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Abstract

Wind speed and direction are spatial variables that vary over both time and space. These variables are crucial for urban and spatial
planning, agriculture and crop management, sports activity planning, aerial navigation, air pollution modeling and fire management.
This paper investigates the effectiveness of several interpolation methods for predicting wind speed and direction at unknown loca-
tions, using measurements from a network of weather stations. Four well-established methods were considered: Natural Neighbor,
Inverse Distance Weighting (IDW), Kriging, and Ordinary Kriging.
Data were collected from 28 weather stations distributed across Split and Dalmatia County. In two experiments, the four unknown
stations were chosen to represent: 1) a station spatially surrounded by known measurements, and 2) stations representing typical
geographical challenges, such as land, coast, canyon, and island locations. For each experiment, scenario, and interpolation method,
we calculated and analyzed the Root Mean Squared Error (RMSE), Mean Absolute Error in the u-direction (MAE u), and Mean
Absolute Error in the v-direction (MAE v). The analysis revealed that the highest errors occurred during Bora wind conditions.
Among the methods, Ordinary Kriging demonstrated the lowest prediction error.

1. Introduction

Having timely and accurate wind spatial distribution is impor-
tant in many applications, such as wind energy generation, ur-
ban planing and environmental monitoring. Wind is a natural
movement of air caused by variations in air pressure due to the
uneven heating of the Earth. Wind is usually measured using
anemometers taken at a height of 10 meters above the ground
to standardize data collection and described with wind speed
and wind direction. However, wind measurements typically
reflect the wind conditions at the specific location where they
are taken, but they may not accurately represent the wind in
surrounding areas. Thus methods for spatial interpolation and
flow modeling are utilized for predicting wind parameters in
the surrounding areas. Accurately determining of wind speed
and direction is challenging due to the limited availability of
measured data, which is typically collected at specific locations
such as airports, meteorological institutes, and dedicated moni-
toring stations. However, the need for precise wind data extends
beyond these locations, particularly in remote areas where such
measurements are crucial for various applications. Performance
and accuracy of spacial interpolation methods used for wind
speed and direction estimation is often limited by the number
and distribution of known measurement. With advancements
in technology, high-quality weather stations have become more
affordable, enabling widespread deployment by individuals and
organizations. Companies providing weather stations also con-
tribute to open-access meteorological databases, offering real-
time and historical wind data. In general , access to larger num-
ber of wind measurement increases the accuracy but also in-
creases the price of installation and maintenance. Placement
of these weather stations plays the crucial role in determining
the wind over the entire region. Due to topographic features,
uneven or sparse distributions can lead to significant errors and
interpolation accuracy can be exacerbated by the topographical
features of the study area.

Moreover, it is essential to assess the variability of interpolation
accuracy across different conditions, including seasonal varia-
tions, wind types, and times of the day. Understanding these
factors helps determine the extent of interpolation errors and
whether certain scenarios yield more precise results.

This paper describes the methodology and results of systematic
evaluation of four main spatial interpolation methods - Krig-
ing, Ordinary Kriging, Inverse Distance Weighting (IDW), and
Natural Neighbors for wind speed and direction estimation on
a study area of Split and Dalmatia County . We utilize ground
truth data from weather stations available via Weather Under-
ground (Weather Underground, n.d.), focusing on the Split-
Dalmatian County, a region characterized by diverse terrain,
including islands, coastal areas, urban environments, canyons,
and remote countryside. By analyzing wind data from various
landscapes, we aim to evaluate the effectiveness of interpolation
methods in different geographic contexts and determine the as-
sociated error margins when comparing interpolated values to
known ground truth measurements.

2. Related Work

Due to sparse distribution of official weather stations worldwide
and inability to access the wind data at specific location, many
applications employ some kind of spatial interpolation meth-
ods. Wind speed and direction interpolation is a crucial task
in meteorology, wildfire spread modeling, renewable energy
planning, and environmental modeling. Several studies have
explored different interpolation techniques and their effective-
ness in estimating wind parameters across diverse geographic
regions. Wind Interpolation is a process used to estimate wind
speed and direction at locations where no direct measurements
are available. The most commonly used techniques include:

• Kriging and Ordinary Kriging – Kriging methods are
geostatistical interpolation techniques that consider both
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spatial autocorrelation and measurement location dis-
tances (Keskin and Ozdogu, 2011). Ordinary Kriging
(OK) is frequently applied for wind field estimation due
to its ability to provide unbiased predictions with minimal
variance (Nynke Hofstra, 2008).

• Inverse Distance Weighting (IDW) – IDW assumes that
nearby points have more influence on the interpolated val-
ues than distant points (Keskin and Ozdogu, 2011). While
computationally efficient, IDW can struggle in areas with
complex wind dynamics.

• Natural Neighbor Interpolation – This method provides
smooth and continuous surface estimation while preserv-
ing the integrity of known values (Nynke Hofstra, 2008).
However, its performance depends on data density.

• Spline Interpolation – Spline methods create a smooth
surface by fitting piecewise polynomials between known
data points (Pratik Nag, 2023). They are useful for captur-
ing gradual wind variations but may introduce unrealistic
oscillations in sparse datasets.

• Machine Learning and Hybrid Methods – Recent stud-
ies have introduced hybrid approaches, such as combining
Kriging with neural networks or deep learning techniques
like Bivariate DeepKriging (Pratik Nag, 2023), which im-
prove prediction accuracy in complex terrains.

Despite advancements in interpolation techniques, accurately
predicting wind speed and direction remains a significant chal-
lenge. One of the primary difficulties stems from data sparsity,
as wind measurement stations are often unevenly distributed,
leading to large gaps in spatial data. This issue is particularly
pronounced in remote regions such as islands and mountain-
ous areas (Keskin and Ozdogu, 2011). Additionally, anisotropy
in wind fields poses another major challenge, as wind patterns
exhibit strong directional dependence influenced by geograph-
ical features like coastlines, mountain ranges, and urban struc-
tures. Traditional interpolation methods often struggle to cap-
ture these complexities (Nynke Hofstra, 2008). Furthermore,
the inherent temporal variability of wind characteristics com-
plicates interpolation efforts, as wind conditions can change
rapidly over time, making static datasets insufficient for precise
predictions (Pratik Nag, 2023).

Beyond these primary concerns, several secondary challenges
further impact the accuracy of wind interpolation. Computa-
tional complexity is a notable issue, as advanced methods such
as Kriging and machine learning-based interpolation demand
substantial computational resources, especially when working
with large datasets (Pratik Nag, 2023). Moreover, error propa-
gation from measurement inaccuracies in weather stations can
degrade the reliability of interpolation models (Nynke Hofs-
tra, 2008). Finally, seasonal and diurnal variability introduces
additional uncertainty, as interpolation performance may fluc-
tuate depending on seasonal cycles, time of day, and specific
wind regimes. This is particularly relevant in regions like Split-
Dalmatia, where characteristic winds such as Bura, Jugo, and
Maestral exhibit distinct behaviors (Nynke Hofstra, 2008).

While these challenges have been widely recognized in the lit-
erature, there has been limited research on the performance of
interpolation algorithms in complex and large-scale environ-
ments. This paper seeks to answer the research question: How

does the accuracy of major interpolation methods vary with dif-
ferent placements of test locations?. Our approach involves a
systematic evaluation of interpolation algorithms using a net-
work of weather stations as ground truth data. By varying wind
type, season, and time of day, we assess how these factors influ-
ence interpolation accuracy. The results are obtained by com-
paring interpolation errors against measured data at designated
test locations, providing valuable insights into the reliability of
different methods under diverse conditions.

3. Materials and Methods

3.1 Study Area

The study area selected for this research is Split-Dalmatia
County, a diverse region in southern Croatia that encompasses
coastal zones, islands, urban centers, and inland mountainous
areas. Due to its complex geography and dynamic meteorolog-
ical conditions, this region presents a unique challenge for wind
speed and direction interpolation. The presence of the Adriatic
Sea, coupled with rugged terrain, creates highly variable wind
patterns influenced by both large-scale atmospheric processes
and local topographic effects.

Split-Dalmatia County, figure 1 spans approximately 4,524
km², making it the largest county in Croatia by land area. It
includes key cities such as Split, Trogir, Makarska, and Sinj,
along with numerous islands (Brač, Hvar, Vis, Šolta, and oth-
ers). The region’s climate is predominantly Mediterranean
along the coast, characterized by mild winters and hot, dry sum-
mers, whereas the inland areas exhibit a more continental cli-
mate, with colder winters and higher annual precipitation.

Figure 1. Geographical Location of the Study Area.

These wind systems exhibit significant seasonal and diurnal
variations, making accurate interpolation of wind speed and di-
rection highly dependent on local geography and measurement
density.

The topography of Split-Dalmatia County plays a crucial role
in wind flow dynamics. The presence of mountain ranges
(Biokovo, Mosor, Dinara), deep valleys, and numerous islands
creates microclimates that influence wind variability. Oro-
graphic effects such as valley channeling, mountain waves, and
coastal breezes introduce additional complexity to wind inter-
polation.

Coastal areas, particularly near Split and Makarska, experi-
ence strong sea-land breeze circulations, while mountainous
and inland areas exhibit gap winds and downslope accelera-
tions. These factors make standard interpolation methods, such
as Kriging and IDW, prone to inaccuracies if terrain effects are
not adequately accounted for.
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3.1.1 Data Collection and Meteorological Stations To an-
alyze wind interpolation accuracy, this study utilizes ground
truth data from meteorological stations distributed across Split-
Dalmatia County. Weather Underground (WU) Network
(Weather Underground, n.d.)– A publicly accessible network of
personal and official weather stations providing real-time and
historical wind data.

The station density varies significantly across the county, with
higher concentrations in urban areas and along the coastline,
while rural inland areas suffer from lower observational cover-
age. This non-uniform distribution poses challenges for wind
interpolation, as interpolation accuracy is highly sensitive to
station density and spatial arrangement. All maps and spatial
data in this study are represented using the WGS 84 coordinate
system (EPSG:4326).

3.2 Data Collection

This study utilizes publicly available meteorological data from
the Weather Underground network, focusing on weather sta-
tions distributed across Split-Dalmatia County. There are ap-
proximately 52 weather stations in this region, with a denser
concentration near the coastline and urban centers, while inland
and rural areas exhibit a lower station density.

To ensure temporal representativeness, historical weather data
was collected over a one-year period, spanning nine randomly
selected days per month. Given that most weather stations log
data at five-minute intervals, this results in 288 daily records
per station. With data aggregated from 52 stations, the dataset
comprises approximately 1.5 million wind records per year.

Raw data collected from individual stations is initially unsorted
and thus requires preprocessing before it can be used for wind
interpolation analysis. The primary challenge is ensuring that
data from all stations is synchronized to represent the same
timestamps, as interpolating wind speed and direction across
the region is only meaningful if measurements are taken at the
same moment.

To address this, the dataset is first grouped by timestamp.
Given that some weather stations report data at different inter-
vals (e.g., 5-minute, 15-minute, or 30-minute intervals), times-
tamps with insufficient station coverage are discarded. Specif-
ically, timestamps where fewer than 30 stations report data are
excluded to ensure reliable interpolation results.

To ensure consistency across seasonal variations, the dataset is
refined so that each timestamp includes measurements from the
same subset of weather stations. This prevents situations where,
for example, summer data is recorded from one group of sta-
tions while winter data comes from an entirely different set.
After applying this filtering process, only timestamps where a
selected 28 stations have continuously recorded data throughout
the year are retained.

The exclusion of other weather stations is primarily due to three
factors. Some stations were installed within the past year and
lack a complete historical dataset, making them unsuitable for
long-term analysis. Others experienced hardware or connectiv-
ity failures, such as network outages, sensor malfunctions, or
maintenance downtime, leading to missing data. Additionally,
certain stations exhibited data inconsistencies, intermittently
failing to record or store historical data, which could compro-
mise the reliability of the dataset. By addressing these issues,
the dataset remains robust and suitable for evaluating seasonal
trends in wind patterns.

3.2.1 Scenario-Based Data Segmentation Once the
dataset is synchronized, it is further categorized into predefined
wind scenarios to enable a finer analysis of wind behavior
under different conditions. The classification process is based
on three key meteorological factors: wind type, season, and
time of day.

Wind Type Classification Wind direction is categorized into
three primary wind types based on prevailing wind patterns in
the region, as shown in Table 1.

Wind Type Direction
Bura (Bora) N, NE, NNE
Jugo (Sirocco) S, SE, SSE
Maestral NW, WNW, WSW

Table 1. Wind type classification.

A timestamp is classified under a specific wind type if at least
35% of stations report wind blowing from a corresponding di-
rection. Timestamps where wind direction is highly variable are
excluded from analysis.

Seasonal Classification Table 2 defines the meteorological
seasons used to segment the wind data for interpolation anal-
ysis.

Season Period
Winter December 21 – March 19
Spring March 20 – June 20
Summer June 21 – September 22
Autumn September 23 – December 20

Table 2. Seasonal classification.

This classification ensures that wind interpolation accuracy can
be assessed across different climatic conditions.

Time-of-Day Classification Table 3 presents the four daily
time intervals used to group wind measurements based on the
time of day. This segmentation allows for the evaluation of diur-

Time Interval Hours
Morning 06:00 – 11:59
Midday 12:00 – 17:59
Evening 18:00 – 23:59
Night 00:00 – 05:59

Table 3. Time-of-day classification.

nal wind variations and their impact on interpolation accuracy.

3.2.2 Final Scenario Composition Theoretically, this clas-
sification system results in 48 distinct wind scenarios (3 wind
types × 4 seasons × 4 time periods). However, due to natu-
ral wind pattern variations and the limitations of the dataset,
certain scenarios are underrepresented or absent. For example,
Maestral winds are rarely observed in winter, and some wind
directions are too inconsistent to be classified definitively, lead-
ing to their exclusion.

Additionally, a portion of the dataset is discarded due to the
inherent difficulty of accurately classifying wind direction in
cases where measurements are ambiguous or fluctuating. Ulti-
mately, the dataset contains 28 validated wind scenarios, which
form the basis for further interpolation analysis.
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3.3 Methodology

This section outlines the methodology used for wind speed and
direction interpolation. We apply four commonly used spa-
tial interpolation methods and strategically designate a subset
of weather stations as unknown and compare the interpolated
results with the actual measurements.

Interpolation techniques are essential for estimating wind con-
ditions at unmeasured locations based on known observational
data. The four interpolation methods used in this study have
been widely employed in meteorology and geostatistics:

• Kriging with Covariance Adjustment – A geostatistical
interpolation method that estimates values at unknown lo-
cations by modeling spatial autocorrelation. Originally in-
troduced by Krige (Krige, 1951) and formalized by Math-
eron (Matheron, 1963), Kriging is widely used in wind
data interpolation. In this study, we modify the covariance
function to incorporate surface roughness index, tempera-
ture, and pressure, recognizing that these factors influence
wind behavior. The adjusted covariance function is given
as:

C′(h) = σ2 (1− γ(h)) · f(R, T, P ) (1)

where:

– f(R, T, P ) is a correction factor adjusting covari-
ance based on local terrain roughness (R), temper-
ature (T ), and pressure (P ),

– R represents the surface roughness index, account-
ing for differences in terrain,

– T and P are the temperature and pressure values at
the unknown location, influencing wind behavior.

Since we are designating known stations as unknown, we
have access to their temperature and pressure data, allow-
ing us to refine Kriging interpolation with this additional
information.

• Ordinary Kriging – A variant of Kriging that assumes a
constant but unknown mean across the study area, making
it suitable for wind data interpolation (Journel and Hui-
jbregts, 1978).

• Inverse Distance Weighting (IDW) – A deterministic
interpolation method where values are estimated as a
weighted average of nearby observations, with weights
inversely proportional to distance (Shepard, 1968). This
method assumes that closer stations have a stronger influ-
ence on the interpolated values.

• Natural Neighbors – An interpolation technique that de-
termines values by assigning weights to the nearest ob-
served points using Voronoi tessellations (Sibson, 1981).
It is well-suited for irregularly spaced data.

3.3.1 Experimental Setup and Use Cases To evaluate the
performance of these interpolation methods, we utilize data
from 28 weather stations in Split-Dalmatia County. In each
interpolation scenario, we designate 4 weather stations as un-
known, using their true recorded values for validation, while
the remaining 24 stations serve as known input data.

The interpolation is performed under two distinct conditions:

1. Scenario 1: Typical Locations – The unknown weather
stations are selected to represent diverse geographical en-
vironments. The location of the selected unknown stations
as shown in figure 2. These stations are located at loca-
tions representing:Countryside – Open, rural areas with
minimal obstacles to wind flow, Island – A coastal sta-
tion influenced by sea-land breeze interactions, Canyon –
A location with complex wind behavior due to topograph-
ical constraints and Boulevard in a Mildly Urban City –
A semi-urban setting where built structures partially affect
wind patterns.

2. Scenario 2: High-Density Areas – The unknown weather
stations are positioned within or near clusters of known
stations. This setup examines interpolation accuracy in ar-
eas with relatively high measurement density. These sta-
tions are shown in figure 3.

Figure 2. Unknown weather stations – typical locations.

Figure 3. Unknown weather stations – high-density areas.

Both scenarios are tested across 28 wind data scenarios, which
classify wind behavior based on wind type, season, and time of
day.

3.3.2 Error Measurement Metrics To quantitatively as-
sess interpolation accuracy, we employ the following error met-
rics:

Root Mean Square Error (RMSE) RMSE is used to mea-
sure the overall interpolation accuracy, providing an indicator
of how much the estimated values deviate from the observed
values. The RMSE vector is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(ui − ûi)
2 + (vi − v̂i)

2 (2)
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where:

• ui, vi are the actual wind velocity components at station i,

• ûi, v̂i are the interpolated wind velocity components,

• n is the total number of unknown points being evaluated.

Mean Absolute Error (MAE) To further evaluate directional
accuracy, we calculate the Mean Absolute Error (MAE) for both
the u (zonal) and v (meridional) wind components:

MAEu =
1

n

n∑
i=1

|ui − ûi| (3)

MAEv =
1

n

n∑
i=1

|vi − v̂i| (4)

MAE provides a direct measure of how much the interpolated
wind speed deviates from the actual recorded values, with lower
values indicating better performance.

4. Results and Discussion

The performance of the interpolation methods was evaluated
by comparing the interpolated wind speed and direction values
with actual ground truth data from the designated validation sta-
tions. The primary error metric used for assessment was the
RMSE vector, calculated for each interpolation method across
different locations and wind conditions.

The RMSE vector distribution for each interpolation method is
shown in Figure 4. The results indicate that Ordinary Kriging
consistently produced the lowest interpolation error among all
methods. This can be attributed to its ability to account for
spatial autocorrelation while incorporating a large number of
nearby weather stations, thereby enhancing local interpolation
accuracy.

Figure 4. RMSE vector distribution by interpolation method.

It is evident that methods relying solely on distance-based
weighting, such as IDW and Natural Neighbors, exhibited
higher interpolation errors. The error values for different meth-
ods range up to approximately 5 m/s, emphasizing the impor-
tance of choosing an appropriate interpolation technique based
on terrain complexity and weather station density.

4.1 Performance Across Different Locations

To further investigate the spatial variations in interpolation ac-
curacy, RMSE values were analyzed for different station loca-
tions (Figure 5). The results highlight that interpolation accu-
racy varies significantly depending on the terrain and surround-
ing weather station density.

Figure 5. RMSE error by location across all methods.

The most challenging interpolation scenario was observed at the
IOMI9 station, which is positioned inside a river canyon. This
location exhibited the highest RMSE errors across all methods,
despite having two nearby weather stations for reference. This
shows that proximity alone is not a sufficient indicator of in-
terpolation accuracy in complex topographical environments.
The significant variation in wind speed and direction within the
canyon, influenced by sudden gusts and turbulence, makes it
inherently difficult to interpolate accurately.

These findings underscore that wind behavior in enclosed or ob-
structed terrains, such as canyons, is highly unpredictable. Even
with dense observational data, standard interpolation methods
struggle to capture the abrupt changes in wind dynamics within
such environments.

4.2 Influence of Wind Type on Interpolation Accuracy

Further analysis was conducted to assess how different wind
types impact interpolation accuracy. As shown in Figure 6,
Bura produced the highest RMSE vector errors across all inter-
polation methods. This result aligns with expectations, as Bura
is characterized by strong, turbulent gusts and rapid fluctuations
in wind speed and direction, making it difficult to interpolate
accurately.

Figure 6. RMSE vector distribution by wind type.

In contrast, Jugo and Maestral exhibited significantly lower
RMSE values, as these wind types are known for their steady
and more predictable behavior. When analyzing the error dis-
tribution further, it is evident that RMSE values for Bura wind
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reach up to 8 m/s across all interpolation methods, with no sin-
gle method significantly outperforming the others. The chaotic
and gusty nature of Bura results in interpolation errors that
remain relatively high across different techniques. For Jugo
and Maestral RMSE values remain below 3 m/s, with Ordinary
Kriging consistently achieving the best results. The smoother,
more uniform wind patterns of these wind types contribute to
improved interpolation accuracy.

4.3 Error Analysis by U and V Components

To further investigate the interpolation performance, the Mean
Absolute Error (MAE) was analyzed separately for the two
wind vector components: U (zonal) and V (meridional). Fig-
ures 7 and 8 illustrate the MAE distribution for each interpola-
tion method across different locations.

Upon analyzing the results, it is evident that no clear trend
emerges favoring a particular interpolation method for one
component over the other. The interpolation errors for both the
U and V components remain relatively consistent across meth-
ods, suggesting that none of the techniques inherently favor one
wind component direction over the other.

Figure 7. MAE for the U-component (zonal wind) across
different interpolation methods.

Figure 8. MAE for the V-component (meridional wind) across
different interpolation methods.

This result was expected given that the interpolation methods
applied do not treat wind components independently but rather
interpolate the entire wind field as a vector quantity. Since wind
is typically not constrained to blowing purely along the cardinal
directions (north-south or east-west), interpolation methods are
influenced by the combined effects of both components rather
than treating them separately.

The wind patterns analyzed in this study primarily originate
from mezoscale directional sectors such as southwest (SW),
northwest (NW), and southeast (SE). As a result, both the U and
V components are equally involved in defining the wind vector,
leading to similar error magnitudes in both components. This

indicates that interpolation accuracy is generally unaffected by
whether the wind component is zonal (U) or meridional (V), as
both contribute equally to the overall wind dynamics.

To gain deeper insight into interpolation accuracy, we analyze
the Mean Absolute Error (MAE) separately for the U (zonal)
and V (meridional) wind components, further segmented by
wind type. This allows us to identify specific weather stations
that contribute to higher interpolation errors.

The Maestral wind primarily blows from the northwest (NW),
which suggests that errors in the U-component (zonal wind)
should generally be smaller, as the dominant wind flow aligns
with this axis. This expectation is largely confirmed in Figure
9, where seven weather stations exhibit low MAE values, re-
maining below 2 m/s. However, an exception is observed at the
ITROGI9 station, which produces significantly higher interpo-
lation errors—up to 5 m/s—despite being located in a dense
measurement network surrounded by multiple weather stations.
For the V-component (meridional wind), Figure 10 reveals that
ITROGI9 continues to exhibit the highest error values. Addi-
tionally, the KASTEL4 station, positioned in a relatively remote
beach location, shows a notable increase in error, reaching up to
3.5 m/s. In contrast, the remaining six weather stations main-
tain relatively low MAE values, with errors not exceeding 2
m/s in the V-component. These results suggest that errors in
the meridional component are influenced by station positioning
relative to the coastline and surrounding terrain.

Figure 9. MAE for the U-component (zonal wind) for Maestral
wind.

Figure 10. MAE for the V-component (meridional wind) for
Maestral wind.

The Bura wind primarily blows from the northeast (NE) and is
characterized by strong, turbulent gusts. Given its highly vari-
able nature, interpolation errors in the U and V components are
expected to be similar. This expectation is supported by Fig-
ures 11 and 12, where error distributions across components
show comparable magnitudes. The highest MAE values oc-
cur at a weather station positioned inside a canyon, confirming
that enclosed terrains significantly disrupt wind interpolation
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accuracy. The steep and narrow topography of canyons causes
abrupt wind accelerations and directional shifts, leading to sub-
stantial interpolation errors. Conversely, the station IOLTA4,
which is situated in a highly sheltered location, records the low-
est MAE values. Its position effectively shields it from direct
Bura exposure, reducing turbulence effects and leading to sig-
nificantly improved interpolation accuracy.

Figure 11. MAE for the U-component (zonal wind) for Bura
wind.

Figure 12. MAE for the V-component (meridional wind) for
Bura wind.

Overall, the analysis reveals that interpolation errors for Maes-
tral wind are generally lower, particularly in the U-component,
except at the ITROGI9 station, which shows significant dis-
crepancies despite being in a high-density measurement area.
For the V-component of Maestral, KASTEL4, located near the
coastline, exhibits increased error due to its relatively isolated
positioning. In the case of Bura wind, interpolation errors re-
main high across both components, particularly in enclosed ter-
rains such as canyons, where wind turbulence is most severe.
On the other hand, sheltered locations, such as IOLTA4, expe-
rience significantly lower interpolation errors due to their pro-
tection from direct wind exposure. These findings emphasize
the critical role of terrain complexity and station placement in
determining interpolation accuracy, particularly for highly vari-
able wind patterns such as Bura.

4.4 Interpolating Across the Whole Map

To extend the analysis beyond specific validation stations,
we apply interpolation techniques to estimate wind conditions
across the entire study region. Given that previous analyses
have shown Bura to be the most unpredictable wind type, pro-
ducing the highest interpolation errors, we focus on interpolat-
ing Bura wind conditions across the whole map. The interpo-
lation was performed over a bounding box covering the Split-
Dalmatia County, with grid points spaced every 100 meters in
both latitude and longitude directions.

Figures 13 through 16 present the spatial distribution of inter-
polated wind fields using four different methods: Kriging, Or-
dinary Kriging, Inverse Distance Weighting (IDW), and Natural
Neighbors. Each method provides a distinct perspective on how
wind speed and direction are estimated across heterogeneous
terrain.

Figure 13. Kriging interpolation of Bura wind conditions across
the study area.

Figure 14. Ordinary Kriging interpolation of Bura wind
conditions across the study area.

Figure 15. IDW interpolation of Bura wind conditions across the
study area.

4.4.1 Comparing Interpolation Methods Across the Map
Unlike other interpolation methods that rely solely on mete-
orological data from weather stations, Kriging offers a more
sophisticated approach by incorporating spatial correlation and
adjusting the variogram to account for environmental factors.
This allows Kriging to provide a more accurate estimation of
wind direction, particularly in terrains where wind behavior is
strongly influenced by surface roughness and landform bound-
aries.

As shown in Figure 13, Kriging interpolation reveals distinctly
clustered wind directions that align with major landforms such
as islands, river boundaries, and elevated terrain. These wind
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Figure 16. Natural Neighbor interpolation of Bura wind
conditions across the study area.

patterns suggest that Kriging effectively captures the natural
flow of wind as shaped by geographical features, reinforcing
its suitability for wind field interpolation in heterogeneous en-
vironments.

In contrast, deterministic methods such as IDW (Figure 15) and
Natural Neighbors (Figure 16) produce interpolation results that
are more localized and less reflective of large-scale terrain in-
fluences. IDW, for example, assumes that nearby points have a
stronger influence on interpolation but does not account for spa-
tial autocorrelation, leading to less accurate wind predictions in
complex topography. Similarly, the Natural Neighbor method,
while effective in some cases, is limited by its reliance on im-
mediate neighboring points, making it less adaptable to varying
wind dynamics.

4.5 Key Findings and Implications

The analysis reveals that Ordinary Kriging outperforms other
methods, especially in areas with dense weather stations, due to
its ability to account for spatial autocorrelation. However, inter-
polation accuracy decreases in complex terrains, like canyons,
where rapid wind fluctuations and turbulence create uncertainty.

Wind type significantly impacts performance: predictable
winds such as Jugo and Maestral allow for more reliable in-
terpolation, while turbulent winds like Bura cause larger er-
rors. The chaotic nature of Bura makes it difficult for traditional
methods to capture its variability. Kriging is especially effec-
tive in regions influenced by topography, like coastal zones and
valleys, providing a more meaningful interpolation for wind en-
ergy assessments and meteorological modeling.

No method shows a clear advantage for U or V components, as
both contribute equally to accuracy. Wind patterns in the region,
mainly diagonal directions, explain the balanced influence of
both components on accuracy. Error magnitudes for U and V
remain similar, highlighting the influence of wind variability
and terrain complexity over individual components.

These findings stress the need to tailor methods to terrain, wind
conditions, and station density. While Ordinary Kriging is the
most reliable, no method fully captures extreme wind variabil-
ity, particularly in high-turbulence scenarios like Bura. Future
work should explore machine learning or hybrid approaches,
as well as incorporating dynamic meteorological parameters to
improve accuracy in complex environments

5. Conclusion

This study evaluated the accuracy of four spatial interpola-
tion methods—Kriging, Ordinary Kriging, Inverse Distance

Weighting (IDW), and Natural Neighbors—for estimating wind
speed and direction in Split-Dalmatia County, Croatia. The re-
gion’s diverse geography, including coastal areas, islands, ur-
ban centers, and mountainous terrains, poses challenges for
wind interpolation due to varying topographical influences and
wind dynamics.

Results show that interpolation accuracy depends not only on
the choice of method but also on the spatial distribution of
weather stations, terrain complexity, and prevailing wind condi-
tions. Ordinary Kriging proved to be the most reliable method
amog evaluated, particularly in regions with a higher station
density, but still struggled in areas with extreme topographical
influences and highly turbulent wind patterns such as those pro-
duced by Bura winf.

Future research should explore hybrid modeling approaches,
integrating machine learning techniques or weather prediction
models to enhance interpolation accuracy, particularly in re-
gions affected by extreme wind variability. Additionally, incor-
porating dynamic meteorological parameters such as pressure
gradients, real-time turbulence indices, and high-resolution to-
pographical modeling could further refine interpolation tech-
niques.

All code, data, and preprocessing scripts used in this research
are available at: https://github.com/mradic01/FOSS4G.
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