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Abstract 

The classification of the urban point cloud is an essential task for numerous applications, including mapping, 3D urban modelling, 

etc.. Although in the last few years, different methodologies and algorithms have been proposed, precise and detailed point cloud 

labelling is still challenging. Publicly available annotated benchmark datasets have become the standard for the evaluation of 

algorithms' performance; however, most focus on data acquired from mobile or terrestrial laser scanners. In this paper, we introduce 

UNS Geo, a dense Aerial Laser Scanning (ALS) point cloud dataset consisting of 5.4 million manually annotated points across 8 

semantic classes. To validate the performance of our dataset, the labelled point cloud is used for training the state-of-the-art networks 

(i.e. PointNet, PointNet++). Moreover, since UNS Geo includes the RGB per point information, the influence of spectral information 

on classification results is evaluated. The results demonstrate that UNS Geo effectively supports the training of deep learning models, 

highlighting its potential for advancing research in urban point cloud classification. The dataset is publicly available at: 

https://github.com/mirogovedarica/UNS-Geo. 

1. Introduction

Automatic and reliable 3D point cloud classification is a crucial 

yet challenging task with applications across various domains, 

including urban planning, 3D modelling (Biljecki, et. al., 

2015), autonomous driving (Zhao, Peng, & Azumi, 2024) and 

the development of smart cities and digital twins (Xue, et. al., 

2020), (Wu & Zhou, 2022). Airborne LiDAR (Light Detection 

and Ranging) has emerged as an efficient and effective tool for 

conducting large-scale 3D surveys of urban areas, offering high 

spatial resolution and accurate data collection. The point cloud 

serves as a primary data source for the geometrical 

reconstruction and modelling of the urban environment, and 

classification of raw point cloud is the first step in the 

processing workflow. 

In addition to the increased need to develop fully automated 

point cloud classification algorithms that will enable data 

processing in real-time or near-real time, detailed classification 

is also needed. A decade ago, the algorithms were focused on 

distinguishing a small number of broad classes such as 

buildings, terrain, and vegetation; however, featured classes 

such as facades, pedestrian lanes, parking lots, poles, etc, are 

particularly interesting nowadays. The detailed classification 

has unlocked new applications and increased requirements for 

data quality, processing power, labeled training data, and 

advanced algorithms. Over the years, numerous algorithms and 

methodologies have been proposed for point cloud 

classification. Despite advancements in machine learning and 

deep learning, this task remains a significant challenge in the 

geospatial community. 

One of the primary challenges lies in the availability of 

sufficient labeled data for training classification algorithms. The 

creation of publicly accessible, large-scale datasets is essential 

for developing and benchmarking new methods. The benchmark 

point cloud datasets can be categorized by the type of sensors 

used, the number of classes and the inclusion of color 

information (Table 1). There have been several data sets 

released for semantic segmentation from ground-based laser 

scanners such as Terrestrial Laser Scanners (TLS) or Mobile 

Laser Scanners (MLS). However, there is a significant 

difference between Arial Laser Scanners (ALS) and ground- 

based methods in resolution, point locations, and areas of 

occlusion. Due to that nadir orientation on the sensor, object 

appearance can significantly differ compared to lateral 

orientation in a ground-based system. This difference in 

perspective affects how features such as walls, facades, and 

vegetation are captured. Moreover, due to its lower resolution, 

ALS data are suited for different applications, and the types of 

classes that can be reliably detected may differ from those 

detectable using higher-resolution MLS or TLS data. 

Several ALS databases have been introduced, such as ISPRS 

Vaihingen (Niemeyer, et. al., 2014), LASDU (Ye, et al., 2020), 

OpenGF (Qin, et. al., 2021) or AHN3 (AHN, n.d.). However, 

they have some limitations. For instance, while LASDU and 

AHN3 datasets are valuable resources for point cloud 

classification, they lack the comprehensive diversity of urban-

specific classes, limiting their utility in capturing the complexity 

of dense urban environments. OpenGF has large coverage, but it 

is classified into two categories. The ISPRS benchmark dataset 

is most commonly used in resources in this field. It provides a 

point cloud classified into nine classes, along with features such 

as x, y, z, intensity, return number, and the number of returns. 

However, this dataset also presents some challenges, including 

its highly unbalanced class distribution and the relatively small 

number of points available, particularly for training deep 

learning methods. The overview of publicly available ALS 

benchmark datasets is presented in Table 1. 

To perform point cloud classification, usually supervised 

classification that consists of two main steps: feature creation 

and point cloud classification has been used. The feature 

extraction process uses the local context of each point (defined 

by either a fixed radius or a fixed number of nearest neighbor 

points) and mathematical expressions to create a meaningful 

representation based on spectral or spatial attributes. Created 

features, that describe object types, are integrated into a feature 

vector and fed into the algorithm. The classification is 

performed based on those features. In the classification step, 

machine learning algorithms such as Support Vector Machine 
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(SVM) (Zhao, et. al., 2020), Random Forest (RF) (Aljumaily, 

et. al., 2023) is most commonly used. However, their 

performance mainly relies on the definition of neighborhood 

and selection of handcrafted features. The selection of 

appropriate features and neighbourhood definition demands 

prior knowledge of the point cloud (Winiwarter et. al., 2019) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Comparison of ALS 3D dataset. 

Deep learning (DL) has been successfully applied in different 

types of classification, object detection, and segmentation tasks 

on images. However, DL on point cloud adds additional 

complexity due to high dimensionality, unstructured, and 

highly variable density nature. The third dimension increases 

the number of parameters in the network, requiring more 

computational resources. Unlike 2D images, point clouds have 

unstructured, irregular, and non-uniform shapes, due to which 

the application of the standard Convolutional Neural Network 

(CNN) can be difficult (Wu, Qi, & Fuxin, 2019). 

Currently, deep learning methodologies for point cloud 

segmentation can be divided into grid-based and point-based 

approaches. Projection-based methods such as 2D images (Li, 

et. al, 2025), multi-view images (Boulch, et al., 2018), voxels 

(Zhao, et. al., 2023), kd-trees (Klokov & Lempitsky, 2017), 

transform point cloud into regular representations to which 

convolution filters can be directly or in a similar way applied. 

Similarly, 

PointNet architecture represents the first network that applies 

DL models to raw point clouds. PointNet (Qi, et. al., 2017) uses 

a symmetrical function to address the unstructured point cloud 

and map it into high-dimensional space. Due to that, PointNet 

ensures that the model is invariant to input permutation. 

However, it can not capture the local structure of the point 

cloud. To solve this limitation, PointNet++ (Qi, et. al., 2017b) is 

introduced. PointNet++ has a U-Net-like architecture where a 

hierarchical set abstraction layer preforming sampling grouping, 

local feature extraction, as well as a feature propagation layer to 

upsample those features back to the original points. 

In this paper, we introduced a large-scale aerial LiDAR point 

cloud dataset, UNS GEO, designed specifically for the 

classification of complex urban environments. This new dataset 

complements the ISPRS Vaihingen dataset and can be 

synchronized to provide a more comprehensive representation 

of urban morphologies. In addition to providing new data, we 

evaluate the two state-of-the-art algorithms, including PointNet 

and PointNet++ and test the influence of spectral information on 

algorithm performance. 

2. UNS Geo 

The UNS Geo dataset comprises over five million points, 

classified into eight distinct classes, and is focused on the City 

of Novi Sad (Serbia), which is known for its unique urban 

morphology. The city’s layout reflects the architectural and 

planning styles typical of Southeastern Europe in the post-World 

War II era, featuring a mix of high-density residential blocks, 

green spaces, wide boulevards, narrow streets, and diverse 

building types. These characteristics ensure that the dataset 

captures a wide range of structural and spatial variations. The 

study area is in the urban area of Novi Sad, consisting of Liman, 

located in the southeast part of the city, and the left Danube bank 

with high residential blocks, spacious green areas, and 

boulevards. The topography of the study area is flat, with an 

average elevation of 77 m. The study area is shown in Figure 1. 

 

 

Figure 1. Study area. 

2.1 Data acquisition 

The ALS point cloud data were collected using a Riegl LMS- 

Q680i laser scanner and a digital camera DigiCam H39 onboard 

a Bell JetRanger 206B3. Before the survey, calibration of the 

onboard sensor is performed by using a double cross scheme 

i.e., the flight is conducted in two opposite directions on two 

flight heights (200 and 400 m). 

2.2 Data description 

The total number of annotated points is 5.4 million of points. 

The dataset is divided into two .las files: for training and for 

testing (Table 2). 
 

 
Num. of points 

Point density 

[pts/m2] 

Training 4.8 M 37 

Test 0.6 M 35 

Table 2. Dataset characteristics. 

In the .las file, each point was assigned the following attributes: 

• Position: X, Y, Z coordinates of each point in 
UTM 34N (EPSG:32634) projection. The original 
coordinates are available to enable fusion data 
appraoch, 

• Intensity: Return strength of reflectance for each 
point. The intensity represents the surface 
physical properties. 

Dataset Number 
of points 

Spatial 
size [m2] 

Number 
of classes 

RGB 

ISPRS (Niemeyer, et. 
al., 2014) 

1.2 M 1.6 x 

105 

9 No 

OpenGF (Qin, et. 

al, 2021) 

500 M 47 x 106 2 No 

LASDU (Ye, et al., 

2020) 
3.1 M 1 x 106 5 No 

DALES (Varney, 

et al, 2020) 

505 M 10 x 106 8 No 

DublinCity (Iman 
Zolanvari, et al., 

2019) 

260 M 2 x 106 13 No 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-135-2025 | © Author(s) 2025. CC BY 4.0 License.

 
136



• Return number: refers to the serial number of the 
reflected laser pulse that returns to the sensor after 
hitting the object of interest. 

• Number of returns: the total number of returns per 
transmitting pulse, 

• Classification: Define the type of object that has 
reflected the laser pulse. 

• RGB: Each point in the point cloud is assigned a 
Red, Green, and Blue (RGB) color value based on 
the corresponding pixel in the aligned camera 
image by using Terrasolid software. Colors are 
added to enhance the visual interpretability and 
semantic understanding of the scene. 

Regarding the labeling, the automatic, semi-automatic, and 

manual classification was used. We selected classes with a 

focus on different applications such as mapping, urban 

planning, and autonomous driving. The points are classified into 

eight different classes: ground, roads, parking, pedestrian lens, 

buildings, high vegetation, and cars (Figure 2). The unknown 

objects, which encompass objects such as traffic lights, benches, 

antennas, playgrounds, bus stops etc. are left out of the final 

point cloud. Each category includes, but is not limited to, the 

following types of objects: 

• Ground class: bare earth, grass 

• Roads: boulevards, collector roads, narrow streets 

• Parking: angled parking, parking lots 

• Pedestrian lanes: sidewalk, shortcuts 

• Roof: flat roof, gable roof, hip roof (clay or 
concrete) 

• High-vegetation: trees, shrubs, bushes 

• Cars: sedans, SUVs, vans, trucks. 

Information about class distribution is presented in Table 3. 

Class 

code 
Class description 

Percentage of labeled points 

Training Testing 

0 Ground 12.37 11.93 

1 Roads 18.50 15.72 

2 Parking 5.16 4.58 

3 Pedestrian lens 11.51 7.54 

4 Walls 5.88 7.52 

5 Roof 18.78 25.46 

6 High vegetation 25.15 25.68 

7 Car 2.64 1.58 

Table 3. Class distribution. 

The training and testing datasets have a similar distribution, 

except for pedestrian lenses and cars. The high vegetation class 

points contain the largest number of points (Table 2.). This is 

expected since the multiple returns are characteristic of this 

class, and it is also a commonly occurring class in this type of 

city. The car class only reaches 2.64 % of all labeled points, 

making it one of the most challenging classes to detect. The 

imbalance of classes should be considered during the training or 

testing phase. 

 

 

 

Figure 2. UNS Geo dataset (a) training data, (b) test data. 

To understand the similarity in shapes between different classes, 

the analysis of the orientation of the surface normal per point 

was performed. First, the normal is computed by using least-

squares plane fitting. To ensure consistency in orientation, the 

normal is flipped using the sensor as the reference. After that, 

the histogram of surface normal for each class is computed, and 

the correlation across classes. The results are presented in Figure 

3. Each cell shows the correlation of class i and class j. The 

values close to 1 indicate that shapes are very similar, while 0 

indicates completely different orientation. 
 

 

Figure 3. Surface normal correlation. 

As expected, classes 0, 1, 2, and 3 have very similar surface 

normal distributions, indicating similar geometries, which can 

make distinguishing between them more challenging for 

classification algorithms. Classes 4 and 6 have a negative or low 

positive correlation, representing a structurally unique class. 

Class 5 shows moderate similarity, suggesting partial similar 
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geometry, while class 7 has high correlation with classes 2 and 

5. 

3. Methodology 

The PointNet (Qi et al., 2017) architecture is a pioneering DL 

architecture developed for direct point cloud processing. The 

input to PointNet is a set of 3D points typically presented as a 

matrix (N, 3) where N is the number of points and each point is 

described by its coordinates. Additional features such as RGB 

value, intensity etc. can be used. Each point is independently 

passed through a series of shared Multi- Layer Perceptron 

(MLP) layers, which map each point into a high-dimensional 

feature space (from 3 to 64, 128 and 1024 dimensions). This 

step enables the model to learn complex spatial patterns at the 

point level. To aggregate the information from all individual 

points, PointNet uses max-pooling, producing a global feature 

vector (1024 dimensions), representing a global signature of the 

input point cloud. However, semantic segmentation demands the 

combination of local and global features. Due to that, the global 

feature vector is concatenated with each point’s local feature, 

providing both local information and the context of the entire 

scene. This vector is passed through more MLP layers (512, 

256, k), leading to a final softmax classifier per point. The 

output is (N, k), where k is the number of classes. 

However, PoinNet fails to capture the local structure of the 

point cloud, which reduces its ability to characterize details and 

generalize samples with fine-grained local structure (such as 

sharp corners, object boundaries). PointNet++ (Qi, Yi, Su, & 

Guibas, 2017) resolves this problem by dividing the point cloud 

into a set of overlapping local regions using distance 

measurement in the corresponding space. Then it applies 

PointNet locally in a hierarchical fashion to extract local 

features in small regions and gradually expands the range to 

extract higher-level features until the global features of the 

entire point cloud are extracted. Finally, the classification was 

achieved by combining local and global features. 

The core of the PointNet++ architecture is abstraction layers 

that consist of three sub-steps: sampling, grouping, and local 

feature extraction. First, multiple-resolution grouping 

subsampling is selected from the input point cloud (8192, 4096, 

2048, and 1024 points) using iterative farthest point sampling to 

ensure uniform spatial coverage. For these selected points that 

act as centroids, 32 neighboring points are found in the 

respective layer using ball queries. For each group, a PointNet 

composed of an MLP with a setup (first layer (32, 32, 64), 

second layer (64, 64, 128), and third layer (128, 128, 256)) 

followed by a max-pooling layer, is applied to extract a local 

feature vector. 

This vector summarizes a set of centroids with a learned local 

descriptor, which is essential for understanding of complex 3D 

scene. The learned point features are gradually interpolated and 

propagated back to the original dense point cloud by 

hierarchical propagation with distance-based interpolation and 

across-level skip connections (like in U-Net). The head of the 

network consists of a dense layer with 128 units, a dropout layer 

with a keep probability of 0.5, and another dense layer with 9 

units. ReLU activation and max-pooling are used wherever 

appropriate. 

Since all points include RGB and intensity value, we created 3 

different data inputs for each algorithm to assess the influence 

of spectral information on classification accuracy. The first 

input is based purely on the geometrical information and it 

contains only point coordinates. The second input includes the 

intensity value, while the third input contains full geometrical 

and spectral information i.e. x, y, z, intensity, and RGB. . . 

Accuracy assessment 

In this paper, the performance of algorithms was evaluated 

using the precision (P), recall (R), F1-score (F1), overall 

accuracy, and average F1 score. The precision, recall, and F1 

were used to assess the classification accuracy of individual 

classes, while the OA and average F1 is used to assess overall 

model performance. 

 

(1) 

 

(2) 

(3) 

 

Where TP is true positive, FN is false negative, and FP is false 

positive. The average F1 is calculated as the average summation 

of F1 for all classes, and OA (4) is calculated as follows: 

 

(4) 

 

Where TN is true negative. 

 

3.1 Implementation 

The model is trained using mini-batch stochastic gradient 

descent, where each batch contains 32 blocks of points. The 

data set is divided into 80 % for testing and 20 % of data for 

validation. Training was performed for 40 epochs with an initial 

learning rate of 0.001, which decays by a factor of 0.7 every 10 

epochs to improve convergence. The optimizer used is Adam, 

which adapts learning rates individually for each parameter. 

Additionally, L2 weight decay (set to 1e-4) is applied to prevent 

overfitting by penalizing large weights. The weights are saved if 

the training loss decreases, while the best model is selected 

according to the highest accuracy on the validation set. 

 

4. Results 

The results of the accuracy assessment for UNS Geo dataset 

classification by using PointNet and PointNet++ architectures 

and three different input sets are displayed in Table 4, while 

visual inspection of the results is shown in Figure 4. Taking into 

account the value of F1, both algorithms show moderate to weak 

performance depending on the input dataset. 

As expected, PointNet++ outperforms PointNet across all input 

datasets. Similar results are presented in (Iman Zolanvari, et al., 

2019) and (Ye, et al., 2020). An increase of an average F1 

score was 0.12, 0.16, and 0.13 for the first, second, and third 

input, respectively. The highest accuracy is obtained for 

PointNet++ with full features (XYZ+I+RGB). The first input 

that relies solely on spatial information results in the lowest 

accuracy for both models. Using only geometrical features (X, 

Y, Z) can be insufficient for distinguishing objects with similar 

shapes,  such as classes  0,  1,  2,  3  (Figure 3). 
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 PointNet (XYZ) PointNet ++ (XYZ) PointNet (XYZ+I) PointNet++ (XYZ+I) PointNet(XYZ+I+RGB 

) 

PointNet++(XYZ+I+R 

GB) 

Class 
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 

0 0.36 0.08 0.13 0.59 0.12 0.20 0.41 0.31 0.35 0.59 0.15 0.24 0.57 0.34 0.43 0.51 0.44 0.48 

1 0.70 0.26 0.38 0.83 0.27 0.41 0.67 0.35 0.46 0.72 0.58 0.64 0.65 0.68 0.66 0.80 0.51 0.63 

2 0.16 0.27 0.20 0.22 0.29 0.25 0.18 0.29 0.22 0.20 0.54 0.29 0.18 0.27 0.22 0.23 0.29 0.25 

3 0.24 0.20 0.22 0.20 0.70 0.32 0.23 0.19 0.21 0.22 0.26 0.24 0.21 0.11 0.14 0.25 0.36 0.30 

4 0.26 0.29 0.27 0.34 0.56 0.42 0.23 0.40 0.29 0.44 0.80 0.56 0.21 0.49 0.29 0.39 0.81 0.53 

5 0.72 0.56 0.63 0.70 0.88 0.78 0.75 0.67 0.71 0.85 0.88 0.87 0.77 0.83 0.80 0.90 0.85 0.87 

6 0.48 0.69 0.56 0.75 0.47 0.58 0.51 0.58 0.54 0.84 0.69 0.76 0.60 0.45 0.51 0.78 0.69 0.73 

7 0.10 0.67 0.18 0.42 0.56 0.56 0.21 0.45 0.29 0.66 0.78 0.71 0.26 0.49 0.34 0.73 0.58 0.64 

AF1  0.32   0.44   0.38   0.54   0.42   0.55  

OA 
 0.44   0.54   0.48   0.63   0.53   0.65  

Table 4. Result of the accuracy assessment 

 
 

Figure 4. Visual comparison of results where 1 represents the first dataset (x, y, z), 2 represents the second dataset (x, y, z, intensity), 

and 3 represents the third dataset (x, y, z, intensity, r, g, b). 

The inclusion of spectral features had a noticeable effect on 

classification performance. Adding intensity to the input 

significantly improved results for both PointNet and PointNet++ 

architectures. For PointNet, the average F1-score increased by 

0.06, and an additional 0.06 gain was observed when RGB 

values were also included (Table 4.). For PointNet++, intensity 

led to an even larger improvement of 0.10 in average F1-score, 

while the addition of RGB further increased it by only 0.01. 

These results highlight the high benefits of intensity data, which 

captures discriminative material and surface characteristics 

directly from ALS measurements. Similarly, RGB values 

inclusion also improves algorithm performance, but it influence 

is more modest, particularly when using models like 

PointNet++ (Figure 4.). On one hand, both intensity and RGB 

represent the spectral reflectance characteristics of objects; 

however, LiDAR is less sensitive to environmental illumination 

and shadows compared to cameras, making it a more 

reliable source for 

accurate classification. On another hand, colour information can 

be highly beneficial for distinguishing classes with similar 

geometric features but different visual appearances. However, 

its effectiveness is relatively limited by factors such as lighting 

conditions, shadows, image quality, and the accuracy of image-

to-point cloud alignment. 

All models show similar behavior. The high vegetation and roof 

categories had strong performance over all networks and inputs. 

This is mostly due to the abundance of points in the dataset and 

unique spatial characteristics. Even though the car class is 

presented with only 2% in the training dataset, the PointNet ++ 

(XYZ+I) and PointNet ++ (XYZ+I+RGB) show strong 

performance in the test dataset (Figure 4.). The lowest accuracy 

was obtained for the parking lots class. This is expected since 

this class is highly imbalanced and has very similar spatial and 

spectral characteristics to the roads class. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-135-2025 | © Author(s) 2025. CC BY 4.0 License.

 
139



5. Conclusion 

In this paper, (i) a new benchmark aerial LiDAR point cloud 

dataset, UNS Geo, for 3D semantic segmentation of urban areas 

and (ii) evaluate the performance of two popular deep learning 

approaches, PointNet and PointNet++, and (iii) test the 

influence of spectral information on algorithms' performance. 

The dataset covers the complex and highly dense urban area, 

and it contains 5.4 million points manually classified into 8 

classes: ground, roads, parking, pedestrian lens, walls, roofs, 

high vegetation, and cars. In contrast to other publicly available 

ALS datasets that contain x, y, z, and intensity information, the 

UNS Geo includes RGB information for each point, enabling 

easier visual interpretation and semantic understanding of the 

urban scene. This dataset is available at 

https://github.com/mirogovedarica/UNS-Geo. 

The results of the state-of-the-art algorithm performance on 

UNS Geo dataset show that there is room for improvement in 

current methods, especially for the semantic segmentation of 

classes with similar spectral and spatial properties and 

imbalanced classes. 

The accuracy assessment results demonstrate that both PointNet 

and PointNet++ show significant performance improvements 

with the inclusion of intensity data. In contrast, the addition of 

RGB information provides a more modest enhancement in 

classification accuracy, especially for the PointNet++ algorithm. 

Although color information can be highly beneficial for 

distinguishing between different classes, its effectiveness is 

relatively limited by factors such as image quality and the 

accuracy of image-to-point cloud alignment. 

For future work, the study could be extended by labeling 

additional object classes and expanding the geographic 

coverage of the dataset. Furthermore, efforts could be directed 

toward the development of more advanced algorithms to 

achieve higher classification accuracy. 

 

 

ACKNOWLEDGEMENT 

This research has been supported by the Ministry of Science, 

Technological Development and Innovation (Contract No. 451- 

03-137/2025-03/200156) and the Faculty of Technical Sciences, 

University of Novi Sad through project “Scientific and Artistic 

Research Work of Researchers in Teaching and Associate 

Positions at the Faculty of Technical Sciences, University of 

Novi Sad 2025” (No. 01-50/295). 

 

References 

AHN. (n.d.). Actueel Hoogtebestand Nederland. Retrieved 11 4, 

2024, from https://www.ahn.nl 

 

Aljumaily, H., Laefer, D. F., Cuadra, D., & Velasco, M. (2023). 

Point cloud voxel classification of aerial urban LiDAR using 

voxel attributes and random forest approach. International 

Journal of Applied Earth Observation and Geoinformation, 

118. 

 

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Coltekin, A. 

(2015). Applications of 3D City Models: State of the Art 

Review. ISPRS International Journal of Geo-Information, 

2842-2889. 

Boulch, A., Guerry, J., Le Saux, J., & Audebert, N. (2018). 

SnapNet: 3D Point Cloud Semantic Labeling with 2D Deep 

Segmentation Networks . Computers & Graphics, 71, 189-198. 

Iman Zolanvari, S. M., Ruano, S., Rana, A., Cummins, A., de 

Silva, R. E., Rahbar, M., & Smolic, A. (2019). DublinCity: 

Annotated lidar point cloud and. Proceedings of the British 

Machine Vision. 

 

Klokov, R., & Lempitsky, V. (2017). Escape from Cells: Deep 

Kd-networks for the recognition of 3D point clouds models. 

Proceedings of the IEEE International Conference on Computer 

Vision. 

Li, K., Zhang, T., Zhong, C., Zhang, Z., & Wang, G. (2025). 

Robust 3D point cloud classification based on declarative 

defenders. Neural Computing and Applications, 37, 1209-1221. 

 

Niemeyer, J., Rottensteiner, F., & Soergel, U. (2014). 

Contextual classification of lidar data and building object 

detection in urban area. ISPRS J. Photogramm. Remote Sens.,, 

152-165. 

 

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). PointNet: 

Deep Learning on Point Sets for 3D Classification and 

Segmentation. Computer Vision and Pattern Recognition. 

Honolulu, HI, USA. 

 

Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). PointNet++: 

Deep Hierarchical Feature Learning on Point Sets in a Metric 

Space. 31st Conference on Neural Information Processing 

System. Long Beach, CA, USA. 

 

Qin, N., Tan, W., Ma, L., Zhang, D., & Li, J. (2021). An ultra- 

large-scale ground filtering dataset built upon open {ALS} 

point clouds around the world. Proc. IEEE Conf. Comput. Vis. 

Pattern Recog. Workshops, 1082-1091. 

 

Varney, N., Asari, V. K., & Graehling, Q. (2020). DALES: A 

large-scale aerial lidar data set for semantic segmentation. 

Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition Workshops. IEEE. 

Winiwarter, L., Mandlburger, G., Schmohl, S., & Pfeifer, N. 

(2019). Classification of ALS Point Clouds Using End-to-End 

Deep Learning. . Journal of Photogrammetry, Remote Sensing 

and Geoinformation Science, 87, 75-90. 

 

Wu, W., Qi, Z., & Fuxin, L. (2019). PointConv: Deep 

Convolutional Networks on 3D Point Clouds . Computer Vision 

and Pattern Recognition. Long Beach, CA, USA: 

arXiv:1811.07246. 

Wu, Y., & Zhou, Z. (2022). Intelligent City 3D Modeling 

Model Based on Multisource Data Point Cloud Algorithm. 

Journal of Function Spaces. 

Xue, F., Weisheng, L., Zhe, C., & Webster, C. J. (2020). From 

LiDAR point cloud towards digital twin city: Clustering city 

objects based on Gestalt principles. ISPRS Journal of 

Photogrammetry and Remote Sensing, 418-431. 

 

Ye, Z., Xu, Y., Huang, R., Tong, X., Li, X., Liu, X., Stilla, U. 

(2020). LASDU: A Large-Scale Aerial LiDAR Dataset for 

Semantic Labeling in Dense Urban Areas. ISPRS Int. J. Geo- 

Inf., 9(7). 

 

Zhao, C., Peng, B., & Azumi, T. (2024). Point Cloud Automatic 

Annotation Framework for Autonomous Driving. 2024 IEEE 

Intelligent Vehicles Symposium (IV). Jeju Island: IEEE. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-135-2025 | © Author(s) 2025. CC BY 4.0 License.

 
140

https://github.com/mirogovedarica/UNS-Geo
https://www.ahn.nl/


Zhao, W., Zhang, X., Hao, X., Wang, D., & He, Y. (2023). 

Multi Point-Voxel COnvolution (MPVConv) for Deep Learning 

on Point Cloud. Computers & Graphics, 72-80. 

 

Zhao, Z., Song, Y., Cui, F., Zhu, J., Song, C., Xu, Z., & Ding, 

K. (2020). Point Cloud Features-Based Kernel SVM for 

Human-Vehicle Classification in Millimeter Wave Radar. IEEE 

Access, 8, 26012-26021. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-135-2025 | © Author(s) 2025. CC BY 4.0 License.

 
141




