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Abstract 

 

When manipulating high vertex count geometries, real-time collaborative editing of geospatial data presents significant performance 

challenges. This paper investigates the performance of a CRDT (Conflict-free Replicated Data Type) based real-time geospatial co-

editor implemented in JavaScript using OpenLayers and Reference CRDTs. It extends previous work by evaluating system 

responsiveness under increasing data complexity and concurrent user load. To this end, large polygons with 100K, 200K, and 300K 

vertices were co-edited by up to 60 concurrent users across varying hardware platforms. Key performance bottlenecks were 

identified in the GUI coupling and CRDT integration mechanisms. While the core CRDT mechanisms remained performant, GUI 

limitations emerged as the primary constraint at higher vertex counts. A modified downstream processing approach was 

implemented to mitigate the detected GUI limitations. The results suggest that, despite some GUI limitations, CRDT-based 

architectures are viable for real-time co-editing of high vertex count geometries even under increased active user counts. 

 

 

1. Introduction 

Real-time GIS has become an essential tool in various domains, 

including Volunteered Geographic Information (VGI) and 

disaster management. One of the critical topics in real-time GIS 

is concurrency control (Sun and Li 2016). In the geospatial 

domain, concurrency has traditionally been controlled using 

optimistic or pessimistic models (i.e. versioning and locking, 

respectively). In the domain of distributed databases, a standard 

consistency model, called strong consistency, ensures that a set 

of distributed databases behave as if they were a single 

database. However, enforcing strong consistency can introduce 

bottlenecks and lags, and requires significant hardware 

resources and time to implement.  

 

To address these drawbacks, a more relaxed approach called 

strong eventual consistency (SEC) (Gomes et al., 2017) has 

been developed in the domain of real-time text co-editing. 

Unlike strong consistency, SEC lets each site edit its local copy 

of the data without any restrictions and replicate all the updates 

to all other sites, which, upon reception, apply them on their 

local data. Temporary local inconsistencies are allowed between 

the participating sites, but it is guaranteed that, once all sites 

have received the same set of updates, they will be in the same 

state (i.e., they will converge). 

 

It has recently been shown that SEC model i.e. its instantiation, 

CRDT (Commutative Replicated Data Type) technology 

(Shapiro et al., 2011) can also be used for the task of geospatial 

co-editing. Within the research (Matijević et al., 2024), an 

experimental real-time geospatial co-editor (source code 

referenced in the original paper) has been developed and tested. 

The implementation uses OpenLayers (OL) (OSGEO, 2007) on 

the graphical user interface (GUI) and a small, not heavily 

optimized but complete and correct JavaScript CRDT library 

called Reference CRDTs (Gentle, 2023). The research showed 

that, when applied to the co-editing of geospatial geometry in its 

native form, standard CRDT conflict resolution mechanics 

exhibit some issues. As an attempt to address these issues, the 

authors developed an advanced operation generation technique 

named “tentative operations”. This technique allows for the 

operations to be generated over the most recent session-wide 

state of the data, which in effect highly reduces concurrency and 

provides a “geometry aware” conflict resolution. 

 

Real-time co-editors generally aim to provide an excellent user 

experience of the system, with correct handling of conflicts 

being one of its important aspects. However, besides correct 

handling of conflicts, the system also has to be responsive. The 

responsiveness of real-time co-editors depends not only on the 

efficiency of the underlying business logic but also on the 

efficiency of the GUI itself. Especially in the case of geospatial 

data manipulation, both the GUI and the business logic will be 

additionally stressed by increasing the vertex count of 

geometries being co-edited. Since within the original research 

(Matijević et al., 2024) the tests were performed using polygons 

with very low vertex count (several hundreds), it remained 

unknown how a CRDT based geospatial co-editor would behave 

when much larger geometries (e.g. hundreds of thousands of 

vertices) are co-edited. 

 

Within this research, we therefore investigate the impact that the 

increase of vertex count has on the overall performance of the 

system, which in turn can hinder responsiveness. We reused the 

existing implementation from (Matijević et al., 2024) and 

introduced some modifications to better address the efficiency 

of execution of several key mechanisms as well as to achieve 

the ability to time their execution. The source code of the 

modified implementation and the data used for the experiments 

is available on GitHub (Matijević et al., 2025). Instead of 

focusing on the performance of CRDT mechanisms only, such 

as in (Briot et al., 2016), we observed the behaviour of the 

complete system. To stress the system, we created three 

polygons with 100K, 200K and 300K vertexes and conducted 
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real co-editing sessions over those polygons with an increasing 

number of concurrent participants (up to 60). During test 

sessions, we timed the execution of the key mechanisms used in 

the implementation. 

 

Within this research, we are not interested in finding the fastest 

possible CRDT implementation for geospatial co-editing but in 

understanding the major performance considerations and 

relative ratios between the major parts of such an 

implementation. There exist both standard as well as novel, 

hybrid CRDT-OT (operational transformation) libraries that are 

significantly faster than Reference CRDTs (Gentle and 

Kleppmann, 2025). 

 

The structure of the remainder of the paper is as follows. In 

section 2 we provide a light introduction to the main concepts of 

CRDTs in general and define a general framework that the rest 

of the paper builds upon. In section 3 we provide a more 

specific elaboration of the key mechanisms that heavily 

influence the overall performance of CRDT based co-editors. 

Section 4 describes the setup and the actual testing performed 

within the research. Section 5 discusses the test results and 

section 6 concludes the paper. 

 

 

2. Background and Setting the Stage 

Following, a brief and high-level description of main CRDT 

mechanics is given. Readers interested in mode theoretical 

details are directed to the original paper (Matijević et al., 2024) 

and the literature referenced there. 

 

The primary concept with fixed-size identifier CRDTs is their 

data structure’s view and model space. The view space is 

always kept identical to the GUI’s resource. It does not contain 

deleted elements so the position of an element in GUI’s 

resource is always identical to its position in the CRDT’s data 

structure view space. The model space contains deleted 

elements (called tombstones). Consider a CRDT data structure 

holding four points (P1-P4). Initially, the model and the view 

are identical. When an update (e.g. P2 replaced by its new 

version via a delete+insert) is done the model and the view are 

no longer identical, with positions of points P3 and P4 in the 

model and in the view being different (Figure 1). 

 

Figure 1. Behaviour of CRDT model and view after integration 

of an operation. 

Keeping tombstones is needed to be able to consistently 

integrate elements across sites. In various situations (explained 

later) conversion of an element’s position between CRDT’s data 

structure view and model space is needed. 

 

Fixed size identifier based CRDTs integrate operations using 

element’s left neighbour. Locally (on the site that created the 

element), the new element is inserted into local CRDT data 

structure based on its position in the view, directly. Then, its 

immediate left neighbour’s id is stored into the element’s 

metadata. When the element arrives on a remote site, first its 

left neighbour is found by identifier in that site’s local data 

structure. Then the remote element is positioned somewhere to 

the right of its left element’s position, depending on whether 

other elements with the identical left neighbour exist. 

 

Typically, CRDT implementations are made of two distinct 

phases. The so-called upstream phase generates CRDT 

operations upon GUI edits and integrates the elements locally. It 

must convert a position-based operation specification provided 

by the GUI into identifier-based operation (a CRDT element). 

This is done by view-to-model mapping. The upstream phase 

doesn’t need to update the GUI since the operation is generated 

following the edit executed on the GUI, which is already 

rendered (Figure 2). 

 

The so-called downstream phase integrates the received remote 

operations. Unlike the upstream phase, the downstream phase 

must update the GUI. To update the GUI, it must convert the 

identifier-based operations back to position-based update 

specification by model-to-view mapping or must do the full 

model-to-view conversion to generate a completely new state of 

the resource to be rendered on the GUI. This will depend on 

how the coupling between the GUI and the underlying CRDT 

mechanisms is implemented.  

 

Figure 2. Upstream and downstream phases of CRDT based co-

editor. 

The two phases can be observed in two different aspects. First 

aspect is the process of detecting and preparing the GUI updates 

to be submitted to the CRDT mechanism on the upstream phase. 

Also, in the downstream phase, the results of the remote updates 

must be prepared and rendered on the GUI. We call this GUI 

coupling. The second aspect of the two phases is standard 

CRDT integration mechanics. 

 

Next, we analyse the performance hot spots of GUI coupling 

and CRDT integration mechanisms. This is specifically done for 

the Reference CRDTs although all the concepts should apply to 

any list based CRDTs. 

 

3. Performance “Hot Spots” 

List based CRDT implementations typical have two 

performance “hot spots”. If not carefully implemented, those 

can result in an overall degradation of performance. We first 

elaborate on the hot spots within the GUI coupling and then on 

the hot spots in the actual CRDT integration algorithm. 

 

3.1 Upstream GUI Coupling  

General purpose GUIs typically do not use identifiers that could 

be used to generate CRDT elements’ integration parameters 

GUI modify 

Generate CRDT 

integration parameters 

Broadcast op.  

GUI re-render 

Generate GUI update 

parameters 

Receive remote op.  

DOWNSTREAM UPSTREAM 

GUI coupling 

CRDT integration CRDT Integrate 

local op 

 CRDT Integrate 

remote op 
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directly. Thus, an implementation will typically need to take the 

position-based specification of the GUI’s update (i.e. update’s 

specification in the view) and then generate the identifier-based 

CRDT data element’s integration parameters. This is done by 

view-to-model conversion. In our specific case, OL generates 

and exposes position-based update specification in its drag 

segments, thus performing the first part of the upstream GUI 

coupling process. Using this, and by executing the view-to-

model mapping the CRDT element’s integration parameters are 

determined. Then, when the user completes the edit (by 

finishing the dragging phase), the final position for the edit is 

determined and the CRDT element can be finalized (its content 

defined) (Figure 3). 

 

Figure 3. Upstream GUI coupling. 

There are two computationally heavy “hot spots” here. First is 

determining the position-based operation specification. As said, 

this is done by OL and exposed in its “drag segments”.  

 

The second hot spot in the upstream GUI coupling, the view-to-

model conversion, is in Reference CRDTs done by simply 

counting tombstones to the left of the element’s position in 

view. This is an inefficient, brute force implementation. A 

possible approach to address the inefficiency of view-to-model 

implementation is to introduce an additional identifier index 

(Briot et al., 2016). 

 

3.2 Downstream GUI coupling 

The downstream phase of the GUI coupling must, given a new 

state of the CRDT data structure created by integrating a remote 

element, generate the parameters for the GUI re-render. Since 

identifiers stored within the CRDT element cannot be used for 

this, identifier-based position will need to be converted back to 

position based specification, hence requiring a round of model-

to-view conversion (Figure 4). The model-to-view conversion 

filters out the tombstones in order to generate the “visible” state 

of the resource, which is to be rendered on the GUI.  

 

Figure 4. Downstream GUI coupling. 

To do the model-to-view conversion, implementations that keep 

CRDT elements in a linked list must traverse all elements by 

references and materialize only non-tombstone ones. Different 

to that, Reference CRDTs keep elements in an array, hence 

already correctly ordered. Still, filtering out the tombstones does 

take time. 

 

The actual OL redraw is in our specific case executed by 

replacing the entire current geometry with the new geometry for 

each remote operation (using OL’s setGeometry method). As 

we show later this easily gets inefficient. 

 

3.3 CRDT Integration  

During integrating local operations (i.e. in the upstream phase), 

the view-to-model mapping (done within the GUI coupling 

part), suffices to correctly position the local CRDT element on 

its final position in the local CRDT data structure. Its 

integration parameters (e.g. its left and possibly right 

neighbour’s ids) are determined as its direct neighbours. No 

searching is needed here. The new element then enters standard 

integration algorithm execution which is identical for local and 

remote elements. In the local case, since the local element’s 

neighbours’ positions are already known, the integration 

algorithm does not need to run the costly find-by-identifier 

mechanism to find them. Hence, the performance of the 

upstream phase depends almost exclusively on the performance 

of the view-to-model conversion mechanism. 

 

This is different in the downstream phase. When integrating a 

remote CRDT element, the integration algorithm must first find 

its original neighbours in the local data structure by identifiers. 

Then, it might need to do multiple iterations before it finds the 

correct position for the remote element to be inserted into. 

During each iteration, additional find-by-identifier calls might 

be needed. 

 

To find an element by identifier in the CRDT data structure, a 

brute force implementation can scan it sequentially from the 

start until it finds it. This, given n elements in the data structure, 

can in the worst-case result in O(n) time complexity. Since the 

find-by-identifier mechanism sometimes needs to be called 

multiple times per element being integrated, this is a suboptimal 

situation. Each call to a brute force find-by-identifier 

mechanism when the element is positioned towards the end of 

the data structure will introduce overhead to the overall 

performance. 

 

Various speed-up techniques, including hash-tables (Lv et al., 

2019) with O(1) time complexity and balanced trees 

(Nicolaescu et al., 2016) with O(log n) time complexity are used 

to speed up the find-by-identifier mechanism. An alternative 

technique, borrowed from the original YJS implementation 

(Jahns 2016) is also used by Reference CRDTs. Each client 

remembers the last position it inserted an element into, so when 

a new element is to be inserted then first the neighbourhood of 

the last inserted element is searched. Since often subsequent 

operations occur near the previous one (with text but also with 

geometry editing), this simple heuristic can cheaply (i.e. without 

introducing additional data structures) reduce the find-by-

identifier performance overhead. Nevertheless, if a user moves 

to a more distant part of the geometry, this approach will fail 

and a brute force full scan will need to be done. In Reference to 

CRDTs this technique is called range index so we reuse it here. 

We upgraded the Reference CRDTs implementation to keep the 

range index for each remote site separately. 

 

The second part of the integration mechanism is the actual low-

level insertion of the new element into the data structure. 

Linked list-based implementations will do it in O(1) time. When 

inserting an element into an array, the array-based 

implementation (as is Reference CRDTs) needs to shift all the 

array elements to the right of the newly inserted position, which 

OL: Re-render (setGeometry) 

CRDT: Does model-to-view  

CRDT: Integrates remote op  

 

USER: Clicks on point to initiate edit 

CRDT: Does view-to-model 

USER: Releases pointer 

CRDT: Completes local op definition  

Pointer dragged 

CRDT: Integrates local op  

 

OL: Prepares drag segments for edit  

→update's position based specification  

determined 
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can be costly. Nevertheless, modern JavaScript engines exert 

the ability to insert into arrays in near constant time. 

 

Following the analysis from this subsection, we identified the 

need to separately monitor the performance of CRDT 

integration in the upstream and downstream phases. For 

integrations in the downstream phase, besides the execution 

time, we logged range index misses. Both integration times 

(local and remote) include the time needed to insert the element 

into the CRDT data structure (i.e. JavaScript array). 

 

4. Tests 

4.1 Test Setup 

The original implementation uses an in-buffer for processing of 

remote operations (downstream). Its original purpose was, 

coupled with the tentative operation mechanism, to enable 

delayed integration of remote operations that are received 

during the period that the user is dragging. However, in the 

original implementation, if a remote operation arrives while the 

user is not dragging, it is integrated and GUI redrawn 

immediately (orange downstream flow option on Figure 5). 

During the original testing, such a setup presented no problems 

since the target geometry had a low vertex count and GUI 

redraws were very fast and not noticeable. Also, it was 

considered that seeing in real-time what other users are doing on 

the target geometry presented a benefit for user experience. 

 

During preliminary testing within this research, we noticed that 

with high vertex count geometries, OL takes a long time to 

redraw while in “modify” state. This, in turn, made view 

manipulation (panning and zooming) from laggy to virtually 

impossible to do (depending on the vertex count and hardware 

used). Therefore, we modified the implementation to enable 

delayed integration and GUI redraw only after completing local 

edits. We achieved this by reusing the existing tentative 

operations mechanism. Now, instead of only buffering the 

remote operations received during dragging, all remote 

operations are buffered. All buffered remote operations are 

integrated in a single burst after the user completes the local edit 

(green downstream flow option on Figure 5). As a consequence, 

OL redraw is only executed once for multiple remote 

operations. Note that when OL is not in “modify” state, redraws 

are done much faster and do not hinder view manipulation, so 

we implemented the delay mechanism to only works when OL 

is in “modify” mode. 

 

Figure 5. System architecture with original (orange) and 

modified (green) downstream processing flow. 

For the purpose of testing, we used two different low-cost 

desktop hardware platforms. The first, low-end (LE) platform 

(with a 1164 single-core score in geekbench 6) was based on a 

3.9 Ghz capable AMD Ryzen 2600 CPU, with 16 Gb of DDR4 

ram and a Nvidia GT 740 GPU. The second, high-end (HE) 

platform (with a 1875 single-core score in geekbench 6) was 

based on an up to 4.2 Ghz capable AMD Ryzen 5500, with 16 

Gb DDR4 ram and a Nvidia 1030 GPU. For reference, at the 

time of writing of this paper the current top single-core 

performing CPU was 5.8 Ghz capable Intel Core i9-13900KS 

with a score of 3129 in single core performance (Geekbench 

Browser 2025). Both platforms were running MS Windows 11 

Pro 24H2. All the tests were done within Google Chrome 

Version 136.0.7103.49 (Official Build) (64-bit). 

 

We created three polygons using a small lake outline merged to 

three different CORINE polygons made out of 100K (Figure 5), 

200K and 300K points.  

 

Figure 6. 100K test polygon with target area enlarged (orange 

point is polygon origin). 

Thus, the tester could always work on the identical polygon 

(lake outline), disregarding its very large rest. We deliberately 

merged the lake outline to CORINE polygons to create the 

worst-case situation where the lake polygon was placed at the 

very end of the large polygon (the coordinates for the polygon 

are ordered in the clockwise direction). This means that each 

range index miss resulted in full scanning of 100K, 200K and 

300K arrays when running the find-by-identifier mechanism. 

 

We ran six test editing sessions, three on each of the two 

platforms. In each of the three sessions per platform the same 

tester edited a 100K, 200K and 300K polygon.  

 

To be able to simulate many active clients, we implemented a 

simple automatic operation generation capability on the client. 

Automatic operation generation can be configured to randomly 

generate operations with varying parameters. The configurable 

parameters are: target portion of the geometry, the number of 

consecutive local operations on the current position, the delay 

between two consecutive operations and the probability for 

different operation type to be generated. The parameters were 

setup as follows: 

• Target geometry portion: last third of the geometry 
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• Nr. of ops on current position: 1-10 

• Delay between generating two consecutive local ops: 

1.5-3.5 seconds 

• Operation type probabilities: insert 40%, update 40%, 

delete 20% 

 

Such a configuration forced the automatic clients to generate 

operations within the last third of the geometry (the more 

difficult part), to change position after at most 10 operations 

generated (causing index misses) and to prefer inserts and 

updates over deletes (as can in most cases be expected). We ran 

automatic clients on two mid-range, high core-count computers. 

The tests were done within a low-latency LAN. 

 

Within each session the tester was asked to do the identical flow 

of editing, in two phases (Figure 7). Both of the phases started 

from the northeast corner where most of updating needs to be 

done, followed by the regions where mostly inserts are needed. 

 

Figure 7. Visualization of the two editing phases used during 

test sessions. 

The active automatic client load distributions across phases is 

shown in Table 1: 

 

Editing 

phase 

Duration 

(sec)  

Active 

automatic 

clients 

Inactive 60 15 

1 60 15 

60 30 

2 60 45 

60 60 

Table 1. Distribution of active clients over the session duration. 

We measured various execution times using JavaScript’s 

performance.now() method. First, before each of the target code 

block a call to performance.now() method recorded current 

time. Then, after target block completed computations, we again 

call the method and calculate the difference between the two, 

thus producing the specific code block’s execution time. Since 

we expected ranges in tens of milliseconds, all execution times 

were rounded to a tenth of millisecond. 

 

4.2 Test Results 

We first provide numbers of local operations that the tester 

generated within each session, the numbers of session wide 

operations generated by automatic clients and the numbers of 

range index misses for each test session (Table 2). 

 

 

 

Plat. Metric 100K 200K 300K 

HE Local ops generated 119 101 92 

Automatic remote ops 

processed on test client 

3950 3907 3984 

Range index misses 794 748 757 

LE Local ops executed 113 95 79 

Automatic remote ops 

processed on test client 

3935 3917 3972 

Range index misses 775 802 783 

Table 2. Basic session parameters. 

Within all six test session the test client and all the automatic 

clients ended up with the identical state (a session wide 

convergence achieved).  

 

On the subjective user experience side, the tester reported 

significant lags in OL snapping functionality in both 300K 

session. However, in both 100K sessions, the tester reported no 

noticeable lag in OL snapping. The 200K sessions exerted some 

lag but such that it did not significantly reduce user experience. 

The tester did not report any jitters or lags in view manipulation 

even in the 300K sessions. 

 

Next, we first elaborate on measured CRDT integration times 

and follow up by GUI coupling times. 

 

4.2.1 CRDT integration times 

In the original implementation, non-concurrent local (upstream) 

CRDT integrations did not need the service of range index since 

no calls to find-by-identifier needed to be done. Such operations 

are correctly positioned already after the view-to-model 

conversion. In the changed environment with the tentative 

operations mechanism having to execute virtually each time 

(given a constant influx of remote operations), local integrations 

heavily relied on range index. Indexed local CRDT integration 

times remained constantly below 1ms for all six sessions.  

Unindexed local integration times were at the level 

approximately corresponding to that of unindexed remote 

integrations. Nevertheless, since we configured the range index 

to operate with a generously wide range (100) and since the 

tester did not change the part of the geometry being edited 

often, only an insignificant number of range index misses 

occurred (3-5 per session). 

 

Indexed remote integration times were also in all cases below 

1ms. Unindexed remote integrations occurred more frequently 

than local ones since automatic clients changed position more 

often and as a rule moved to distant parts of the target geometry. 

We calculated average execution times and standard deviations 

(SD) needed for integrating unindexed remote operations using 

the execution times achieved in inactive phase for each session 

(Table 3). 

 

Plat. Metric 100K 200K 300K 

HE Average 1.1 1.9 2.5 

SD 0.3 0.4 0.3 

LE Average 1.3 2.3 3.5 

SD 0.3 0.4 0.5 

Table 3. Unindexed remote op execution times (ms). 

As expected, the highest average unindexed remote integration 

time of approximately 2ms (along with a significant standard 

deviation of 3ms) was measured on LE platform at 300K 
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polygon. Note that all CRDT integration times include the time 

needed to insert the actual element into the target JavaScript 

array. 

 

4.2.2 GUI coupling - upstream 

We first look at the upstream phase of GUI coupling. The view-

to-model part of the upstream GUI coupling topped at around 

3ms on LE platform at 300K polygon (Table 4). 

 

Plat. Metric 100K 200K 300K 

HE Average 0.6 1.1 1.5 

SD 0.1 0.2 0.3 

LE Average 0.8 1.9 2.6 

SD  0.2 0.4 0.3 

Table 4. View-to-model times (ms). 

The reader is at this point reminded that, to do model-to-view 

conversion, the operation’s position in view must be available. 

As stated earlier, this is provided by OL. Besides providing 

operation’s position in view, OL enables real-time tracking and 

snapping of pointer in real-time. To provide all this, OL must 

employ spatial indexing and performance optimized data 

structures internally. Maintaining all this uses CPU resources, 

hence with vertex heavy geometries it will cause a performance 

penalty when such structures must be initiated or refreshed. 

 

4.2.3 GUI coupling - downstream 

Next, we look at the downstream phase of GUI coupling. Time 

needed to integrate a single remote operation depends on the 

operation type and whether range index hit or missed. However, 

since operations are not executed immediately as they arrive on 

site but in bursts, various combinations of operation types and 

range index hit/miss rates per burst will result in different 

execution times over operation counts. If the user works in a 

slower pace or even pauses, number of operations to be 

integrated in a burst will grow accordingly. Within the 

experiment we asked the tester to work in his usual pace but 

constantly and without pauses. Nevertheless, while 

repositioning himself to a different editing location (e.g. 

switching from phase 1 to phase 2) more operations will be 

buffered. 

 

The unsystematic behaviour of burst execution times over 

session active automatic client loads is well demonstrated by the 

varying burst execution times over a number of operations in a 

burst for the entire active part of a session. The two examples, 

for 300K polygon on both platforms are depicted by the two 

graphs on Figures 8 and 9. 

 
Figure 8. Burst execution times over number of ops per burst 

for HE platform at 300K. 

 

Figure 9. Burst execution times over number of ops per burst 

for LE platform at 300K. 

Given such an unpredictable configuration, instead of 

calculating averages, to get the insight into the expectable 

execution times we calculated 90th percentiles (exclusive, using 

MS Excel’s percentile.exc) of execution times per burst for each 

of the six test sessions and for each active automatic client load 

(Figure 10). 

 

Figure 10. 90th percentile of burst execution times per session 

and per active clients load. 

The data shows that at 100K both platforms stayed within the 

25ms limit. The HE platform was able to hold below 50ms limit 

up until the highest active client loads even at 300K. Even the 

LE platform managed to stay below 50ms limit during complete 

200K session, but crossed it in the 2nd half of 300K session. 

 

In terms of the overall GUI redraw process, there are two 

aspects to consider. First, CRDT implementation must prepare 

the data to be drawn. Then GUI must do the actual redrawing. 

The preparation of the data to be redrawn is done by model-to-

view conversion. As can be seen, at 300K both platforms 

required 10 and more milliseconds to prepare the data for 

redrawing (Table 5). 

 

Plat. Metric 100K 200K 300K 

HE Average 2.8 6.0 8.6 

SD 0.7 0.9 1.6 

LE Average 3.9 7.6 12.5 

SD 1.0 1.2 4.3 

Table 5. Model-to-view times (ms). 
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We now look at the actual OL redrawing performance. 

Redrawing when OL is not in “modify” state ranged from 5 to 

10ms for 100K case and topped at almost 30ms for 300K case 

(on LE platform) (Figure 11). 

 

Figure 11. OL redraw times (“modify” state on and off). 

While this could still be considered acceptable, redrawing when 

OL is in “modify” state ranged in unacceptable 200-1000ms. 

Given those ranges, the first part of the redraw process (model-

to-view conversion) can be considered irrelevant. As stated 

earlier, the very high overall redraw times when OL is in 

“modify” state was the primary reason we had to reconfigure 

the system to execute remote operations in bursts, thus reducing 

the number of OL redraws in “modify” state to an acceptable 

level.  

 

5. Discussion 

In any human-computer interaction scenario, it is desirable to 

keep the system response times (SRT) below a threshold that 

would make the computer seem unresponsive to the user. 

However, defining this threshold is not a straightforward task 

and can vary based on the type of work, age of the user, 

experience of the user to only name a few. Still, usually the 

delay of below 100ms is generally accepted as an acceptable 

threshold for responsiveness (Attig et al., 2017). We therefore 

divide the 100ms into two equal parts, and consider that each of 

the two engines (CRDT and GUI) has 50ms at its disposal.  

 

The upstream phase is less interesting since CRDT part 

executes very fast and based on the test results has a lot of 

headroom to sustain geometries with even larger vertex counts. 

Furthermore, it depends heavily on the OL performance which 

we at this point cannot influence nor analyse. 

 

In the downstream phase, HE platform exerted the ability to 

keep its CRDT times below the 50ms limit in 90% of cases 

(90th percentile) even at 300K polygon and 60 active session 

participants. The LE platform broke the limit earlier and topped 

at almost 100ms. Nevertheless, the important part to notice here 

is that, since the buffered operations are executed after the user 

completes his local edit, the performance penalty introduced by 

executing a burst of remote operations is not noticeable. This 

even holds in cases when the 50ms limit is heavily crossed 

(such as we had at 300K on LE platform). This is because at 

that point the user is focused on finding his next edit only 

moving the screen pointer towards it. 

 

In terms of OL downstream performance, redraw times when in 

“modify” state are obviously a bottleneck in this particular case 

and cannot be implemented in full real-time. Thus, this had to 

be addressed by delaying redraws to the latest possible phase 

and executing once per multiple remote integrations. Identical 

as in the case of downstream CRDT integration, the lag 

introduced by redrawing does not hinder the user experience 

since it occurs only when the user has finished his local edit and 

is focused on the next one. 

 

A deeper dive into OL internal engines and avoiding the use of 

setGeometry method could possibly fix real-time OL redraw 

performance in “modify” state. Still, since OL is based on 

JavaScript, possibly this could remain a hard limit. 

Alternatively, different geospatial GUI libraries (e.g. written in 

Rust and running in WASM) could provide better performance. 

An investigation of benefits of RUST over JavaScript can be 

found in (Wang et al., 2025) where CRDT technology is also 

used for geospatial collaborative work. 

 

6. Conclusion 

Traditional concurrency control techniques (locking and 

versioning) are, and most likely will prevail in the majority of 

geospatial co-editing scenarios. However, in situations where an 

uncontrollable number of co-editors need the ability to do ad-

hoc, rapid work, geospatial co-editors based on CRDT 

technology offer several benefits. The system can be deployed 

and made operational very quickly, on minimal central 

hardware and the users will be able to do co-editing with no 

constraints. This has already been shown by previous research. 

However, CRDT based implementations do most or all of the 

heavy processing on clients. This means that client business 

logic needs to be able to provide the performance needed to 

ensure acceptable GUI latency on the target hardware platform. 

 

Within this research, we have shown that the overhead 

introduced by the various aspects of CRDT technology, even 

when running in JavaScript, on the clients based on moderately 

capable hardware and in increased session participant ratios, 

does not result in significant system performance degradation. 

This even holds when the geometries being edited have high 

vertex counts, with 300K vertexes tested in practice. By reusing 

the tentative operations technique which delays the local 

integration of multiple buffered remote operations until the user 

completes his local edit, the negative effects of GUI lag are 

reduced to minimum. 

 

In this particular case, the main performance bottleneck was 

found to be the GUI. This primarily relates to real-time 

snapping and redrawing of the target geometry when GUI is in 

the more demanding, “modify” state.  

 

Although a production level implementation of a real-time web 

GIS co-editor will use some highly optimized CRDT 

framework and might want to modify the standard GUI to 

achieve a tighter coupling, the results from this research do 

provide some lessons learned and identify some of the hot spots 

to be carefully addressed in such a case. 
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