
An approach that utilizes blockchain to effectively and securely preserve data

privacy for location data from IoT in smart cities.

Darshana Rawal 1, Jan Seedorf 1, Bhimesh Patil 1

1 Hochschule für Technik Stuttgart, Schellingstr 24,70174 Stuttgart

(darshana.rawal, jan.seedorf, 31pabh1mst)@hft-stuttgart.de

Keywords: Geospatial data, Cryptography, Blockchain, Web3, Smart Cities, Ethereum, Smart Contracts.

Abstract

Environmental surveillance, emergency response, and smart city planning all require the use of geospatial data, which includes satellite

imagery, cartographic records, and real-time GPS coordinates. The high sensitivity and value of location-specific information make it

unsafe to store and transmit it through conventional, centralized means, which can result in privacy breaches, unauthorized

manipulations, and potential misuse. This paper aims to design and implement a secure, blockchain-based framework that blends AES

(Advanced Encryption Standard) and RSA (Rivest–Shamir–Adleman) key management, which addresses these challenges. The aim is

to guarantee strong data confidentiality by using symmetric encryption, and to use public-key cryptography for granular access control

and secure key distribution. The proposed system uses Ethereum smart contracts to connect encrypted data references to a decentralized

ledger, ensuring tamper resistance and auditability. In the proposed system, a Python-based FastAPI backend is responsible for data

ingestion, cleaning, encryption, and blockchain interaction, while a React frontend can upload datasets, generate encryption keys, and

retrieve access permissions. Modular microservices and well-defined APIs can seamlessly integrate various components, such as data

processing scripts and on-chain contract logic, during development. The system's scalability is demonstrated by evaluating its

performance against various dataset sizes, which involves metrics such as encryption overhead, blockchain transaction costs, and smart

contract execution times. The practical usability of the system in actual scenarios is demonstrated through user acceptance testing,

which is crucial for adoption in resource-limited environments. The results show the proposed crypto-enhanced blockchain framework

can significantly enhance geospatial data security while still maintaining operational efficiency. Integration with zero-knowledge

proofs may be explored in future work to enhance privacy, mitigate energy costs through alternative consensus algorithms, and enhance

resilience in multi-network ecosystems through cross-chain interoperability.

1. Introduction

Data centres are becoming increasingly prevalent in global cities.

High-resolution aerial imagery, crowd-sourced GPS traces, and

smart cities sensor grids power digital twins that model

everything from pedestrian density to stormwater drainage.

Precision geospatial layers, road centrelines, building outlines,

and underground utilities fall under the spotlight among these

data streams. In that case, consequences can range from targeted

security breaches (exposing the location of an emergency

operations centre) to subtle sabotage of planning models that

guide infrastructure investment (Boulos M.N.K., et al., 2018).

The reality is that security incidents happen. The GIS portal

utilized by engineers for real-time grid maintenance was shut

down in 2020 due to a ransomware attack on Johannesburg's City

Power utility. Unauthorised edits to cadastral shapefiles were

reported by an Australian regional council in 2023 due to the

breach of a contractor account. These cases demonstrate how

confidentiality (leaked coordinates) and integrity (undetected

edits) are linked. City administrations are now liable for

insufficient data protection due to regulatory frameworks like the

EU GDPR and local critical infrastructure mandates, which is

adding legal urgency to technical safeguards.

According to recent academic research, a combination of

approaches is possible: encrypting the heavy geospatial data off-

chain while recording only lightweight cryptographic

fingerprints on an immutable block chain ledger (Chafiq T., et

al., 2024; Rawal D. et al., 2024). Encryption (e.g., AES-256)

thwarts unauthorised reading, whereas the ledgers append only

property exposes clandestine edits because a tampered file no

longer matches its on-chain hash (Nakamoto S. 2008.; Zheng Z.

et al.,2018). Prior prototypes, however, often stop at proof-of-

concept scripts or focus on niche use cases such as land title

registries. There is a shortage of comprehensive evaluations that

combine encryption, blockchain, and role-based decryption for

multi-agency urban planning workflows (Casino F., et al., 2019).

1.1 Motivation

The process of city planning now involves multi-layered digital

twins that integrate cadastral parcels, traffic counts, aerial

LiDAR, and real-time sensor feeds from paper blueprints in the

past. These spatial layers are no longer static reference maps;

they are now responsible for making daily decisions like

rerouting buses, issuing building permits, and marking

evacuation corridors. The precise coordinates in each dataset

mean that even a partial leak can reveal the location of high-

security facilities or critical infrastructure, and an undetected edit

can lead to misguided investment or emergency response (Boulos

M.N.K., et al., 2018. Chafiq T., et al., 2024).

The majority of municipal geospatial services still rely on GIS

servers that are centrally managed and have role-based access

control. While it may be convenient, one compromised account

or insider threat can quietly exfiltrate or overwrite entire layers.

Examples of incidents including the Johannesburg City Power

ransomware attack in 2019 illustrate that a breach can cripple

vital city functions and expose valuable spatial data to

extortionists (BBC News. 2019, July 26). Regulations like the EU

GDPR penalize for failing to safeguard location information that

can be linked to individuals or protected sites.

Research in academia and industry now suggests that

responsibilities should be divided between strong encryption and

tamper-proof ledgers. AES-256 prevents payloads from being

read; a blockchain only keeps cryptographic fingerprints of each

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-201-2025 | © Author(s) 2025. CC BY 4.0 License.

201

file, so that any offline modification can be detected immediately

if the hash no longer matches the on-chain record (Chafiq T., et

al., 2024; Rawal D. et al., 2024). Early prototypes have shown

promise for land-registry or supply-chain data, yet few studies

adapt the model to the multi-agency reality of urban planning,

where engineers, external contractors, and public-safety officials

each need selective access (Zhu, B., et al., 2019; Christidis K. et

al., 2016).

1.2 Scope

The focus of this paper is on a hybrid encryption-blockchain

model that is designed to fit the timing and governance structures

of smart cities or urban planning departments. It focuses on a

manageable subset of geospatial cybersecurity rather than trying

to solve everything; instead, it creates a prototype that can be

designed, implemented, and critically examined. Within that

boundary, the work offers several original contributions that

extend the state of practice reported in recent literature (Chafiq

T., et al., 2024; Rawal D. et al., 2024; Casino F., et al., 2019).

The focus is on updating vector or raster layers on a weekly or

monthly basis, including updated zoning polygons or new

building footprints. The exclusion of high-frequency IoT streams

and live navigation feeds means that data location and all

geospatial payloads remain offline and encrypted with AES-256.

The Ethereum-compatible ledger only records 256-bit hashes and

minimal access metadata. Key management is handled through

RSA key wrapping, allowing stakeholders to decrypt files.

Although post-quantum algorithms and hardware security

modules are identified for future development, they are not

implemented in this version. The evaluation strategy establishes

generic performance baselines—such as encryption throughput,

transaction latency, and gas costs—based on peer-reviewed

studies (Chafiq T., et al., 2024; Zhu, B., et al., 2019). This

provides a framework for incorporating empirical results from

municipal or smart cities pilot projects. Additionally, the design

takes GDPR obligations regarding location privacy into account,

though it does not include a comprehensive legal compliance

audit.

This subsection translates the paper's ambitions into concrete

objectives that can be evaluated during prototype development

and municipal or smart cities pilot testing, once they have been

established; the goal is linked to a measurable outcome that is in

line with best practice guidelines in the geospatial security

literature (Boulos M.N.K., et al., 2018; Chafiq T., et al., 2024;

Rawal D. et al.,., 2024): Validate confidentiality by

demonstrating that encoding geographical layers using AES-256

prevents unauthorised parties from reading sensitive coordinates

once the files leave the local environment. Explicitly

demonstrate that storing only the ciphertext hash on a smart

contract ensures tamper-proofness. Changing an encrypted file

offline must be detected immediately by a hash mismatch against

the on-chain reference (Chafiq T., et al., 2024; Rawal D. et al.,

2024). Analyze the effectiveness of RSA key wrapping to limit

decryption to stakeholders who possess the necessary private

keys, which reduces the need to share a single symmetric key

across departments (Rivest R.L., at el 1978). Measure operational

feasibility by benchmarking generic alperformance variables

provided in peer-reviewed research, such as encryption

throughput, transaction confirmation times, and gas cost, to

determine whether the architecture is practicable for frequent

urban planning updates to identify usability barriers (Boulos

M.N.K., et al., 2018; Zhu, B., et al., 2019). Compile a list of the

most common problems faced by users during their experience.

Smart city installations (Zhu, B., et al., 2019) have recognized

key handling and transaction delays, and they have developed

interface or workflow improvements for municipal or smart city

staff. The hybrid encryption-blockchain paradigm's ability to

improve geographical data security and fit into the operational

reality of smart city planning environments will be demonstrated

through success in meeting these goals.

2. Literature Review

Understanding the technologies behind the proposed architecture

is essential when designing a secure pipeline for smart cities'

geospatial data. Although Blockchain has immutability and

decentralized consensus, its security guarantees are dependent on

the internal data structure of blocks, hash pointer linking, and the

consensus protocol chosen(Boulos M.N.K., et al.,, 2018).

Cryptographic primitives, including AES-256 and RSA-2048,

are the dominant protocols in today's Internet traffic, but each

addresses a different aspect of the confidentiality-integrity

challenge that city planners are confronted with (Rivest R.L., at

el 1978,; Zhu, B., et al., 2019). Therefore, our analysis includes

the technical operations of blockchains, the reasoning behind

hybrid encryption as the standard model for large files, and how

these mechanisms meet the confidentiality and provenance needs

of urban planning workflows.

2.1 Blockchain

Blockchains are often described in broad terms, such as an

immutable ledger, yet their security relies on very specific data

structures and consensus rules. The technical building blocks that

make a chain tamper-evident and programmable logic are

explained in this subsection. The way individual blocks link

together is shown in a stylized diagram, and Figure 1 illustrates

how data moves from acquisition to storage, and then from

storage to visualization and use at different levels, and its privacy

at different levels.

Data Structure of Blocks: Each block has a header and a list of

transactions. The header maintains the previous block hash (256

bits in Bitcoin and Ethereum), so that any modification in an

older block invalidates any subsequent hash (Nakamoto S. 2008).

All transactions are committed by Merkle root, which includes

timestamp, nonce, and difficulty/validator information,

depending on the consensus protocol (Zheng Z., et al., 2018).

Consensus Mechanisms: Nodes use a consensus technique to

determine which chain is correct. Proof of Work (PoW) – miners

solve a hash puzzle, and security is derived from the amount of

energy expended (Nakamoto S. 2008). ; Proof of Stake (PoS) –

validators lock native tokens and face penalties for malicious

behavior; this minimizes energy consumption while ensuring

Byzantine fault tolerance (Zheng Z., et al., 2018).

Figure 1. Block chain linkages.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-201-2025 | © Author(s) 2025. CC BY 4.0 License.

202

PoW and PoS systems use economic incentives to prevent

rewriting history, making a successful attack exponentially more

expensive as blocks pile.

Smart Contracts: Smart contracts, first popularized by

Ethereum, are bytecode programs that are stored on the

blockchain. It can include holding and transferring bitcoin,

enforcing custom rules (such as access control lists for encrypted

information), and emitting events that off-chain services monitor

to trigger additional actions (Christidis K., et al., 2016). Because

contract code and state are replicated across all complete nodes,

function calls (such as storeDataHash) provide the same

immutability guarantees as raw transactions.

Security Properties: Blockchains use a linked block structure

and economic consensus to provide a set of assurances that are

difficult to replicate in standard databases. Understanding these

guarantees explains why a chain of file hash references can

safeguard urban planning data against hidden alterations or

deletions. Immutability – Modifying a previous block changes

its hash, which breaks every subsequent link in the chain and is

immediately identifiable by honest nodes (Boulos M.N.K., et al.,

2018). Auditability – Because block headers contain a Merkle

root of all transactions, anyone can recalculate the root locally

and ensure that individual entries have not been changed.

Byzantine Fault Tolerance – Consensus lasts as long as the

majority of hash power (in PoW) or stake (in PoS) adheres to

protocol rules, making it prohibitively expensive for an attacker

to change history (Zheng Z., et al., 2018). These characteristics

make blockchain an appealing layer for storing cryptographic

fingerprints of encrypted geographical information, ensuring that

any offline manipulation is detected the next time a hash

comparison is conducted.

2.2 Cryptographic Primitives for Secure Data Exchange

Blockchain can ensure that a file remains untouched, but it must

also be unreadable by unauthorized users. This is accomplished

by hybrid encryption, in which a fast symmetric cipher protects

the data while an asymmetric technique secures the session key.

The following paragraphs discuss the two most extensively used

algorithms on today's Internet, AES and RSA, and explain why

combining them is common practice.

Advanced Encryption Standard (AES): AES is a block cipher

that NIST adopted in 2001 and is used in almost all TLS sessions.

The key sizes are 128, 192, and 256 bits, and the performance of

the hardware instructions (AES NI) allows mid-range CPUs to

encrypt several hundred megabytes per second, as confirmed in

cloud-based benchmarks by Omar et al., (BBC News. 2019) and

the security status is that a practical attack has broken the full 256

bit version, making it the de facto choice for bulk data encryption.

Rivest–Shamir–Adleman (RSA): Many public key

infrastructures continue to rely on RSA for key exchange and

digital signatures. The key sizes are 2048 bits is the current

minimum for strong security; 3072 or 4096 bits are

recommended for long-term archives (Rivest R.L., et al., 1978).

Functionality that allows one party to encrypt a short secret (here,

an AES key) with another party's public key, ensuring only the

matching private key can decrypt it and the widespread use of

TLS certificates, code signing, and email encryption all rely

heavily on RSA, demonstrating its maturity and tooling support.

3. Problem Statement, Design and Methodology

Smart Cities planning teams must exchange critical geospatial

layers with departments, contractors, and regulatory bodies while

maintaining confidentiality, integrity, and traceability.

3.1 Problem Statement

Urban planners must integrate high-resolution location layers

from zoning, utilities, emergency services, and private

contractors. These datasets often contain coordinates whose

disclosure, or silent manipulation, could disrupt city operations

or jeopardise public safety. Although most Smart cities rely on

central GIS servers with role-based access, three systemic

weaknesses remain:

The precise locations of subterranean fiber trunks or undisclosed

police sites, which are sensitive layers, are typically saved

unencrypted on shared network drives. Incidents such as the

Johannesburg City Power ransomware assault have shown how

rapidly an intruder may exfiltrate or take control of a completely

geographic repository (BBC News, 2019). Furthermore, privacy

legislation (e.g., GDPR Article 4 on "personal data relating to

location") holds smart cities accountable when insufficient

measures reveal citizen-related coordinates (Zhu, B., et al.,

2019). Integrity Blind Spots is a single unchecked shapefile

alteration that can cause rippling effects in downstream models

that assign flood mitigation funding or emergency evacuation

routes. Traditional checksum logs are useful, but they are stored

on the same server, which could be compromised. Land

registration tests in Sweden demonstrated that external

notarisation (via blockchain) enhances provenance tracing, but

their prototypes kept big map PDFs off-chain and unencrypted

(Proskurovska, et al., 2022).

Coarse Access Control is intended to be a zoning department that

shares a parcel layer with an external consultant. Nothing

prevents the file from being distributed further after the

consultant has downloaded it. Shared passwords or symmetric

keys provide little redress if employees leave or contracts expire.

Supply chain platforms such as IBM Food Trust use blockchain

hashes, but they still rely on organisational memberships rather

than per-user cryptographic rights (Singh V., et al., 2023).

3.2 Research Questions

Our contribution is the interface design and concrete

implementation of a scheme that can address the following

general challenges: How can a smart city planning office protect

confidential geospatial layers so that a) only explicitly authorized

individuals can decrypt them, b) any offline modification is

immediately detectable, and c) permissions can be granted or

revoked on a per-stakeholder basis rather than relying on a single

trusted server?

Our research prototype can help answer detailed research

questions such as:

1. Can AES256 encrypt planning files ranging from 2 MB

to 120 MB quickly enough for weekly updates?

2. Is a 256-bit hash on a smart contract a reliable indicator

of ciphertext swap or rollback (Rawal D.; et al., 2024)?

3. Is it practical to employ RSA-2048 key wrapping when

many departments and contractors demand separate

access?

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-201-2025 | © Author(s) 2025. CC BY 4.0 License.

203

4. What interface designs can enable non-technical

workers to handle key management and transaction

signing with little cognitive load (Zhu, B., et al., 2019)?

3.3 Hybrid Encryption Workflow (Design Prototype):

A Hybrid Encryption Workflow Prototype typically combines

the efficiency of symmetric encryption with the security of

asymmetric encryption. Both symmetric and asymmetric ciphers

solve the complementary problems: AES is faster for huge data,

but RSA makes distribution easier, as demonstrated in Figure 2.

In reality, the user stores their RSA private key offline. When

decryption is required, the user receives the encrypted AES key,

which he unwraps locally and decrypts the ciphertext. This

solution maintains confidentiality, as only authorized key holders

can access the data, and integrity, because any ciphertext swap

will fail the on-chain hash check.

3.4 Methodology Overview

The purpose of this paper is to design and evaluate a

decentralized system for secure geospatial data management.

The approach uses AES-256 encryption to off-chain encode

critical location data, and symmetric keys are wrapped with RSA

to enforce per-user access. Similarly, it records a cryptographic

digest of each ciphertext on a tamper-proof blockchain (Boulos

M.N.K., et al., 2018,; Chafiq T., et al.,. 2024; Rawal D. et al.,

2024,; Alghamdi T., et al., 2021). Data secrecy is preserved off-

chain, but integrity and access control can be validated on-chain

by integrating these complementary cryptographic approaches

Zhu, B., et al., 2019,; Christidis K., et al., 2016).

Our iterative method, which was based on Blockchain

Architecture (Zheng Z., et al., 2018) was utilized to create a

prototype without delays and in a controlled and progressive

manner. The first step included implementing version control,

virtual environments for Python and Node.js, and smart contract

tooling (Figure 3). The coordinates were confirmed, duplicates

eliminated, and standardized JSON/CSV files exported after

absorbing and cleaning the raw spatial files. The core encryption

phase followed, during which AES256 scripts converted datasets

to ciphertext and RSA key management routines generated per-

user-wrapped keys. A Solidity contract was created to safeguard

our data by maintaining digest anchors and permission mappings,

which are necessary for blockchain integration.

The workflow (Figure 3) evolved into API and frontend

development, with FastAPI endpoints orchestrating encryption

and on chain calls and a React application offering a user-friendly

interface. In succeeding rounds, all components were validated

by rigorous testing, unit, integration, and performance

benchmarks. Following that, we put the whole stack in Docker

containers and talked about future improvements, such as keys

that are resistant to quantum attacks, zero-knowledge proofs, and

Layer 2 scaling. Each phase concluded with the development

team and domain supervisors assessing tangible outputs such as

scripts, contracts, and UI components to confirm technological

robustness and compliance with geographic management

standards.

4. Prototype Implementation

The application of code, smart contracts, and user-friendly

interfaces has made it feasible to construct a secure geospatial

system. The initial step is to provide an overview of the major

components and then go into detail for each component,

highlighting the libraries used, presenting key code excerpts, and

including diagrams and screenshots as needed.

4.1 Data Preparation

Geospatial Location data may contain incorrect coordinates,

duplicate features, or incompatible attribute standards. Phase B

cleans and standardizes these layers so that encryption and

hashing can work on reliable input.

City datasets come from a variety of sources, including cadastral

shapefiles, GeoJSON exports from contractors, and Excel lists of

facility addresses (Figure 4). Feeding these straight into an

encryption pipeline risks encoding mistakes that subsequent

studies cannot discover, as shown in the figure. As a result, Phase

B establishes a consistent cleaning schedule.

4.2 Encryption Module

The secure geospatial system proposed in this work begins with

a strong encryption pipeline that converts cleaned geospatial files

Raw Shape
file

Validation of
Lat/Long

range

Duplicate
Check

Attribute
Standardize

Clean CSV +
JSON

Figure 3. Methodology/Workflow.

Figure 4. Data‑Cleaning Pipeline.

Figure 2. Hybrid encryption and key wrapping.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-201-2025 | © Author(s) 2025. CC BY 4.0 License.

204

to ciphertext and prepares key material for controlled

distribution. This module is written in Python and mostly uses

the PyCryptodome library for cryptographic operations (BBC

News, 2019), as well as conventional modules for file I/O and

hashing.

Encrypting each cleaned dataset before it leaves the local

workstation is the cornerstone of the system’s confidentiality

goal. Phase C transforms the validated CSV / JSON files

produced in Phase B into ciphertext files (*.enc) and records a

cryptographic fingerprint (SHA-256) that later phases will write

to the blockchain.

AES 256 Encryption: Any data that leaves the local

environment must be kept inaccessible to unauthorized parties.

The AES 256 Encryption script accomplishes this by reading

each file, encrypting it in CBC mode, and generating both

ciphertext and integrity metadata.

The key libraries Crypto. Cipher. AES and cryptocurrency. Util.

Python block ciphers require padding from PyCryptodome to

function. Python includes its own pathlib for filesystem paths

and hashlib for SHA256 hashing.

RSA Key-Wrapping: Once the data is encrypted, each

stakeholder must be able to access the AES key without sharing

a single symmetric secret. The RSA Key Wrapping utilities

create per-user key pairs and encrypt the AES key under each

public key.

Key libraries include Crypto.PublicKey.RSA and

Crypto.Cipher.PKCS1_OAEP from PyCryptodome (BBC News,

2019). Use Python's base64, json, and pathlib for encoding

information and file paths.

4.3 Smart Contracts

The system's integrity and access control are based on a Solidity

smart contract that keeps cryptographic hashes of encrypted

information and enforces user rights. This contract was created

with Solidity 0.8.4 and uses patterns from OpenZeppelin's library

for ownership and security (Christidis K., et al., 2016). The use

of Hardhat and Ethers.js is utilized to deploy and test it to ensure

thorough validation before integration.

The GeoDataStorage as in figure 5 contract maintains a mapping

from dataset IDs to entries, each holding a ciphertext hash and an

access-control mapping. It inherits Ownable from OpenZeppelin

to restrict management functions to the deployer.

The GeoDataStorage.sol contract uses OpenZeppelin's Ownable

module to restrict administrative functions to the deployer,

provides events for on-chain auditing, and includes methods for

storing ciphertext hashes and managing user access permissions.

Use Hardhat's runtime environment to compile and deploy the

contract to a local test network. The script stores the deployed

address in a.env file for later use by the backend. Comprehensive

testing guarantees that each function performs as expected under

various authorization settings. The Hardhat framework

(Christidis K., et al., 2016). is made up of Mocha, Chai, and

Waffle.

Backend Integration (Web3.py & FastAPI)

To connect encryption, key wrapping, and blockchain

interactions, the Python backend uses Web3.py for Ethereum

connectivity, Python dotenv for configuration, and FastAPI for

REST endpoints. The configuration of the Web3 client,

encapsulation of contract calls in a service layer, and exposing

HTTP routes to coordinate the entire workflow are discussed in

this section.

Before any contract method can be called, the backend requires a

Web3 connection, as well as the contract's ABI and address. The

HTTP provider is created through the use of Python's dotenv to

load environment variables (BLOCKCHAIN_PROVIDER,

CONTRACT_ADDRESS, PRIVATE_KEY), followed by the

setup of Web3.py (React. 2020).

Rather than incorporating blockchain calls into our API routes,

we wrap them in a Blockchain Service class. This design

simplifies unit testing by separating concerns. The service

provides mechanisms for storing data hashes and managing

access permissions.

 Use store_data_hash(dataset_id, hash_hex) to create,

sign, and transmit a storeData transaction.

 Use grant_access(dataset_id, user_addr) to grant access

to a contract.

 Use revoke_access(dataset_id, user_addr) to revoke

access to a contract.

The Blockchain Service class has methods for creating, signing,

and sending transactions, as well as storing data hashes and

controlling access rights on the blockchain.

The FastAPI application provides RESTful endpoints for

orchestrating Phases C-E in a single HTTP call. FastAPI is

utilized for route declaration and automatic validation.

4.4 Frontend Implementation

The user-facing element of our system is a React application that

abstracts cryptography and blockchain complexities, providing

smart city workers with a simple interface for file upload,

encryption monitoring, and access management. Unlike the

backend, the frontend does not employ a utility CSS framework;

instead, it uses CSS Modules for scoped styling, along with a tiny

collection of global styles in src/styles/main.css.

The application's entry point, src/index.js, loads <App /> and

imports global CSS. Routes are defined in src/App.jsx, and

primary views in src/pages/. Reusable UI elements are stored in

src/components/, which is divided into data/, layout/,

blockchain/, and map/. State and context providers are found in

src/contexts/. Key dependencies (package.json): React ^18.2.0
Figure 5. Contract Class Diagram.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-201-2025 | © Author(s) 2025. CC BY 4.0 License.

205

supports component rendering and hooks (React. 2020). Use

React Router DOM ^6.20.1 for client-side routing between

Dashboard (figure 6), Data Management, and Blockchain

Management pages (React Router. 2023). Axios version 1.6.2

supports HTTP interactions with the FastAPI backend (Axios

Contributors. 2023). Web3.js ^4.3.0 and Ethers ^6.9.0 are used

for Ethereum contract calls in the UI (Web3.js Contributors.

2023 ; Ethers.js Contributors. 2023). Leaflet ^1.9.4 and React

Leaflet ^4.2.1 are tools for visualizing public GeoJSON data on

maps (React-Leaflet. 2023).

Global styles in src/styles/main.css provide base typography

and layout resets; all component-specific styles are included.

module.css and jsx files.

The key components of systems are:

The FileUpload component shown in Figure 7 enables users to

pick one or more files and send them to /api/upload. It shows

progress, success messages, and errors. After upload, FileList,

as shown in Figure 8, retrieves encrypted datasets and shows

their IDs and hashes in a table, with a button to unlock access

controls.

After decrypting a dataset, Data Statistics summarizes feature

React Leaflet links Leaflet mapping in Figure 9 to React

components (React-Leaflet. 2023). Each component's .css file

defines only its classes, eliminating leakage.

5. Results & Discussion

Empirical results from the evaluation of a secure geospatial

system are presented, along with their implications. We focus on

three critical dimensions: performance, security, and usability, to

determine how the prototype satisfies design objectives and

where further enhancements are required.

5.1 Performance Evaluation

To determine if the system can manage real-world geographic

demands, we measured:

 AES 256 encryption throughput refers to the rate at

which files are processed.

 Blockchain latency refers to the time between

submitting a transaction and its confirmation on a local

Hardhat node.

 Ethereum gas consumption for crucial smart contract

functions.

Benchmarks were run on a development system (Intel i5 8265U,

16 GB RAM, Ubuntu 20.04) with the benchmark_encrypt.py and

Hardhat's gas reporter.

The measured encryption rate (247.42 MB/s) is comparable to

the speeds reported for PyCryptodome's AES-CBC

implementation. Blockchain transactions are confirmed in

around one second, which is sufficient for non-real-time

operations in a trusted pilot environment. Gas usage for storing

a 32-byte hash (~34 k gas) and changing access limits (~45 k gas)

is consistent with other smart contract designs.

Blockchain Testing

To validate the blockchain integration module

(test_blockchain.py), a thorough interaction test was performed

on a locally installed contract on Hardhat. The test validated the

connection, transaction execution, and on-chain data retrieval.

 This output confirms that the system successfully connected to

the local Ethereum test network.

 Data was successfully anchored on the chain using

storeData.

 GrantAccess provided access, and access control functioned

properly.

 Successfully retrieved saved hash values and metadata.

 On-chain storage ensured integrity across multiple datasets.

Figure 7. File Listing.

Figure 9. Geospatial Visualization.

Figure 6. Dashboard home page.

Figure 8. Uploaded file-listing page.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-201-2025 | © Author(s) 2025. CC BY 4.0 License.

206

Security Analysis

The security analysis tests were carried out by us:

1. Unit Testing :The encryption, RSA wrapping, and

contract-service modules have over 90% code

coverage, ensuring correct behavior in both normal and

edge circumstances (e.g., incorrect key unwrapping

causes issues).

2. Smart Contract Audits: A manual inspection of

GeoDataStorage.sol revealed that only the owner

(deployer) can perform administrative activities,

preventing illegal state modifications. The built-in

checks in Solidity 0.8.4 detected no reentrancy or

overflow hazards.

3. Integration Testing: End-to-end testing

(test_fastapi.py) confirmed that data uploaded,

encrypted, and stored on the chain can only be retrieved

and decrypted with authorized keys.

These findings show that the system maintains confidentiality,

integrity, and access control as planned, with no serious

vulnerabilities discovered during our testing phase.

5.2 Usability and UX Feedback

To determine how well smart city workers can run the system,

and conducted informal usability sessions with three individuals

who were unfamiliar with blockchain:

The average completion time for a 10 MB upload is 9.016

seconds (based on three runs). Encrypt (10 MB): 5.590 seconds

(average of three runs), Grant access to a colleague's address:

2.143 seconds (average of three runs), Decrypt and analyze data

statistics. Participants only reported issues when entering invalid

Ethereum addresses (1 out of 10 attempts), indicating effective

UI validation.

Users' feedback about clear progress messages and simple table

arrangement. Some users requested inline assistance tooltips for

terminology like "cipher hash" and "tx hash" to help them

understand blockchain jargon better.

The UI design, which includes CSS Modules for consistency and

React Leaflet for map previews, allows first-time users to

perform fundamental operations without developer support.

While the prototype satisfies its security and performance

requirements for pilot deployment, some drawbacks have arisen.

 Scalability: Single‑threaded Python encryption may

bottleneck on large batch jobs. A parallel or streaming

approach could improve throughput.

 Blockchain costs: Gas usage on public Ethereum

networks could be prohibitive; deploying to a Layer-2

solution or private consortium chain may be necessary.

 Authentication: The current trusted-operator model

lacks per-user authentication. Integrating

Web3-signature or JWT flows (see Phase H) will be

essential for untrusted environments.

 UX enhancements: Adding contextual help, more

robust input validation, and mobile‑responsive charts

would improve accessibility for field officers.

These insights serve as a road map for future work, with a focus

on scalability, cost minimization, and improved user

management.

6. Conclusion & Future Work

Finally, the secure geospatial system's accomplishments should

be summarized, its current constraints should be considered, and

a route for future improvements should be plotted. The prototype

shows how smart cities may protect sensitive location data by

combining AES256 and RSA encryption, blockchain-anchored

immutability, and fine-grained access controls.

6.1 Contributions and Findings

The paper presents a full, end-to-end solution for securely storing

and exchanging geographical datasets. Its main contributions

are: The Hybrid Encryption Pipeline includes an AES 256

encryption module that converts geographic data into ciphertext,

as well as RSA-based key wrapping that allows for per-user

decryption without exposing a shared symmetric key.

Blockchain-anchored integrity and access control are

implemented using a Solidity smart contract

(GeoDataStorage.sol), which saves SHA 256 hashes of encrypted

files and enforces owner-managed rights to ensure tamper

evidence and auditability.

To create a seamless backend orchestration. The Python

backend leverages FastAPI and Web3.py to manage encryption,

key wrapping, and on-chain transactions over simple HTTP

endpoints, removing complexity from end users.

The User Centric Frontend Interface is created with a React

application that includes CSS Modules, Axios, Web3.js, and

React Leaflet. It enables simple workflows for file upload,

permission control, and data visualization.

Empirical validation verifies encryption throughputs of around

185 MB/s and sub-second blockchain latencies. Security testing

confirmed confidentiality and integrity guarantees, and usability

tests showed that first-time users could execute activities with

minimum assistance.

These studies collectively demonstrate that combining

cryptography and decentralized ledger technologies can protect

sensitive geographical data while maintaining usability.

6.2 Limitations

Despite its advantages, the prototype has many limits that

require attention:

 The AES-CBC implementation processes files

sequentially, resulting in limited speed for big datasets

or concurrent uploads.

 The Trusted Operator Assumption system lacks per-

user authentication, assuming all backend clients are

pre-trusted. This makes it unsuitable for open or multi-

institutional installations.

 Blockchain cost and scalability are determined by gas

usage for each store. Data and grantAccess transactions

on public Ethereum may make the approach

economically untenable at scale.

 The phrases "cipher hash" and "transaction hash" can

be confusing for non-technical users without

contextual guidance or tooltips.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-201-2025 | © Author(s) 2025. CC BY 4.0 License.

207

Recognizing these limits helps shape the path for improving

robustness, security, and user experience.

7. Future Work

Further study may take place in the future. Building on the

prototype, further development will take the following

directions:

 The encryption module is refactored to use multi-processing

or streaming ciphers (e.g., AES GCM in chunked mode) for

faster big or batch uploads.

 Integrate decentralized identity and authentication with

Web3-based signature authentication or JWT flows to

restrict access to sensitive API endpoints to authenticated

users, eliminating the need for trusted operators.

 Smart contracts will be deployed on low-cost Layer 2

networks, such as Polygon, or private consortium chains to

decrease gas expenses and maintain immutability

guarantees.

 Zero Knowledge Proofs for Privacy can use ZK SNARKs to

verify data attributes (e.g., spatial coverage) on a chain

without revealing raw geospatial content.

 Advanced Access Policies allow smart contracts to enable

time-bound, role-based, or geofenced permissions, limiting

decryption to certain time windows or geographic borders.

 Implement inline tooltips, guided tutorials, and increase

mobile responsiveness to reduce barriers for non-technical

stakeholders.

 Evaluate post-quantum cryptography at the block level in

blockchain key encapsulation systems (e.g., Kyber) for

future-proofing against emergent threats.

By pursuing these developments, the secure geospatial

framework can evolve into a production-grade platform that can

adapt to varied institutional, technical, and regulatory settings.

Acknowledgement

This work is an outcome of the project "Datasecurity4icity", a

subproject of the project "ICity: Intelligent city"

(https://www.hft-stuttgart.com/research/projects/i-city)". We

extend our gratitude for the funding received through the FH-

Impuls program under the number 13FH9E04IA by the German

Federal Ministry of Education and Research (BMBF).

References

Boulos M.N.K., Wilson J.T., Clauson K.A. 2018. Geospatial

blockchain: promises, challenges, and scenarios in health and

healthcare. International Journal of Health Geographics,

17(1):25. https://doi.org/10.1186/s12942-018-0144-x.

Chafiq T., Azmi R., Fadil A., Mohammed O. 2024. Investigating

the potential of blockchain technology for geospatial data

sharing: opportunities, challenges, and solutions. Geomatica,

76:100026. https://doi.org/10.1016/j.geomat.2024.100026.

Nakamoto S. 2008. Bitcoin: A Peer-to-Peer Electronic Cash

System. https://bitcoin.org/bitcoin.pdf.

Rivest R.L., Shamir A., Adleman L. 1978 A method for obtaining

digital signatures and public key cryptosystems.

Communications of the ACM, 21(2):120–126.

https://doi.org/10.1145/359340.359342.

Rawal D. 2024. Crypto Spatial: a new direction in geospatial

data. ISPRS Archives, XLVIII-5-2024:89–94.

https://doi.org/10.5194/isprs-archives-XLVIII-5-2024-89-2024.

Zheng Z., Xie S., Dai H., Chen X., Wang H. (2018). An overview

of blockchain technology: architecture, consensus, and future

trends. Proc. 6th IEEE Intl. Congress on Big Data, 557–564.

http://dx.doi.org/10.1109/BigDataCongress.2017.85.

Zhu, B., Susilo, W., Qin, J., Guo, F., Zhao, Z., & Ma, J. 2019. A

Secure and Efficient Data Sharing and Searching Scheme in

Wireless Sensor Networks. Sensors, 19(20), 4574.

https://doi.org/10.3390/s19112583.

Christidis K., Devetsikiotis M. 2016. Blockchains and smart

contracts for the Internet of Things. IEEE Access, 4:2292–2303.

https://doi.org/10.1109/ACCESS.2016.2566339.

Alghamdi T., Elgazzar K., Sharaf T. 2021. Spatiotemporal traffic

prediction using hierarchical Bayesian modelling. Future

Internet, 13(9):225. https://doi.org/10.3390/fi13090225.

Casino F., Dasaklis T., Patsakis C. 2019. A systematic literature

review of blockchain-based applications: current status,

classification and open issues. Telematics and Informatics,

36:55–81. https://doi.org/10.1016/j.tele.2018.11.006.

BBC News. 2019, July 26. Ransomware hits Johannesburg

electricity supply. https://www.bbc.com/news/technology-

49125853.

Proskurovska, A., & Dörry, S. 2022. The blockchain challenge

for Sweden's housing and mortgage markets. Environment and

Planning A: Economy and Space, 54(8), 1383–1403.

https://doi.org/10.1177/0308518X221116896.

Singh V., Sharma S.K. 2023. Application of blockchain

technology in shaping the future of food industry based on

transparency and consumer trust. Frontiers in Sustainable Food

Systems, 7:10020414. https://doi.org/10.1007/s13197-022-

05360-0.

PyCryptodome Developers. 2024. PyCryptodome

Documentation. https://pycryptodome.readthedocs.io/en/latest

Accessed on “12 December, 2024”.

React. 2020. React – A JavaScript library for building user

interfaces. https://reactjs.org Accessed on “28 January 2025”.

Create React App. 2021. Create React App Documentation.

https://create-react-app.dev Accessed on “28 January 2025”.

Axios Contributors. 2023. Axios GitHub Repository.

https://github.com/axios/axios Accessed on “18 February 2025”.

React Router. 2023. React Router Documentation.

https://reactrouter.com Accessed on “29 January 2025”.

React-Leaflet. 2023. React-Leaflet Documentation. https://react-

leaflet.js.org Accessed on “15 March 2025”.

Web3.js Contributors. 2023. Web3.js Documentation.

https://github.com/ChainSafe/web3.js Accessed on “25 January

2025”.

Ethers.js Contributors. 2023. Ethers.js Documentation.

https://docs.ethers.io/ Accessed on “25 January 2025”.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-201-2025 | © Author(s) 2025. CC BY 4.0 License.

208

