
Real Time Co-editing of High Vertex Count Geometries Using OpenLayers and CRDTs - a

Performance Analysis

Hrvoje Matijević 1, Nikola Kranjčić 1, Vlado Cetl 1, Saša Vranić 2

1 Department of Geodesy and Geomatics, University North, Jurja Križanića 31b, Varaždin, Croatia - (hmatijevic, nkranjcic,

vcetl)@unin.hr
2 Geoweb - svranic@geoweb.hr

Keywords: Strong eventual consistency - SEC, Conflict-free replicated data types - CRDT, geospatial co-editing, Real time GIS,

performance under load.

Abstract

When manipulating high vertex count geometries, real-time collaborative editing of geospatial data presents significant performance

challenges. This paper investigates the performance of a CRDT (Conflict-free Replicated Data Type) based real-time geospatial co-

editor implemented in JavaScript using OpenLayers and Reference CRDTs. It extends previous work by evaluating system

responsiveness under increasing data complexity and concurrent user load. To this end, large polygons with 100K, 200K, and 300K

vertices were co-edited by up to 60 concurrent users across varying hardware platforms. Key performance bottlenecks were

identified in the GUI coupling and CRDT integration mechanisms. While the core CRDT mechanisms remained performant, GUI

limitations emerged as the primary constraint at higher vertex counts. A modified downstream processing approach was

implemented to mitigate the detected GUI limitations. The results suggest that, despite some GUI limitations, CRDT-based

architectures are viable for real-time co-editing of high vertex count geometries even under increased active user counts.

1. Introduction

Real-time GIS has become an essential tool in various domains,

including Volunteered Geographic Information (VGI) and

disaster management. One of the critical topics in real-time GIS

is concurrency control (Sun and Li 2016). In the geospatial

domain, concurrency has traditionally been controlled using

optimistic or pessimistic models (i.e. versioning and locking,

respectively). In the domain of distributed databases, a standard

consistency model, called strong consistency, ensures that a set

of distributed databases behave as if they were a single

database. However, enforcing strong consistency can introduce

bottlenecks and lags, and requires significant hardware

resources and time to implement.

To address these drawbacks, a more relaxed approach called

strong eventual consistency (SEC) (Gomes et al., 2017) has

been developed in the domain of real-time text co-editing.

Unlike strong consistency, SEC lets each site edit its local copy

of the data without any restrictions and replicate all the updates

to all other sites, which, upon reception, apply them on their

local data. Temporary local inconsistencies are allowed between

the participating sites, but it is guaranteed that, once all sites

have received the same set of updates, they will be in the same

state (i.e., they will converge).

It has recently been shown that SEC model i.e. its instantiation,

CRDT (Commutative Replicated Data Type) technology

(Shapiro et al., 2011) can also be used for the task of geospatial

co-editing. Within the research (Matijević et al., 2024), an

experimental real-time geospatial co-editor (source code

referenced in the original paper) has been developed and tested.

The implementation uses OpenLayers (OL) (OSGEO, 2007) on

the graphical user interface (GUI) and a small, not heavily

optimized but complete and correct JavaScript CRDT library

called Reference CRDTs (Gentle, 2023). The research showed

that, when applied to the co-editing of geospatial geometry in its

native form, standard CRDT conflict resolution mechanics

exhibit some issues. As an attempt to address these issues, the

authors developed an advanced operation generation technique

named “tentative operations”. This technique allows for the

operations to be generated over the most recent session-wide

state of the data, which in effect highly reduces concurrency and

provides a “geometry aware” conflict resolution.

Real-time co-editors generally aim to provide an excellent user

experience of the system, with correct handling of conflicts

being one of its important aspects. However, besides correct

handling of conflicts, the system also has to be responsive. The

responsiveness of real-time co-editors depends not only on the

efficiency of the underlying business logic but also on the

efficiency of the GUI itself. Especially in the case of geospatial

data manipulation, both the GUI and the business logic will be

additionally stressed by increasing the vertex count of

geometries being co-edited. Since within the original research

(Matijević et al., 2024) the tests were performed using polygons

with very low vertex count (several hundreds), it remained

unknown how a CRDT based geospatial co-editor would behave

when much larger geometries (e.g. hundreds of thousands of

vertices) are co-edited.

Within this research, we therefore investigate the impact that the

increase of vertex count has on the overall performance of the

system, which in turn can hinder responsiveness. We reused the

existing implementation from (Matijević et al., 2024) and

introduced some modifications to better address the efficiency

of execution of several key mechanisms as well as to achieve

the ability to time their execution. The source code of the

modified implementation and the data used for the experiments

is available on GitHub (Matijević et al., 2025). Instead of

focusing on the performance of CRDT mechanisms only, such

as in (Briot et al., 2016), we observed the behaviour of the

complete system. To stress the system, we created three

polygons with 100K, 200K and 300K vertexes and conducted

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-171-2025 | © Author(s) 2025. CC BY 4.0 License.

171

real co-editing sessions over those polygons with an increasing

number of concurrent participants (up to 60). During test

sessions, we timed the execution of the key mechanisms used in

the implementation.

Within this research, we are not interested in finding the fastest

possible CRDT implementation for geospatial co-editing but in

understanding the major performance considerations and

relative ratios between the major parts of such an

implementation. There exist both standard as well as novel,

hybrid CRDT-OT (operational transformation) libraries that are

significantly faster than Reference CRDTs (Gentle and

Kleppmann, 2025).

The structure of the remainder of the paper is as follows. In

section 2 we provide a light introduction to the main concepts of

CRDTs in general and define a general framework that the rest

of the paper builds upon. In section 3 we provide a more

specific elaboration of the key mechanisms that heavily

influence the overall performance of CRDT based co-editors.

Section 4 describes the setup and the actual testing performed

within the research. Section 5 discusses the test results and

section 6 concludes the paper.

2. Background and Setting the Stage

Following, a brief and high-level description of main CRDT

mechanics is given. Readers interested in mode theoretical

details are directed to the original paper (Matijević et al., 2024)

and the literature referenced there.

The primary concept with fixed-size identifier CRDTs is their

data structure’s view and model space. The view space is

always kept identical to the GUI’s resource. It does not contain

deleted elements so the position of an element in GUI’s

resource is always identical to its position in the CRDT’s data

structure view space. The model space contains deleted

elements (called tombstones). Consider a CRDT data structure

holding four points (P1-P4). Initially, the model and the view

are identical. When an update (e.g. P2 replaced by its new

version via a delete+insert) is done the model and the view are

no longer identical, with positions of points P3 and P4 in the

model and in the view being different (Figure 1).

Figure 1. Behaviour of CRDT model and view after integration

of an operation.

Keeping tombstones is needed to be able to consistently

integrate elements across sites. In various situations (explained

later) conversion of an element’s position between CRDT’s data

structure view and model space is needed.

Fixed size identifier based CRDTs integrate operations using

element’s left neighbour. Locally (on the site that created the

element), the new element is inserted into local CRDT data

structure based on its position in the view, directly. Then, its

immediate left neighbour’s id is stored into the element’s

metadata. When the element arrives on a remote site, first its

left neighbour is found by identifier in that site’s local data

structure. Then the remote element is positioned somewhere to

the right of its left element’s position, depending on whether

other elements with the identical left neighbour exist.

Typically, CRDT implementations are made of two distinct

phases. The so-called upstream phase generates CRDT

operations upon GUI edits and integrates the elements locally. It

must convert a position-based operation specification provided

by the GUI into identifier-based operation (a CRDT element).

This is done by view-to-model mapping. The upstream phase

doesn’t need to update the GUI since the operation is generated

following the edit executed on the GUI, which is already

rendered (Figure 2).

The so-called downstream phase integrates the received remote

operations. Unlike the upstream phase, the downstream phase

must update the GUI. To update the GUI, it must convert the

identifier-based operations back to position-based update

specification by model-to-view mapping or must do the full

model-to-view conversion to generate a completely new state of

the resource to be rendered on the GUI. This will depend on

how the coupling between the GUI and the underlying CRDT

mechanisms is implemented.

Figure 2. Upstream and downstream phases of CRDT based co-

editor.

The two phases can be observed in two different aspects. First

aspect is the process of detecting and preparing the GUI updates

to be submitted to the CRDT mechanism on the upstream phase.

Also, in the downstream phase, the results of the remote updates

must be prepared and rendered on the GUI. We call this GUI

coupling. The second aspect of the two phases is standard

CRDT integration mechanics.

Next, we analyse the performance hot spots of GUI coupling

and CRDT integration mechanisms. This is specifically done for

the Reference CRDTs although all the concepts should apply to

any list based CRDTs.

3. Performance “Hot Spots”

List based CRDT implementations typical have two

performance “hot spots”. If not carefully implemented, those

can result in an overall degradation of performance. We first

elaborate on the hot spots within the GUI coupling and then on

the hot spots in the actual CRDT integration algorithm.

3.1 Upstream GUI Coupling

General purpose GUIs typically do not use identifiers that could

be used to generate CRDT elements’ integration parameters

GUI modify

Generate CRDT

integration parameters

Broadcast op.

GUI re-render

Generate GUI update

parameters

Receive remote op.

DOWNSTREAM UPSTREAM

GUI coupling

CRDT integration CRDT Integrate

local op

 CRDT Integrate

remote op

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-171-2025 | © Author(s) 2025. CC BY 4.0 License.

172

directly. Thus, an implementation will typically need to take the

position-based specification of the GUI’s update (i.e. update’s

specification in the view) and then generate the identifier-based

CRDT data element’s integration parameters. This is done by

view-to-model conversion. In our specific case, OL generates

and exposes position-based update specification in its drag

segments, thus performing the first part of the upstream GUI

coupling process. Using this, and by executing the view-to-

model mapping the CRDT element’s integration parameters are

determined. Then, when the user completes the edit (by

finishing the dragging phase), the final position for the edit is

determined and the CRDT element can be finalized (its content

defined) (Figure 3).

Figure 3. Upstream GUI coupling.

There are two computationally heavy “hot spots” here. First is

determining the position-based operation specification. As said,

this is done by OL and exposed in its “drag segments”.

The second hot spot in the upstream GUI coupling, the view-to-

model conversion, is in Reference CRDTs done by simply

counting tombstones to the left of the element’s position in

view. This is an inefficient, brute force implementation. A

possible approach to address the inefficiency of view-to-model

implementation is to introduce an additional identifier index

(Briot et al., 2016).

3.2 Downstream GUI coupling

The downstream phase of the GUI coupling must, given a new

state of the CRDT data structure created by integrating a remote

element, generate the parameters for the GUI re-render. Since

identifiers stored within the CRDT element cannot be used for

this, identifier-based position will need to be converted back to

position based specification, hence requiring a round of model-

to-view conversion (Figure 4). The model-to-view conversion

filters out the tombstones in order to generate the “visible” state

of the resource, which is to be rendered on the GUI.

Figure 4. Downstream GUI coupling.

To do the model-to-view conversion, implementations that keep

CRDT elements in a linked list must traverse all elements by

references and materialize only non-tombstone ones. Different

to that, Reference CRDTs keep elements in an array, hence

already correctly ordered. Still, filtering out the tombstones does

take time.

The actual OL redraw is in our specific case executed by

replacing the entire current geometry with the new geometry for

each remote operation (using OL’s setGeometry method). As

we show later this easily gets inefficient.

3.3 CRDT Integration

During integrating local operations (i.e. in the upstream phase),

the view-to-model mapping (done within the GUI coupling

part), suffices to correctly position the local CRDT element on

its final position in the local CRDT data structure. Its

integration parameters (e.g. its left and possibly right

neighbour’s ids) are determined as its direct neighbours. No

searching is needed here. The new element then enters standard

integration algorithm execution which is identical for local and

remote elements. In the local case, since the local element’s

neighbours’ positions are already known, the integration

algorithm does not need to run the costly find-by-identifier

mechanism to find them. Hence, the performance of the

upstream phase depends almost exclusively on the performance

of the view-to-model conversion mechanism.

This is different in the downstream phase. When integrating a

remote CRDT element, the integration algorithm must first find

its original neighbours in the local data structure by identifiers.

Then, it might need to do multiple iterations before it finds the

correct position for the remote element to be inserted into.

During each iteration, additional find-by-identifier calls might

be needed.

To find an element by identifier in the CRDT data structure, a

brute force implementation can scan it sequentially from the

start until it finds it. This, given n elements in the data structure,

can in the worst-case result in O(n) time complexity. Since the

find-by-identifier mechanism sometimes needs to be called

multiple times per element being integrated, this is a suboptimal

situation. Each call to a brute force find-by-identifier

mechanism when the element is positioned towards the end of

the data structure will introduce overhead to the overall

performance.

Various speed-up techniques, including hash-tables (Lv et al.,

2019) with O(1) time complexity and balanced trees

(Nicolaescu et al., 2016) with O(log n) time complexity are used

to speed up the find-by-identifier mechanism. An alternative

technique, borrowed from the original YJS implementation

(Jahns 2016) is also used by Reference CRDTs. Each client

remembers the last position it inserted an element into, so when

a new element is to be inserted then first the neighbourhood of

the last inserted element is searched. Since often subsequent

operations occur near the previous one (with text but also with

geometry editing), this simple heuristic can cheaply (i.e. without

introducing additional data structures) reduce the find-by-

identifier performance overhead. Nevertheless, if a user moves

to a more distant part of the geometry, this approach will fail

and a brute force full scan will need to be done. In Reference to

CRDTs this technique is called range index so we reuse it here.

We upgraded the Reference CRDTs implementation to keep the

range index for each remote site separately.

The second part of the integration mechanism is the actual low-

level insertion of the new element into the data structure.

Linked list-based implementations will do it in O(1) time. When

inserting an element into an array, the array-based

implementation (as is Reference CRDTs) needs to shift all the

array elements to the right of the newly inserted position, which

OL: Re-render (setGeometry)

CRDT: Does model-to-view

CRDT: Integrates remote op

USER: Clicks on point to initiate edit

CRDT: Does view-to-model

USER: Releases pointer

CRDT: Completes local op definition

Pointer dragged

CRDT: Integrates local op

OL: Prepares drag segments for edit

→update's position based specification

determined

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-171-2025 | © Author(s) 2025. CC BY 4.0 License.

173

can be costly. Nevertheless, modern JavaScript engines exert

the ability to insert into arrays in near constant time.

Following the analysis from this subsection, we identified the

need to separately monitor the performance of CRDT

integration in the upstream and downstream phases. For

integrations in the downstream phase, besides the execution

time, we logged range index misses. Both integration times

(local and remote) include the time needed to insert the element

into the CRDT data structure (i.e. JavaScript array).

4. Tests

4.1 Test Setup

The original implementation uses an in-buffer for processing of

remote operations (downstream). Its original purpose was,

coupled with the tentative operation mechanism, to enable

delayed integration of remote operations that are received

during the period that the user is dragging. However, in the

original implementation, if a remote operation arrives while the

user is not dragging, it is integrated and GUI redrawn

immediately (orange downstream flow option on Figure 5).

During the original testing, such a setup presented no problems

since the target geometry had a low vertex count and GUI

redraws were very fast and not noticeable. Also, it was

considered that seeing in real-time what other users are doing on

the target geometry presented a benefit for user experience.

During preliminary testing within this research, we noticed that

with high vertex count geometries, OL takes a long time to

redraw while in “modify” state. This, in turn, made view

manipulation (panning and zooming) from laggy to virtually

impossible to do (depending on the vertex count and hardware

used). Therefore, we modified the implementation to enable

delayed integration and GUI redraw only after completing local

edits. We achieved this by reusing the existing tentative

operations mechanism. Now, instead of only buffering the

remote operations received during dragging, all remote

operations are buffered. All buffered remote operations are

integrated in a single burst after the user completes the local edit

(green downstream flow option on Figure 5). As a consequence,

OL redraw is only executed once for multiple remote

operations. Note that when OL is not in “modify” state, redraws

are done much faster and do not hinder view manipulation, so

we implemented the delay mechanism to only works when OL

is in “modify” mode.

Figure 5. System architecture with original (orange) and

modified (green) downstream processing flow.

For the purpose of testing, we used two different low-cost

desktop hardware platforms. The first, low-end (LE) platform

(with a 1164 single-core score in geekbench 6) was based on a

3.9 Ghz capable AMD Ryzen 2600 CPU, with 16 Gb of DDR4

ram and a Nvidia GT 740 GPU. The second, high-end (HE)

platform (with a 1875 single-core score in geekbench 6) was

based on an up to 4.2 Ghz capable AMD Ryzen 5500, with 16

Gb DDR4 ram and a Nvidia 1030 GPU. For reference, at the

time of writing of this paper the current top single-core

performing CPU was 5.8 Ghz capable Intel Core i9-13900KS

with a score of 3129 in single core performance (Geekbench

Browser 2025). Both platforms were running MS Windows 11

Pro 24H2. All the tests were done within Google Chrome

Version 136.0.7103.49 (Official Build) (64-bit).

We created three polygons using a small lake outline merged to

three different CORINE polygons made out of 100K (Figure 5),

200K and 300K points.

Figure 6. 100K test polygon with target area enlarged (orange

point is polygon origin).

Thus, the tester could always work on the identical polygon

(lake outline), disregarding its very large rest. We deliberately

merged the lake outline to CORINE polygons to create the

worst-case situation where the lake polygon was placed at the

very end of the large polygon (the coordinates for the polygon

are ordered in the clockwise direction). This means that each

range index miss resulted in full scanning of 100K, 200K and

300K arrays when running the find-by-identifier mechanism.

We ran six test editing sessions, three on each of the two

platforms. In each of the three sessions per platform the same

tester edited a 100K, 200K and 300K polygon.

To be able to simulate many active clients, we implemented a

simple automatic operation generation capability on the client.

Automatic operation generation can be configured to randomly

generate operations with varying parameters. The configurable

parameters are: target portion of the geometry, the number of

consecutive local operations on the current position, the delay

between two consecutive operations and the probability for

different operation type to be generated. The parameters were

setup as follows:

• Target geometry portion: last third of the geometry

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-171-2025 | © Author(s) 2025. CC BY 4.0 License.

174

• Nr. of ops on current position: 1-10

• Delay between generating two consecutive local ops:

1.5-3.5 seconds

• Operation type probabilities: insert 40%, update 40%,

delete 20%

Such a configuration forced the automatic clients to generate

operations within the last third of the geometry (the more

difficult part), to change position after at most 10 operations

generated (causing index misses) and to prefer inserts and

updates over deletes (as can in most cases be expected). We ran

automatic clients on two mid-range, high core-count computers.

The tests were done within a low-latency LAN.

Within each session the tester was asked to do the identical flow

of editing, in two phases (Figure 7). Both of the phases started

from the northeast corner where most of updating needs to be

done, followed by the regions where mostly inserts are needed.

Figure 7. Visualization of the two editing phases used during

test sessions.

The active automatic client load distributions across phases is

shown in Table 1:

Editing

phase

Duration

(sec)

Active

automatic

clients

Inactive 60 15

1 60 15

60 30

2 60 45

60 60

Table 1. Distribution of active clients over the session duration.

We measured various execution times using JavaScript’s

performance.now() method. First, before each of the target code

block a call to performance.now() method recorded current

time. Then, after target block completed computations, we again

call the method and calculate the difference between the two,

thus producing the specific code block’s execution time. Since

we expected ranges in tens of milliseconds, all execution times

were rounded to a tenth of millisecond.

4.2 Test Results

We first provide numbers of local operations that the tester

generated within each session, the numbers of session wide

operations generated by automatic clients and the numbers of

range index misses for each test session (Table 2).

Plat. Metric 100K 200K 300K

HE Local ops generated 119 101 92

Automatic remote ops

processed on test client

3950 3907 3984

Range index misses 794 748 757

LE Local ops executed 113 95 79

Automatic remote ops

processed on test client

3935 3917 3972

Range index misses 775 802 783

Table 2. Basic session parameters.

Within all six test session the test client and all the automatic

clients ended up with the identical state (a session wide

convergence achieved).

On the subjective user experience side, the tester reported

significant lags in OL snapping functionality in both 300K

session. However, in both 100K sessions, the tester reported no

noticeable lag in OL snapping. The 200K sessions exerted some

lag but such that it did not significantly reduce user experience.

The tester did not report any jitters or lags in view manipulation

even in the 300K sessions.

Next, we first elaborate on measured CRDT integration times

and follow up by GUI coupling times.

4.2.1 CRDT integration times

In the original implementation, non-concurrent local (upstream)

CRDT integrations did not need the service of range index since

no calls to find-by-identifier needed to be done. Such operations

are correctly positioned already after the view-to-model

conversion. In the changed environment with the tentative

operations mechanism having to execute virtually each time

(given a constant influx of remote operations), local integrations

heavily relied on range index. Indexed local CRDT integration

times remained constantly below 1ms for all six sessions.

Unindexed local integration times were at the level

approximately corresponding to that of unindexed remote

integrations. Nevertheless, since we configured the range index

to operate with a generously wide range (100) and since the

tester did not change the part of the geometry being edited

often, only an insignificant number of range index misses

occurred (3-5 per session).

Indexed remote integration times were also in all cases below

1ms. Unindexed remote integrations occurred more frequently

than local ones since automatic clients changed position more

often and as a rule moved to distant parts of the target geometry.

We calculated average execution times and standard deviations

(SD) needed for integrating unindexed remote operations using

the execution times achieved in inactive phase for each session

(Table 3).

Plat. Metric 100K 200K 300K

HE Average 1.1 1.9 2.5

SD 0.3 0.4 0.3

LE Average 1.3 2.3 3.5

SD 0.3 0.4 0.5

Table 3. Unindexed remote op execution times (ms).

As expected, the highest average unindexed remote integration

time of approximately 2ms (along with a significant standard

deviation of 3ms) was measured on LE platform at 300K

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-171-2025 | © Author(s) 2025. CC BY 4.0 License.

175

polygon. Note that all CRDT integration times include the time

needed to insert the actual element into the target JavaScript

array.

4.2.2 GUI coupling - upstream

We first look at the upstream phase of GUI coupling. The view-

to-model part of the upstream GUI coupling topped at around

3ms on LE platform at 300K polygon (Table 4).

Plat. Metric 100K 200K 300K

HE Average 0.6 1.1 1.5

SD 0.1 0.2 0.3

LE Average 0.8 1.9 2.6

SD 0.2 0.4 0.3

Table 4. View-to-model times (ms).

The reader is at this point reminded that, to do model-to-view

conversion, the operation’s position in view must be available.

As stated earlier, this is provided by OL. Besides providing

operation’s position in view, OL enables real-time tracking and

snapping of pointer in real-time. To provide all this, OL must

employ spatial indexing and performance optimized data

structures internally. Maintaining all this uses CPU resources,

hence with vertex heavy geometries it will cause a performance

penalty when such structures must be initiated or refreshed.

4.2.3 GUI coupling - downstream

Next, we look at the downstream phase of GUI coupling. Time

needed to integrate a single remote operation depends on the

operation type and whether range index hit or missed. However,

since operations are not executed immediately as they arrive on

site but in bursts, various combinations of operation types and

range index hit/miss rates per burst will result in different

execution times over operation counts. If the user works in a

slower pace or even pauses, number of operations to be

integrated in a burst will grow accordingly. Within the

experiment we asked the tester to work in his usual pace but

constantly and without pauses. Nevertheless, while

repositioning himself to a different editing location (e.g.

switching from phase 1 to phase 2) more operations will be

buffered.

The unsystematic behaviour of burst execution times over

session active automatic client loads is well demonstrated by the

varying burst execution times over a number of operations in a

burst for the entire active part of a session. The two examples,

for 300K polygon on both platforms are depicted by the two

graphs on Figures 8 and 9.

Figure 8. Burst execution times over number of ops per burst

for HE platform at 300K.

Figure 9. Burst execution times over number of ops per burst

for LE platform at 300K.

Given such an unpredictable configuration, instead of

calculating averages, to get the insight into the expectable

execution times we calculated 90th percentiles (exclusive, using

MS Excel’s percentile.exc) of execution times per burst for each

of the six test sessions and for each active automatic client load

(Figure 10).

Figure 10. 90th percentile of burst execution times per session

and per active clients load.

The data shows that at 100K both platforms stayed within the

25ms limit. The HE platform was able to hold below 50ms limit

up until the highest active client loads even at 300K. Even the

LE platform managed to stay below 50ms limit during complete

200K session, but crossed it in the 2nd half of 300K session.

In terms of the overall GUI redraw process, there are two

aspects to consider. First, CRDT implementation must prepare

the data to be drawn. Then GUI must do the actual redrawing.

The preparation of the data to be redrawn is done by model-to-

view conversion. As can be seen, at 300K both platforms

required 10 and more milliseconds to prepare the data for

redrawing (Table 5).

Plat. Metric 100K 200K 300K

HE Average 2.8 6.0 8.6

SD 0.7 0.9 1.6

LE Average 3.9 7.6 12.5

SD 1.0 1.2 4.3

Table 5. Model-to-view times (ms).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-171-2025 | © Author(s) 2025. CC BY 4.0 License.

176

We now look at the actual OL redrawing performance.

Redrawing when OL is not in “modify” state ranged from 5 to

10ms for 100K case and topped at almost 30ms for 300K case

(on LE platform) (Figure 11).

Figure 11. OL redraw times (“modify” state on and off).

While this could still be considered acceptable, redrawing when

OL is in “modify” state ranged in unacceptable 200-1000ms.

Given those ranges, the first part of the redraw process (model-

to-view conversion) can be considered irrelevant. As stated

earlier, the very high overall redraw times when OL is in

“modify” state was the primary reason we had to reconfigure

the system to execute remote operations in bursts, thus reducing

the number of OL redraws in “modify” state to an acceptable

level.

5. Discussion

In any human-computer interaction scenario, it is desirable to

keep the system response times (SRT) below a threshold that

would make the computer seem unresponsive to the user.

However, defining this threshold is not a straightforward task

and can vary based on the type of work, age of the user,

experience of the user to only name a few. Still, usually the

delay of below 100ms is generally accepted as an acceptable

threshold for responsiveness (Attig et al., 2017). We therefore

divide the 100ms into two equal parts, and consider that each of

the two engines (CRDT and GUI) has 50ms at its disposal.

The upstream phase is less interesting since CRDT part

executes very fast and based on the test results has a lot of

headroom to sustain geometries with even larger vertex counts.

Furthermore, it depends heavily on the OL performance which

we at this point cannot influence nor analyse.

In the downstream phase, HE platform exerted the ability to

keep its CRDT times below the 50ms limit in 90% of cases

(90th percentile) even at 300K polygon and 60 active session

participants. The LE platform broke the limit earlier and topped

at almost 100ms. Nevertheless, the important part to notice here

is that, since the buffered operations are executed after the user

completes his local edit, the performance penalty introduced by

executing a burst of remote operations is not noticeable. This

even holds in cases when the 50ms limit is heavily crossed

(such as we had at 300K on LE platform). This is because at

that point the user is focused on finding his next edit only

moving the screen pointer towards it.

In terms of OL downstream performance, redraw times when in

“modify” state are obviously a bottleneck in this particular case

and cannot be implemented in full real-time. Thus, this had to

be addressed by delaying redraws to the latest possible phase

and executing once per multiple remote integrations. Identical

as in the case of downstream CRDT integration, the lag

introduced by redrawing does not hinder the user experience

since it occurs only when the user has finished his local edit and

is focused on the next one.

A deeper dive into OL internal engines and avoiding the use of

setGeometry method could possibly fix real-time OL redraw

performance in “modify” state. Still, since OL is based on

JavaScript, possibly this could remain a hard limit.

Alternatively, different geospatial GUI libraries (e.g. written in

Rust and running in WASM) could provide better performance.

An investigation of benefits of RUST over JavaScript can be

found in (Wang et al., 2025) where CRDT technology is also

used for geospatial collaborative work.

6. Conclusion

Traditional concurrency control techniques (locking and

versioning) are, and most likely will prevail in the majority of

geospatial co-editing scenarios. However, in situations where an

uncontrollable number of co-editors need the ability to do ad-

hoc, rapid work, geospatial co-editors based on CRDT

technology offer several benefits. The system can be deployed

and made operational very quickly, on minimal central

hardware and the users will be able to do co-editing with no

constraints. This has already been shown by previous research.

However, CRDT based implementations do most or all of the

heavy processing on clients. This means that client business

logic needs to be able to provide the performance needed to

ensure acceptable GUI latency on the target hardware platform.

Within this research, we have shown that the overhead

introduced by the various aspects of CRDT technology, even

when running in JavaScript, on the clients based on moderately

capable hardware and in increased session participant ratios,

does not result in significant system performance degradation.

This even holds when the geometries being edited have high

vertex counts, with 300K vertexes tested in practice. By reusing

the tentative operations technique which delays the local

integration of multiple buffered remote operations until the user

completes his local edit, the negative effects of GUI lag are

reduced to minimum.

In this particular case, the main performance bottleneck was

found to be the GUI. This primarily relates to real-time

snapping and redrawing of the target geometry when GUI is in

the more demanding, “modify” state.

Although a production level implementation of a real-time web

GIS co-editor will use some highly optimized CRDT

framework and might want to modify the standard GUI to

achieve a tighter coupling, the results from this research do

provide some lessons learned and identify some of the hot spots

to be carefully addressed in such a case.

Acknowledgements

This research is supported by the scientific project UNIN-TEH-

25-1-7 Applications of Artificial Intelligence in Geomatics from

the University North, Croatia.

References

Attig, C., Rauh, N., Franke, T., & Krems, J. F., 2017. System

latency guidelines then and now–is zero latency really

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-171-2025 | © Author(s) 2025. CC BY 4.0 License.

177

considered necessary?. In Engineering Psychology and

Cognitive Ergonomics: Cognition and Design: 14th

International Conference, EPCE 2017, Held as Part of HCI

International 2017, Vancouver, BC, Canada, July 9-14, 2017,

Proceedings, Part II 14 (pp. 3-14). Springer International

Publishing.

Briot, L., Urso, P., & Shapiro, M., 2016. High responsiveness

for group editing crdts. In Proceedings of the 2016 ACM

International Conference on Supporting Group Work (pp. 51-

60).

Gentle, J., 2023. Reference Crdts.

https://github.com/josephg/reference-crdts (7 May 2025)

Gentle, J., Kleppmann, M., 2025. Collaborative Text Editing

with Eg-walker: Better, Faster, Smaller. In Proceedings of the

Twentieth European Conference on Computer Systems (pp.

311-328).

Geekbench Browser, 2025. Processor Benchmark Chart

https://browser.geekbench.com/processor-benchmarks (7 May

2025)

Gomes, V.B.F.; Kleppmann, M.; Mulligan, D.P.; Beresford,

A.R., 2017. Verifying strong eventual consistency in distributed

systems. Proc. ACM Program. Lang. 2017, 1, 1–28.

Jahns, K., 2016. YJS. https://github.com/yjs/yjs (7 May 2025)

Lv, X.; He, F.; Yan, X.; Wu, Y.; Cheng, Y., 2019. Integrating

selective undo of feature-based modeling operations for real-

time collab-orative CAD systems. Futur. Gener. Comput. Syst.

2019, 100, 473–497.

https://doi.org/10.1016/j.future.2019.05.021.

Matijević, H., Vranić, S., Kranjčić, N., Cetl, V., 2024. Real-

Time Co-Editing of Geographic Features. ISPRS International

Journal of Geo-Information 13, no. 12: 441.

https://doi.org/10.3390/ijgi13120441

Matijević, H., Kranjčić, N., Cetl, V., Vranić, S., 2025. Geo-

Coeditor

https://github.com/HrvojeMatijevic/Geo-

coeditor/tree/main/foss4g_mostar_2025

Nicolaescu, P.; Jahns, K.; Derntl, M.; Klamma, R., 2016. Near

Real-Time Peer-to-Peer Shared Editing on Extensible Data

Types. In Proceedings of the 2016 ACM International

Conference on Supporting Group Work, Sanibel Island, FL,

USA, 13–16 November 2016.

Shapiro, M.; Preguiça, N.M.; Baquero, C.; Zawirski, M., 2011.

Convergent and Commutative Replicated Data Types. Bull.

EATCS 2011, 104, 67–88.

Sun, Y., Li, S., 2016. Real-time collaborative GIS: A

technological review. ISPRS J. Photogramm. Remote Sens.

2016, 115, 143–152,

doi:https://doi.org/10.1016/j.isprsjprs.2015.09.011.

OSGEO, 2007. OpenLayers https://openlayers.org/ (7 May

2025)

Wang, B., Zhao, Q., Zeng, D., Yao, Y., Hu, C., Luo, N., 2025.

Design and Development of a Local-First Collaborative 3D

WebGIS Application for Mapping. ISPRS International Journal

of Geo-Information, 14(4), 166.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-171-2025 | © Author(s) 2025. CC BY 4.0 License.

178

