
Creating a Dataset of Spatial Parameters of Ground-Mounted Photovoltaic Systems Utilising
Orthophotos and the Segment Anything Model

Johannes Albert, Chantal Schymik, Philipp Gärtner, Claudius Wehner, Jan Siegismund, Stephan Klingner

Application Lab for Artificial Intelligence and Big Data at the German Environment Agency, Leipzig, Germany -
(johannes.albert, chantal.schymik, philipp.gaertner, claudius.wehner, jan.siegismund, stephan.klingner)@uba.de

Keywords: Ground-Mounted Photovoltaic, Orthophotos, Segment Anything Model, Row Spacing, Ground Coverage Ratio.

Abstract

The rapid expansion of renewable energy sources poses significant challenges in reconciling energy development with competing 
interests. This underscores the necessity for precise spatial data to facilitate effective balancing, management, or evaluation of 
compliance with regulatory frameworks. This paper presents a zero-shot approach for extracting parameters of ground-mounted 
photovoltaic systems in Germany based on digital orthophotos. This allows for the accurate identification and delineation of 
essential spatial parameters, including the ground coverage ratio of photovoltaic modules, the row spacing between module rows, 
and their exact orientation. The results of this study are twofold. First, the developed technical pipeline successfully achieves high-
quality segmentation of photovoltaic module rows, with over 71 % of the results demonstrating satisfactory to flawless segmentation. 
Second, the resulting dataset is made available for further analysis and can serve as a starting point for the development of additional 
AI models aimed at monitoring the dynamics of photovoltaic systems.

1. Introduction

The energy transition represents a global challenge that requires
to navigate contradictions and complexities at multiple levels.
Competing interests in land use, nature conservation, environ-
mental protection, and landscape preservation are just a few
of the areas where an alignment of conflicting interests is es-
sential (Hilker et al., 2024). However, it is not only dicho-
tomies that exist – synergies are also possible, e.g. regard-
ing biodiversity (Bai et al., 2022; Carvalho et al., 2024), the
realisation and maximisation of which require effective plan-
ning. The complexity of these issues is further compounded by
the need to integrate new technical requirements for grid infra-
structure to accommodate the evolving energy generation land-
scape (Schmietendorf et al., 2017; Smith et al., 2022).

Adding to the complexity, the mainly decentralized structure of
renewable energy generation facilities makes the coordination
of their expansion significantly more challenging than with tra-
ditional large-scale power plants. The urgency of expanding
renewable energy sources often leads to ambitious short-term
targets, which can complicate the resolution of these oppos-
ing interests. In this context, data emerge as a critical resource
for addressing these conflicts and challenges. Comprehensive
and regularly updated data is essential for continuous reflec-
tion and adjustment when weighing up different interests. Such
data serve as a basis for various control mechanisms, such as
policy consultation processes or planning procedures, and can
thus shape legislation, regulatory requirements or the planning
of infrastructure projects such as grid expansion.

This paper examines the specific subject matter in context of the
expansion of ground-mounted photovoltaic (GMPV) systems in
Germany. As stated in § 4 of the Renewable Energy Sources
Act (EEG 2023) (BMJV, 2014), the expansion target for the
total photovoltaic capacity in Germany is 400 GW by 2040,
which represents a significant increase from around 81.7 GW
in 2023 and makes it a key element of the energy transition.

A significant challenge is the lack of precise spatial data on
photovoltaic installations, which complicates the assessment of
ongoing developments and potentially required readjustment of
regulatory frameworks. The Marktstammdatenregister (MaStR)
(Bundesnetzagentur, n.d.), as the central freely accessible re-
gistry of all energy-related installations provides point location
data for GMPV systems, but lacks detailed spatial information,
such as the area occupied by photovoltaic module rows, the
spacing between these rows, and their exact orientation. The
absence of these essential information impedes the balancing of
opposing interests or the shaping of legal framework conditions.
Existing initiatives such as Global Renewables Watch (Robin-
son et al., 2025) or SATLAS (Bastani, n.d.), while having a
global focus, lack sufficient data granularity to effectively ad-
dress complex issues.

Thus, the study addresses a gap by aiming to extract detailed
spatial parameters for all GMPV systems in Germany using di-
gital orthophotos. It employs a zero-shot segmentation model
for image segmentation, followed by a classification process, to
achieve precise segmentation and classification of components
of GMPV plants and derive various parameters based on this
analysis.

The aim of this paper is to outline an approach to extract de-
tailed spatial parameters of GMPV systems without training
data, create a dataset comprising these parameters extracted for
GMPV systems in Germany, and provide a descriptive analysis
of the dataset.

Accordingly, the following research questions (RQ) were ad-
dressed in this study:

1. RQ1: How can spatial parameters of ground-mounted photo-
voltaic systems be extracted without ground truth data avail-
able?

2. RQ2: Can these detailed spatial parameters of GMPV parks,
such as row spacing and covered area, be extracted with
sufficient quality?
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2. Data and materials

To address the research questions, it was first necessary to ob-
tain the footprints within which the parks are located, as well as
corresponding high-resolution images for the detection of the
module rows. The footprints encompassed the parks and were
available nationwide. However, they were based on a differ-
ent understanding of the park area than what is required for the
calculation of precise metrics (see also Section 3). Therefore,
three main data sources were used:

1. GMPV footprints: The open-access dataset was provided
by Manske (2025). The dataset contains manually digit-
ised outlines of 8,789 GMPV footprints across Germany as
depicted in Figure 1). and serves as the foundational refer-
ence. It is based on the MaStR of the Federal Network
Agency (Bundesnetzagentur) in Germany as of January
4, 2024. In addition to the spatial information, the data-
set contains information on photovoltaic systems commis-
sioning and decommissioning dates, their cardinal direc-
tion (fixed orientation or sun-tracked) and location (ground-
mounted, floating-mounted or agrivoltaics).

2. Digital orthophotos (DOP): Alongside the photovoltaic foot-
print dataset, DOP imagery was incorporated into the work-
flow. The DOP are distortion-free and true-to-scale raster
images of the earth’s surface. They are derived from geore-
ferenced aerial photographs and a digital elevation model.
The dataset covers the whole of Germany as a seamless,
non-overlapping mosaic, provided by the surveying au-
thorities of the federal states and published by the Federal
Agency for Cartography and Geodesy (BKG, 2025). The
orthophotos are available as 3-channel true-colour (RGB)
images and single-channel near infrared (NIR) images, with
a ground resolution of 0.2 m and size of 1000 m x 1000 m).
The image acquisition dates vary by federal state, ranging
from 2016 to 2023 (see Figure 1).

3. Photovoltaic parks: GMPV systems are typically enclosed
by fences or other structural or natural elements, which
often correspond to polygon features in OpenStreetMap
(OSM). To obtain the relevant OSM data, the Overpass
API was queried with a set of photovoltaic-specific tags.
The resulting dataset consists of 6,479 photovoltaic parks
(see red polygon in Figure 2).

3. Methodology

This study aims to extract spatial parameters for GMPV sys-
tems in Germany using DOP. For image segmentation, the Seg-
ment Anything Model (SAM) (Kirillov et al., 2023), a zero-
shot segmentation model, is applied on DOP. The application
of SAM followed by a classification process facilitates the pre-
cise segmentation of components within GMPV plants. The
following sections describe the extraction of module rows, park
area and the approach applied for evaluation. Figure 2 gives a
graphical overview of used terminology.

Throughout the remainder of this paper, the designation mod-
ule rows will be adopted, as this arrangement is the prevailing
method of installation. Nonetheless, it should be acknowledged
that other configurations, including non-row-based setups like
sun-tracked modules, do exist.

Figure 1. Location of analysed footprints and recency and
number of utilised digital orthophoto tiles.

3.1 Photovoltaic module rows

Around every photovoltaic footprint from Manske (2025), a
grid of overlapping true-colour DOP image chips was gener-
ated, each measuring 640 × 640 pixels (128 m x 128 m) with
a stride of 320 pixels to ensure 50 % overlap. This grid, com-
prising over 227,000 image chips, was used as input for Meta’s
SAM. Since no training data for module row detection were
available, SAM was used in zero-shot manner to automatically
segment the image chips. The image chips were read using
OpenCV (Bradski, 2000) and converted to RGB format. SAM
was initialised with the pre-trained ViT-H (Vision Transformer-
Huge) backbone with tuned hyperparameters. As SAM is com-
putationally expensive, its execution was performed inside a
parallelised array job for batch processing on a high-perfor-
mance computing cluster with NVIDIA Tesla A30 GPUs.

The federal states were processed individually and the number
of GPUs used per state were chosen dependent on the number
of image chips per state. For each image, the model generated
segmentation masks using the SamAutomaticMaskGenerator.
These masks were then georeferenced using metadata extrac-
ted from the original DOP files.

The SAM segmentation masks comprise visually coherent ob-
jects inside and outside the photovoltaic footprints. To separ-
ate photovoltaic module row masks from irrelevant background
masks, several spectral and geometric properties were calcu-
lated. From the RGB and NIR reflectance bands, four com-
plementary spectral metrics, each tailored to highlight different
land-surface features were derived.
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Figure 2. Example of a GMPV park illustrating the terminology
used.

The Blue Normalized Difference Vegetation Index (BNDVI),
as defined by Wang et al. (2007) leverages the strong contrast
between chlorophyll absorption in the blue and high reflectance
in the NIR to highlight vegetation.

BNDV I =
NIR−Blue

NIR+Blue
(1)

To emphasise build-up and impervious surfaces the Visible to
NIR Reflectance Ratio (VNRR), was calculated by the ratio of
total visible to NIR reflectance:

V NRR =
Blue+Green+Red

NIR
(2)

Taking advantage of the fact that photovoltaic modules absorb
more strongly in the blue than in the red portion of the spec-
trum (Schinke et al., 2015), the Normalized Red Blue Differ-
ence (NRBD) was computed. It highlights pixels where red
reflectance exceeds blue reflectance, independent of overall vis-
ible band brightness.

NRBD =
Red−Blue

Red+Green+Blue
(3)

By first inverting red and green reflectance into a “darkness”
measure (256-digital number) and then calculating the geomet-
ric mean, areas of low illumination in these bands are emphas-
ised, effectively identifying regions of shadow. The Red Green
Geometric Mean is given by:

RGGM =
√

(256−Red)× (256−Green) (4)

For each segment, the median and standard deviation of the
pixel values and spectral metrics were calculated to summarize
their spectral characteristics. The calculation of the geometric
features for each polygon comprised the

• area,

• footprint overlap percentage,

• oriented bounding box area and

• its relative oriented bounding box area increase compared
to the original polygon area, as a proxy for rectangularity.

After a feature value exploration these geometric features to-
gether with selected median values of spectral features, were
used to filter out single unwanted outlier polygons. In addi-
tion, only the segmentation polygons with an intersection with
the photovoltaic footprints were kept. The cleaned-up polygon
set was then clustered based on the spectral features using the
DBSCAN algorithm (Ester et al., 1996).

After normalizing the spectral features, the maximum neigh-
bourhood distance ε of the resulting k-distance curve was auto-
matically detected using the KneeLocator implementation from
the kneed library (Satopaa et al., 2011). This was performed
on a photovoltaic footprint level using a neighbourhood size
of k = 5 polygons, which served as an input parameter for
the DBSCAN clustering. This local fitting and clustering ap-
proach was applied to minimise spectral heterogeneity and thus
the number of clusters. From the resulting clusters, noise cluster
and background clusters – characterized by very small polygon
areas or a high boundary touch ratio with other clusters – were
discarded, retaining only the clusters representing photovoltaic
module rows.

SAM sometimes struggled to detect all photovoltaic module
rows and to distinguish them from their shadows or other back-
ground elements. However, using multiple overlapping image
chips increased the number of times each pixel was segmented,
improving the chances of accurately capturing all module rows.
This redundancy allowed polygons containing shadows to be
filtered through a module row width outlier analysis, without
creating gaps in the rows of photovoltaic modules. The many
individual segment polygons from the overlapping image chip
were then merged into single module row polygons if they were
connected. This workflow was applied separately for each fed-
eral state, after which all identified module rows were aggreg-
ated to create a nationwide dataset for Germany. Finally, the
photovoltaic module row data product was enriched with ad-
ditional attributes, including width, length, area, rectangularity,
orientation, nearest neighbour distance and the DOP acquisition
date of each module row.

Based on the derived photovoltaic module row product the ref-
erence photovoltaic footprints dataset by Manske (2025) was
enriched with additional attributes, including row spacing stat-
istics of the photovoltaic module rows within each photovol-
taic footprint (median, minimum, maximum and standard de-
viation). Furthermore the dataset was complemented with the
corresponding DOP acquisition dates and the time difference in
days between the DOP date and the commissioning date.
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3.2 Evaluation of photovoltaic module rows

To assess the quality and completeness of the photovoltaic mod-
ule row product, a visual evaluation was performed. Therefore 
the extracted photovoltaic module rows were compared with 
the underlying DOP imagery for each photovoltaic footprint 
and an evaluation class was assigned based on visual interpret-
ation. The used evaluation classes are illustrated and described 
in Table 1.

Class Description Example

0

1 False Negative

2

3

True Positive
with > 90 %
of total photo-
voltaic module
row area in
footprint cor-
rect

pages for photovoltaic-related tag documentation. Once the ap-
propriate tags were identified, all corresponding polygons were
downloaded and merged into a single vector dataset for further
analysis. However, the initial dataset included not only the tar-
get photovoltaic parks, but also other polygon types, such as
rooftop photovoltaic systems, individual photovoltaic module
rows, and overlapping geometries that may represent photovol-
taic parks. Therefore, a filtering and refinement process was
required to ensure data quality and relevance. This process in-
volved removing duplicates and identifying suitable polygons
by overlapping OSM and photovoltaic footprint data. The final
photovoltaic park dataset consists of polygons that represent the
boundaries of GMPV parks. The following list shows the selec-
ted tags, with corresponding counts:

• plant:method=photovoltaic (1,957)

• plant:source=solar (301)

• generator:source=solar (4,196)

• plant:output:electricity=yes (17)

• power=generator (4)

• generator:method=photovoltaic (4)

The PV-GCR of each photovoltaic park was calculated by di-
viding the total area of its photovoltaic module rows, Amodules,
by the total area of the park, Apark.

3.4 Evaluation of photovoltaic parks

To determine the optimal polygon outlines, a visual compar-
ison was made between OSM polygons and DOP and footprint
data. A sample of 1 % of the photovoltaic footprints was ex-
tracted and manually evaluated. The following comparison was
made for two purposes. First, it was necessary to determine
if an OSM photovoltaic polygon existed for the footprint data.
Second, it was necessary to evaluate if the existing polygon
matched the outlines of the parks as visible in the DOP imagery.
The focus has been on the fences and hedges surrounding the
parks. The evaluation consists of the following classes:

• Yes: Corresponding OSM polygon that fits the outlines of
the park

• No: No OSM polygon at all

• Intersects: If a corresponding OSM polygon was available
but did not depict the outlines properly

4. Results

By employing the described approach (RQ1), three geospatial
data products for GMPV in Germany have been created and
made freely available on Zenodo (Albert et al., 2025):

1. Photovoltaic system footprints, including the GMPV sys-
tem footprints as defined by Manske (2025), enriched with
additional attributes like the evaluation class, DOP metain-
formation and statistics for the nearest neighbour distance

2. Photovoltaic module rows, comprising module rows de-
rived from the DOP, enriched with the spatial parameters
width, length, area, rectangularity, orientation and nearest
neighbour distance

Table 1. Evaluation classes.

3.3 Photovoltaic parks

In order to accurately calculate the ground coverage ratio of 
the photovoltaic modules (PV-GCR) of each park, it is crucial 
to obtain the park boundaries. For this purpose, the Overpass 
API and the OSMPythonTools library (Mocnik, n.d.) were used 
to download OSM data, since the boundaries of most parks 
are available as polygons in the database. Accessing relevant 
data required identifying suitable OSM tags, as the tags spe-
cify the data structure. Initial analysis revealed that relying 
on a single tag was inadequate, since several polygons were 
linked to a variety of tags. As a result, it was essential to ex-
amine all tags linked to “photovoltaic” for PV-GCR calcula-
tions. Identifying appropriate tags began with selecting repres-
entative OSM polygons using both the photovoltaic footprint 
data and the OSM basemap as references. Relevant tags were 
determined through manual inspection of individual OSM ob-
jects on the official OSM w ebsite1 and the corresponding wiki
1 https://www.openstreetmap.org

True Negative 
(DOP was 
recorded 
before the 
photovoltaic 
park was build

True Positive 
with < 90% of 
total 
photovoltaic 
module area in 
footprint 
correct (Missing 
photovoltaic 
module areas or 
incorrect 
objects)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-17-2025 | © Author(s) 2025. CC BY 4.0 License.

 
20



3. Photovoltaic parks, representing the park polygons derived
from OSM and the corresponding metadata per park, such
as PV-GCR

Utilizing this data, a descriptive analysis of the dataset’s char-
acteristics was performed to enhance understanding and con-
textualize the quality of the results regarding GMPV systems in
Germany. The key findings and insights are presented below.
It is important to note that, to minimise potential inaccuracies,
only parks with evaluation class 3 (5.550 parks in total) were
included in the examination.

4.1 Photovoltaic module rows

For the derived photovoltaic module rows product the module
row parameters width, length, orientation and row spacing were
calculated. Figure 3 and Figure 4 show the value distribution of
these parameters for all extracted module rows of high quality
in Germany. As the width, length and row spacing (calculated
as nearest neighbour distance) values had large outliers the fig-
ures show only the 95th percentile for these parameters.

It can be seen that the module rows have a relatively normal
distributed width with a median of 4.17 m. Their length, on the
other hand, is very heterogeneous with a median of 41.2 m.

Figure 3. Distribution of width and length of photovoltaic
module rows up to the 95th percentile.

The main axis orientation angle, defined as azimuth (0° cor-
responds to north, angle increases clockwise) indicates that the
majority of photovoltaic module rows are oriented in an east-
west direction, with a median orientation of 88°, resulting in
the modules predominantly facing south. Only a small propor-
tion of 5.0 % of the module rows have a north-south orientation
(< 30° or > 150°). The row spacing is relatively normally dis-
tributed around a median of 3.26 m.

Figure 5 illustrates the row spacing of newly commissioned
photovoltaic systems between the years 2000 and 2023. Due to
the prerequisites of being classified as evaluation class 3, having
a confirmed commissioning date, and the availability of median
row spacing data, this plot encompasses only 59.5 % of the total

Figure 4. Distribution of orientation and nearest neighbour
distance values, up to the 95th percentile (excluding orientation).

photovoltaic footprints. While installations in the first ten years
(2000–2009) show wider spacing with higher variability (me-
dian mean 4.85 m with a median range of 3.8 m), more recent
parks of the last 10 years (2014–2023) tend to have signific-
antly smaller and more consistent row spacing (median mean
2.57 m with a median range of 0.75 m). This trend proved to be
significant, with a decrease of 0.18 cm / year from 2003-2023
(p<0.001, R² = 0.081).

Figure 5. Box-plot of row spacing values for the commissioning
years between 2000 and 2023. The red line represents the annual
median nearest neighbour distance and the sample size (number

of photovoltaic footprints) is annotated above each box.

4.2 Photovoltaic parks

The histogram in Figure 6 displays the distribution of PV-GCR
across the evaluated photovoltaic parks. In total, for 4,605 parks
OSM-derived outlines were available. The PV-GCR distribu-
tion is unimodal and slightly right-skewed, with an interquartile
range spanning from 36.02 % to 51.07 %. The median PV-GCR
is 43.04 %.
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About 36.02 % of all photovoltaic parks fall below the first
quartile (25 %) PV-GCR threshold. This high proportion can
probably be attributed to undetected module rows in the im-
agery, leading to an underestimation of ground coverage and
introducing bias into the overall PV-GCR distribution.

Figure 6. Distribution of PV-GCR.

4.3 Evaluation results

The evaluation of the photovoltaic module rows for the photo-
voltaic footprint product resulted in the class distribution sum-
marised in Table 2. For 11.9 % of the photovoltaic footprints 
no module rows existed in the DOP, as the DOP was recorded 
before the photovoltaic park was built. Approximately 6.5 % of 
the footprints do not contain any module rows in the product, al-
though they were present in the imagery (false negatives). True 
positive classes 2 and 3 make up 18.5 % and 63.2 % of the 
total respectively, reflecting that the majority of the photovol-
taic modules were accurately extracted. Taking into account 
only the footprints, where module row extraction is possible 
with a current DOP (evaluation classes 1, 2 and 3), the pro-
portion of true positives is 92.7 %, with 71.7 % of these being 
class 3.

Class PV footprint count Share in percent
0 1044 11.89%

1 568 6.47%

2 1622 18.47%

3 5550 63.18%

SUM 8784 100%

The evaluation of the OSM sample shows that 75.6 % of poly-
gons (Yes) are suitable for depicting the park boundaries. For
3.9 % (Intersects) of polygons, the parks are incorrectly delin-
eated, but the polygons are still existent. For 20.5 % (No) of the
sample data no corresponding OSM polygon exists.

5. Discussion

The approach presented in this paper allows for extracting de-
tailed spatial parameters of GMPV systems through segment-
ation and classification applying SAM respectively DBSCAN

(RQ1). This resulted in a comprehensive dataset describing de-
tailed parameters, such as row spacing and the coverage ratio of
modules of GMPV parks in Germany (RQ2).

The evaluation of the described approach reveals that for 63 %
of the GMPV footprints a high-quality extraction of photovol-
taic rows was possible. However, the method could not fully
segment the rows of every GMPV park in Germany, which lim-
its its applicability for nationwide interpretations. For the pur-
poses of spatial analysis, only Evaluation Class 3 was used.
When deriving parameters related to GMPV parks as a first
approach, it is important to note that their interpretation is af-
fected by several factors, which will be discussed in the follow-
ing paragraphs. The generated PV-GCR and row spacing data
provide a valuable foundation for further analysis by offering
insight into the spatial configuration of photovoltaic parks. For
example, the decrease in row spacing suggests an increasing
emphasis on energy yield per hectare. This design shift likely
reflects economic optimisation strategies, where closer row spa-
cing enables higher installed capacity on limited land.

Further, the PV-GCR analysis suggests that the majority of parks
has a relatively low PV-GCR. However, this should be treated
with care because interpretations of the PV-GCR are probably
limited by the data products. First, the OSM-extracted park
polygons must be considered because they contain inconsisten-
cies.The user-generated polygons vary due to individual inter-
pretations of park boundaries. Further, as seen in the filtered
OSM dataset, there are cases where larger polygons visually
contain more than one GMPV park as well as cases where poly-
gons are smaller and do not match the boundaries of an GMPV
park. Second, another limitation involves the underlying method.
The data product lacks some photovoltaic rows, as SAM did not
detect each individual photovoltaic module row and did not pro-
cess some of the image chips. Additionally, the automatic fil-
tering process resulted in the exclusion of wider rows from the
product. This results in an incomplete representation of some
module areas in GMPV parks. These constraints affect the cal-
culation of the PV-GCR, as a lower module area decreases the
PV-GCR. In conclusion, the PV-GCR calculation can be used as
an orientation, but a thorough individual review is necessary to
make reliable statements on a park specific level. Furthermore,
it is important to emphasize that the PV-GCR only encompasses
the module covered area, whereas legally binding metrics, such
as the Grundflächenzahl in Germany, also include other struc-
tures in addition to the photovoltaic modules.

Although the results reveal interesting details, there are import-
ant limitations to discuss regarding the selection of data sources.
First, the photovoltaic footprints of Manske (2025) are not com-
plete. While the dataset is expected to demonstrate a high de-
gree of completeness due to its reliance on the MaStR, there are
a few instances where certain GMPV systems remain unrepres-
ented. Additionally the geometric accuracy of the outlines is
partially insufficient and the actuality is limited until 4 January
2024. This has implications for all derived products, as they
have been the foundational reference for segmenting and filter-
ing. Second, using DOP is essential due to its very high spatial
resolution of 0.2 m, which allows for an accurate delineation of
photovoltaic module rows and precise assessment of row spa-
cing. However, the temporal inhomogeneity of DOP imagery
available for Germany poses a considerable limitation. As the
most recent DOP available for this research dates back to 2023,
GMPV parks installed in 2024 are absent in the imagery. This
leads to 11.9 % of true negatives in our generated dataset. A the-
oretical workaround could be a prior photovoltaic footprints fil-

Table 2. Evaluation class distribution.
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tering based on the official commissioning date. This is imprac-
tical as many parks are frequently installed and appear in the
DOP imagery long before they are formally registered. Further-
more, as previously noted, the inconsistent acquisition dates of
the DOP imagery within Germany complicate a temporally har-
monised interpretation of the PV-GCR and the row spacing on a
national scale. Last, working with OSM data presents both op-
portunities and challenges. As an open platform it provides ac-
cess to extensive pre-labelled geospatial data on a global scale,
but it also presents difficulties related to data quality and con-
sistency, as the dataset is user-generated and may vary in ac-
curacy and reliability. In order to extract the required polygon
features, it was necessary to identify the relevant tags, as the tag
structure lacked consistency and enforced standards. For ex-
ample, some tags contained mixed polygons representing both
single photovoltaic modules as well as GMPV parks. Although
the OSM community is generally very responsive and effect-
ive at updating information about newly constructed installa-
tions, 2310 photovoltaic parks (26 % of the footprints avail-
able) are still missing in OSM, indicating a substantial under-
representation.

Besides the data sources that were used, the methodology also
faces some limiting factors. Due to the unavailability of train-
ing data on photovoltaic modules, SAM was applied for the
photovoltaic footprints as an unsupervised foundation model
for image segmentation. This dependence on the GMPV loc-
ation information is the main limitation for an independent reg-
ular repetition of the analysis. Combining this information with
DOP imagery forms a suitable data basis for implementing a
zero-shot approach with SAM, which tends to perform better
on high-resolution images (Osco et al., 2023). Promising res-
ults could be expected due to the availability of extensive hy-
perparameters. However, finding an appropriate configuration
that would generate optimal results across the diverse range of
photovoltaic systems was challenging. Even within a single
GMPV park, it was difficult to accurately identify individual
rows as different segments, often leading to under- and over-
segmentation of module rows, e.g. in the presence of shadows.
Ren et al. (2023) had similar findings, in which they found that
SAM has difficulties in recognising seemingly clearly defined
objects, such as photovoltaic modules. As a result, the process
of determining the optimal configurations to achieve the best
results, while keeping processing costs reasonable proved to be
more complex than initially anticipated. To increase the stabil-
ity of the segmentation results and to ensure an accurate rep-
resentation of each photovoltaic module row, overlapping im-
age chips were used. However, this approach required a large
amount of computational resources. Furthermore, due to the
presence of multiple objects within the parks, such as buildings
and transformer stations, it was not always feasible to isolate
only the rows of photovoltaic modules.

Thus, the generated dataset itself has some notable character-
istics. For instance, having a closer look at the polygons rep-
resenting the photovoltaic module rows reveals that the edges
are not entirely straight. Addressing this limitation by refin-
ing the polygon edges could improve the quality of the dataset.
For example the implementation of an edge enhancement ap-
proach such as the edge-enhanced SAM introduced by Chen et
al. (2025) is a potential solution for this problem. Another as-
pect is that there are cases in which multiple rows are merged
within a single polygon. As a result, this lack of clear de-
lineation sometimes impedes the accurate quantification of the
number of rows within a specific photovoltaic park.

One possible next step would be to integrate additional remote
sensing data sources, such as LiDAR data and derived elevation
models, as they would provide benefits in two main aspects. Ini-
tially the integration could improve the dataset by addressing
the issue of an incomplete segmentation of module rows and
improving the accuracy of polygon edges, as elevation models
could provide a more accurate delineation of objects. Another
advantage of incorporating elevation models is the potential to
identify additional photovoltaic-related features such as module
height, tilt and park-related elements such as fences. If the de-
tection of fences is feasible, this capability would enhance the
delineation of park areas and allow for the definition of more
precise park boundaries, independent of OSM data. To be com-
pletely independent from manually mapped data, the integra-
tion of an automated object detection model could be a solution.

6. Conclusion

The presented study supplements existing products for remote
sensing analyses of GMPV systems with an approach to identify
additional parameters such as row spacing and PV-GCR, ac-
companied by a descriptive analysis of the derived data. Addi-
tionally, the findings allow for potential applications that extend
beyond this immediate use case, as the results open numerous
possibilities for extension or further studies at various levels.

First, the methodological approach can be adapted and utilised
in other remote sensing applications that similarly lack training
data. In the context of the presented study, this could include
other components of GMPV systems, such as storage trans-
formers or biotope areas. However, this approach is not limited
to GMPV, as it is generally applicable.

Second, the employed technical approach is adaptable and can
be expanded for application in diverse geographical regions,
thereby enhancing its broader applicability as well as contribut-
ing to the development of a more comprehensive dataset.

Third, the dataset can be utilized for the derivation of additional
products. The creation of the dataset involved significant pro-
cessing steps and computational effort, resulting in a repres-
entation of the current state of knowledge. To facilitate future
updates efficiently, the next planned step involves using the cre-
ated dataset to train a model for the detection of module areas.
This approach will enable the regular and efficient collection of
system parameters, allowing for improved monitoring of devel-
opments.
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