, and compute are used interchangeably to

refer to the generation of an enclosing circle.

• Multiple algorithms exist to perform similar tasks on

different geometries. For example, the Convert Geometry

Type, Polygonize, and Lines to Polygons algorithms all

convert vector geometries and can be used to transform

lines into polygons. However, the distinctions between

these algorithms are unclear, and there is no

straightforward guidance on which one to use for a

particular situation, especially if their functions differ.

• Some algorithms that serve similar or complementary

purposes offer different sets of features. For example, the

Remove Duplicates by Attribute algorithm allows saving

duplicate records to a separate file, whereas the Remove

Duplicate Geometries algorithm, which performs a similar

operation based on geometries rather than attributes, lacks

this option. This results in inconsistency between the

algorithms, which are expected to belong to the same

functional group.

• Some algorithms have very similar names but carry out

their tasks in different ways. For example, Fill NoData

algorithm provided by GDAL uses interpolation to fill

missing data cells, while the native Fill NoData Cells

algorithm fills them with a constant value. This distinction

is not immediately clear from the names as they appear in

the processing toolbox.

• Some algorithms share the same name and perform the

same core task but offer different sets of parameters. For

example, the native Hillshade algorithm includes options

for Z factor, horizontal angle (azimuth), and vertical angle,

while the GDAL version provides additional parameters

such as scale, compute edges, the Zevenbergen-Thorne

formula, combined shading, and multidirectional shading.

Moreover, GDAL uses different terminology, referring to

the Z factor as vertical exaggeration and the angles as the

azimuth and altitude of the light. In general, GDAL tools

tend to offer more configuration options than their native

counterparts. It is not immediately obvious why both

versions are available for the same task, especially when

one effectively encompasses the other.

• Some algorithms are primarily intended for use within the

model builder, such as the Drop Fields tool. These are

generally not needed for direct, interactive use, as their

functions can often be performed more easily through the

user interface. For example, in case of Drop Fields, by

removing fields directly in the attribute table. Displaying

these algorithms by default can lead to unnecessary clutter

in the processing toolbox.

• Some raster algorithms are required solely because certain

operations are not supported by the Raster Calculator. For

example, the Round Raster algorithm rounds cell values to

a specified number of decimal places. This is a basic

numerical operation that one would reasonably expect to

find in the raster calculator, which is specifically designed

for performing numerical operations on raster datasets.

However, this functionality is currently missing.

• Some algorithms are entirely covered by more versatile

counterparts. For example, the Difference algorithm

functions identically to the Difference (Multiple) algorithm

when only a single overlay layer is used, with the sole

distinction being support for in-place processing in case of

the former. It is not immediately clear why in-place

processing is not supported by the latter and it’s worth

noting that in fact it is a rarely supported feature, which is

not always functioning properly.

• Unlike native algorithms, GDAL algorithms lack

embedded help content, even though detailed information

is available in the online documentation. For example, the

Aspect algorithm provided by GDAL has a comprehensive

explanation of each parameter on its online help page, but

within the algorithm dialog, parameters are only listed by

name without any descriptions.

• Similarly, the embedded help for some native algorithms is

limited, despite detailed explanations being available in the

online documentation. The Export to SpatiaLite algorithm

is one such example. In some cases, there are also

inconsistencies between the embedded help and the online

documentation, which requires further attention.

• Inconsistencies exist between algorithms that perform the

same task using different methods. For instance, the

Concave Hull algorithm only accepts point layers and

produces a single polygon, with no option for grouping. In

contrast, the Concave Hull (K-Nearest Neighbor)

algorithm also accepts polygon layers by automatically

extracting points and supports generating multiple concave

hulls based on attribute grouping. Similarly, while the

Convex Hull algorithm generates a convex hull for each

individual feature, the Minimum Bounding Geometry

algorithm can create a single convex hull for all features,

similar to the behaviour of the Concave Hull algorithm.

Although these algorithms are closely related, their

differing inputs and behaviours can lead to confusion.

• Outputs generated as external files often disrupt the user

experience because they don’t appear directly within the

QGIS window. Instead, users are typically given only a

cryptic path to a temporary file, which they must open

manually. Unfortunately, this is how all plotting and

statistical summary algorithms function, despite being

commonly used tools for exploratory data analysis.

6. Conclusions

The primary goal of QGIS Light is to provide a simplified entry

point for non-technical individuals to engage in spatial data

analysis. While non-technical people are often involved in data

collection part of citizen science activities through specialized

applications, they are typically excluded from data analysis and

evaluation, which is usually handled by experts. By offering a

simplified GIS interface, we can make spatial analysis more

accessible to such people without sacrificing the software's

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-127-2025 | © Author(s) 2025. CC BY 4.0 License.

133

powerful capabilities. This approach can serve as a stepping

stone, allowing users to gradually transition to the standard GIS

interface and advanced features, fostering GIS community

growth besides participation in citizen science activities. In fact,

a simple interface might be useful for anybody that requires

core data visualization, editing, and analysis functionality, and

can facilitate education, capacity development, and even

professional activities. Therefore, the plugin has potential

applications that go beyond its original focus on citizen science.

It can also support secondary and higher education, lifelong

learning, and private sector use, for example, by providing

broad access to spatiotemporal analysis capabilities for large

groups of employees. The plugin’s FOSS nature and flexible

configuration options allow the simplifications to be customized

to meet the specific needs of other user groups and domains.

To encourage wider adoption of the plugin, a simplified

installation process, ideally integrated with the QGIS

installation, would be highly beneficial. This would allow non-

technical users to start using the QGIS Light interface

immediately, avoiding the current two-step process where they

first install QGIS and then add QGIS Light as a plugin, often

exposing them to the standard interface in the meantime.

Another potential improvement is to provide streamlined help

content tailored specifically for the simplified interface.

Currently, QGIS help directs users to online documentation

designed for the standard full interface, which can be confusing

since the simplified interface does not support all the features.

Automatically generating help content for the simplified

interface based on the standard QGIS documentation could offer

clear, user-friendly guidance while ensuring maintainability.

Although it might require source-code changes, adding the

ability to hide or remove advanced options (e.g., feature

filtering), advanced settings (e.g. number of threads), and batch

processing from algorithm dialogs would create a cleaner and

more straightforward experience for novice users. Notably,

advanced settings are not supported by all algorithms, and there

is no indication of their actual availability, which can be

confusing even for experienced GIS users. Finally, including

help content for algorithms from third-party providers, like

GDAL, as well as for some native algorithms whose

documentation exists online but is not accessible within the

application, would greatly enhance the overall user experience.

During this study, we identified several additional factors that

hinder a better user experience, including inconsistent

terminology, similarly named tools with differing parameters,

tools with nearly identical names performing distinct tasks, and

tools that could be consolidated. Our findings suggest that

critically reviewing existing user interface elements and

processing algorithms to streamline them into a more refined

and standardized experience could improve usability of QGIS.

This approach may also serve as a model for simplifying other

GIS software. To support such an initiative, more in-depth user

interface and user experience research focusing on both

technical and non-technical QGIS users would be valuable.

Such research could also help refine the current selection of

core components in the simplified interface, which is primarily

based on our own experiences and technical design constraints

derived from a limited set of user stories. While the feedback

received so far suggests that the selection has been effective, the

evaluation remains somewhat subjective. As a direction for

future work, we recommend a community-driven process

involving design and usability experts, enabling the systematic

integration of both quantitative and qualitative user feedback.

We hope that QGIS Light serves as the first step toward such an

initiative.

Author Contributions

Serkan Girgin originated the idea, performed the needs

assessment, designed the simplification process, and developed

the QGIS Light plugin. Jay Gohil and Indupriya Mydur

contributed to analysing the QGIS components selected for

simplification.

References

Arias de Reyna, M., Simoes, J., 2016: Empowering citizen

science through free and open source GIS. Open Geospatial

Data, Software and Standards, 1, 7. doi.org/10.1186/s40965-

016-0008-x.

Bonney, R., Shirk, J.L., Phillips, T.B., Wiggins, A., Ballard,

H.L., Miller-Rushing, A.J, Parrish, J.K., 2014: Next steps for

citizen science. Science, 343, 1436-437.

doi.org/10.1126/science.1251554.

Coetzee, S., Ivánová, I., Mitasova, H., Brovelli, M. A., 2020:

Open geospatial software and data: a review of the current state

and a perspective into the future. ISPRS International Journal of

Geo-Information, 9(2), 90. doi.org/10.3390/ijgi9020090.

Conrad C.C., Hilchey K.G., 2011: A review of citizen science

and community-based environmental monitoring: issues and

opportunities. Environmental Monitoring and Assessment. 176,

273-91. doi:10.1007/s10661-010-1582-5.

Ghetta, M., 2024: Data Plotly. Software, Version 4.2.0,

https://github.com/ghtmtt/DataPlotly (24 October 2024).

Girgin, S., 2024: QGIS Light. Software, Version 0.1.1. Zenodo.

doi.org/10.5281/zenodo.13844843 (26 September 2024).

Haklay, M., 2013: Citizen science and volunteered geographic

information: overview and typology of participation. In: D. Sui,

S. Elwood, M. Goodchild (Eds.) Crowdsourcing Geographic

Knowledge, 105-122. Springer. doi.org/10.1007/978-94-007-

4587-2_7.

Kocaman, S., Saran, S., Durmaz, M., Kumar, A.S. (Eds.),

2022: Citizen science and geospatial capacity building, ISPRS

International Journal of Geo-information (special issue), ISBN

978-3-0365-3714-6, doi.org/10.3390/books978-3-0365-3714-6.

NextGIS, 2024: QuickMapServices. Software, Version 0.19.36,

https://github.com/nextgis/quickmapservices (19 November

2024).

QGIS.org, 2025: QGIS 3.40 Geographic Information System

User Guide. https://docs.qgis.org/3.40/en/docs/user_manual/ (25

February 2025).

Raga, F., 2019: Customize ToolBars. Software, Version 1.11,

https://github.com/All4Gis/CustomToolBar (19 March 2019).

Skarlatidou, A., Hamilton, A., Vitos, M., Haklay, M, 2019:

What do volunteers want from citizen science technologies? A

systematic literature review and best practice guidelines.

Journal of Science Communication, 18(1), A02.

doi.org/10.22323/2.18010202

The Qt Company, 2018: Qt - Cross-platform Application and

UI Framework. Software, Version 5.12, https://qt.io (13 August

2018)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-127-2025 | © Author(s) 2025. CC BY 4.0 License.

134

https://doi.org/10.1186/s40965-016-0008-x
https://doi.org/10.1186/s40965-016-0008-x
https://doi.org/10.1126/science.1251554
https://doi.org/10.3390/ijgi9020090
https://doi.org/10.1007/s10661-010-1582-5
https://github.com/ghtmtt/DataPlotly
https://doi.org/10.5281/zenodo.13844843
https://doi.org/10.1007/978-94-007-4587-2_7
https://doi.org/10.1007/978-94-007-4587-2_7
https://doi.org/10.3390/books978-3-0365-3714-6
https://github.com/nextgis/quickmapservices
https://docs.qgis.org/3.40/en/docs/user_manual/
https://github.com/All4Gis/CustomToolBar
https://doi.org/10.22323/2.18010202
https://qt.io/

