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Abstract 
 

Environmental surveillance, emergency response, and smart city planning all require the use of geospatial data, which includes satellite 

imagery, cartographic records, and real-time GPS coordinates. The high sensitivity and value of location-specific information make it 

unsafe to store and transmit it through conventional, centralized means, which can result in privacy breaches, unauthorized 

manipulations, and potential misuse. This paper aims to design and implement a secure, blockchain-based framework that blends AES 

(Advanced Encryption Standard) and RSA (Rivest–Shamir–Adleman) key management, which addresses these challenges. The aim is 

to guarantee strong data confidentiality by using symmetric encryption, and to use public-key cryptography for granular access control 

and secure key distribution. The proposed system uses Ethereum smart contracts to connect encrypted data references to a decentralized 

ledger, ensuring tamper resistance and auditability. In the proposed system, a Python-based FastAPI backend is responsible for data 

ingestion, cleaning, encryption, and blockchain interaction, while a React frontend can upload datasets, generate encryption keys, and 

retrieve access permissions. Modular microservices and well-defined APIs can seamlessly integrate various components, such as data 

processing scripts and on-chain contract logic, during development. The system's scalability is demonstrated by evaluating its 

performance against various dataset sizes, which involves metrics such as encryption overhead, blockchain transaction costs, and smart 

contract execution times. The practical usability of the system in actual scenarios is demonstrated through user acceptance testing, 

which is crucial for adoption in resource-limited environments. The results show the proposed crypto-enhanced blockchain framework 

can significantly enhance geospatial data security while still maintaining operational efficiency. Integration with zero-knowledge 

proofs may be explored in future work to enhance privacy, mitigate energy costs through alternative consensus algorithms, and enhance 

resilience in multi-network ecosystems through cross-chain interoperability. 

 

1. Introduction 

 

Data centres are becoming increasingly prevalent in global cities. 

High-resolution aerial imagery, crowd-sourced GPS traces, and 

smart cities sensor grids power digital twins that model 

everything from pedestrian density to stormwater drainage. 

Precision geospatial layers, road centrelines, building outlines, 

and underground utilities fall under the spotlight among these 

data streams. In that case, consequences can range from targeted 

security breaches (exposing the location of an emergency 

operations centre) to subtle sabotage of planning models that 

guide infrastructure investment (Boulos M.N.K., et al., 2018). 

 

The reality is that security incidents happen. The GIS portal 

utilized by engineers for real-time grid maintenance was shut 

down in 2020 due to a ransomware attack on Johannesburg's City 

Power utility. Unauthorised edits to cadastral shapefiles were 

reported by an Australian regional council in 2023 due to the 

breach of a contractor account. These cases demonstrate how 

confidentiality (leaked coordinates) and integrity (undetected 

edits) are linked. City administrations are now liable for 

insufficient data protection due to regulatory frameworks like the 

EU GDPR and local critical infrastructure mandates, which is 

adding legal urgency to technical safeguards. 

 

According to recent academic research, a combination of 

approaches is possible: encrypting the heavy geospatial data off-

chain while recording only lightweight cryptographic 

fingerprints on an immutable block chain ledger (Chafiq T., et 

al., 2024; Rawal D. et al., 2024). Encryption (e.g., AES-256) 

thwarts unauthorised reading, whereas the ledgers append only 

property exposes clandestine edits because a tampered file no 

longer matches its on-chain hash (Nakamoto S. 2008.; Zheng Z. 

et al.,2018). Prior prototypes, however, often stop at proof-of-

concept scripts or focus on niche use cases such as land title 

registries. There is a shortage of comprehensive evaluations that 

combine encryption, blockchain, and role-based decryption for 

multi-agency urban planning workflows (Casino F., et al., 2019). 

 

1.1 Motivation 
 

The process of city planning now involves multi-layered digital 

twins that integrate cadastral parcels, traffic counts, aerial 

LiDAR, and real-time sensor feeds from paper blueprints in the 

past. These spatial layers are no longer static reference maps; 

they are now responsible for making daily decisions like 

rerouting buses, issuing building permits, and marking 

evacuation corridors. The precise coordinates in each dataset 

mean that even a partial leak can reveal the location of high-

security facilities or critical infrastructure, and an undetected edit 

can lead to misguided investment or emergency response (Boulos 

M.N.K., et al., 2018. Chafiq T., et al., 2024). 

The majority of municipal geospatial services still rely on GIS 

servers that are centrally managed and have role-based access 

control. While it may be convenient, one compromised account 

or insider threat can quietly exfiltrate or overwrite entire layers. 

Examples of incidents including the Johannesburg City Power 

ransomware attack in 2019 illustrate that a breach can cripple 

vital city functions and expose valuable spatial data to 

extortionists (BBC News. 2019, July 26). Regulations like the EU 

GDPR penalize for failing to safeguard location information that 

can be linked to individuals or protected sites. 

Research in academia and industry now suggests that 

responsibilities should be divided between strong encryption and 

tamper-proof ledgers. AES-256 prevents payloads from being 

read; a blockchain only keeps cryptographic fingerprints of each 
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file, so that any offline modification can be detected immediately 

if the hash no longer matches the on-chain record (Chafiq T., et 

al., 2024; Rawal D. et al., 2024). Early prototypes have shown 

promise for land-registry or supply-chain data, yet few studies 

adapt the model to the multi-agency reality of urban planning, 

where engineers, external contractors, and public-safety officials 

each need selective access (Zhu, B., et al., 2019; Christidis K. et 

al., 2016). 

1.2 Scope  

The focus of this paper is on a hybrid encryption-blockchain 

model that is designed to fit the timing and governance structures 

of smart cities or urban planning departments. It focuses on a 

manageable subset of geospatial cybersecurity rather than trying 

to solve everything; instead, it creates a prototype that can be 

designed, implemented, and critically examined. Within that 

boundary, the work offers several original contributions that 

extend the state of practice reported in recent literature (Chafiq 

T., et al., 2024; Rawal D. et al., 2024; Casino F., et al., 2019). 

The focus is on updating vector or raster layers on a weekly or 

monthly basis, including updated zoning polygons or new 

building footprints. The exclusion of high-frequency IoT streams 

and live navigation feeds means that data location and all 

geospatial payloads remain offline and encrypted with AES-256. 

The Ethereum-compatible ledger only records 256-bit hashes and 

minimal access metadata. Key management is handled through 

RSA key wrapping, allowing stakeholders to decrypt files. 

Although post-quantum algorithms and hardware security 

modules are identified for future development, they are not 

implemented in this version. The evaluation strategy establishes 

generic performance baselines—such as encryption throughput, 

transaction latency, and gas costs—based on peer-reviewed 

studies (Chafiq T., et al., 2024; Zhu, B., et al., 2019). This 

provides a framework for incorporating empirical results from 

municipal or smart cities pilot projects. Additionally, the design 

takes GDPR obligations regarding location privacy into account, 

though it does not include a comprehensive legal compliance 

audit. 

This subsection translates the paper's ambitions into concrete 

objectives that can be evaluated during prototype development 

and municipal or smart cities pilot testing, once they have been 

established; the goal is linked to a measurable outcome that is in 

line with best practice guidelines in the geospatial security 

literature (Boulos M.N.K., et al., 2018; Chafiq T., et al., 2024; 

Rawal D. et al.,., 2024): Validate confidentiality by 

demonstrating that encoding geographical layers using AES-256 

prevents unauthorised parties from reading sensitive coordinates 

once the files leave the local environment.  Explicitly 

demonstrate that storing only the ciphertext hash on a smart 

contract ensures tamper-proofness. Changing an encrypted file 

offline must be detected immediately by a hash mismatch against 

the on-chain reference (Chafiq T., et al., 2024; Rawal D. et al., 

2024). Analyze the effectiveness of RSA key wrapping to limit 

decryption to stakeholders who possess the necessary private 

keys, which reduces the need to share a single symmetric key 

across departments (Rivest R.L., at el 1978). Measure operational 

feasibility by benchmarking generic alperformance variables 

provided in peer-reviewed research, such as encryption 

throughput, transaction confirmation times, and gas cost, to 

determine whether the architecture is practicable for frequent 

urban planning updates to identify usability barriers (Boulos 

M.N.K., et al., 2018; Zhu, B., et al., 2019).  Compile a list of the 

most common problems faced by users during their experience. 

Smart city installations (Zhu, B., et al., 2019) have recognized 

key handling and transaction delays, and they have developed 

interface or workflow improvements for municipal or smart city 

staff.  The hybrid encryption-blockchain paradigm's ability to 

improve geographical data security and fit into the operational 

reality of smart city planning environments will be demonstrated 

through success in meeting these goals. 

 

2. Literature Review 

 

Understanding the technologies behind the proposed architecture 

is essential when designing a secure pipeline for smart cities' 

geospatial data. Although Blockchain has immutability and 

decentralized consensus, its security guarantees are dependent on 

the internal data structure of blocks, hash pointer linking, and the 

consensus protocol chosen(Boulos M.N.K., et al.,, 2018).  

Cryptographic primitives, including AES-256 and RSA-2048, 

are the dominant protocols in today's Internet traffic, but each 

addresses a different aspect of the confidentiality-integrity 

challenge that city planners are confronted with (Rivest R.L., at 

el 1978,; Zhu, B., et al., 2019).  Therefore, our analysis includes 

the technical operations of blockchains, the reasoning behind 

hybrid encryption as the standard model for large files, and how 

these mechanisms meet the confidentiality and provenance needs 

of urban planning workflows. 

 

2.1 Blockchain  

Blockchains are often described in broad terms, such as an 

immutable ledger, yet their security relies on very specific data 

structures and consensus rules. The technical building blocks that 

make a chain tamper-evident and programmable logic are 

explained in this subsection. The way individual blocks link 

together is shown in a stylized diagram, and Figure 1 illustrates 

how data moves from acquisition to storage, and then from 

storage to visualization and use at different levels, and its privacy 

at different levels.  

Data Structure of Blocks: Each block has a header and a list of 

transactions.  The header maintains the previous block hash (256 

bits in Bitcoin and Ethereum), so that any modification in an 

older block invalidates any subsequent hash (Nakamoto S. 2008). 

All transactions are committed by Merkle root, which includes 

timestamp, nonce, and difficulty/validator information, 

depending on the consensus protocol (Zheng Z., et al., 2018). 

Consensus Mechanisms: Nodes use a consensus technique to 

determine which chain is correct.  Proof of Work (PoW) – miners 

solve a hash puzzle, and security is derived from the amount of 

energy expended (Nakamoto S. 2008). ; Proof of Stake (PoS) – 

validators lock native tokens and face penalties for malicious 

behavior; this minimizes energy consumption while ensuring 

Byzantine fault tolerance (Zheng Z., et al., 2018). 

Figure 1. Block chain linkages. 
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PoW and PoS systems use economic incentives to prevent 

rewriting history, making a successful attack exponentially more 

expensive as blocks pile. 

 

Smart Contracts: Smart contracts, first popularized by 

Ethereum, are bytecode programs that are stored on the 

blockchain.  It can include holding and transferring bitcoin, 

enforcing custom rules (such as access control lists for encrypted 

information), and emitting events that off-chain services monitor 

to trigger additional actions (Christidis K., et al., 2016). Because 

contract code and state are replicated across all complete nodes, 

function calls (such as storeDataHash) provide the same 

immutability guarantees as raw transactions. 

 

Security Properties: Blockchains use a linked block structure 

and economic consensus to provide a set of assurances that are 

difficult to replicate in standard databases.  Understanding these 

guarantees explains why a chain of file hash references can 

safeguard urban planning data against hidden alterations or 

deletions.  Immutability – Modifying a previous block changes 

its hash, which breaks every subsequent link in the chain and is 

immediately identifiable by honest nodes (Boulos M.N.K., et al., 

2018). Auditability – Because block headers contain a Merkle 

root of all transactions, anyone can recalculate the root locally 

and ensure that individual entries have not been changed.  

Byzantine Fault Tolerance – Consensus lasts as long as the 

majority of hash power (in PoW) or stake (in PoS) adheres to 

protocol rules, making it prohibitively expensive for an attacker 

to change history (Zheng Z., et al., 2018 ). These characteristics 

make blockchain an appealing layer for storing cryptographic 

fingerprints of encrypted geographical information, ensuring that 

any offline manipulation is detected the next time a hash 

comparison is conducted. 

 

2.2 Cryptographic Primitives for Secure Data Exchange  

Blockchain can ensure that a file remains untouched, but it must 

also be unreadable by unauthorized users.  This is accomplished 

by hybrid encryption, in which a fast symmetric cipher protects 

the data while an asymmetric technique secures the session key.  

The following paragraphs discuss the two most extensively used 

algorithms on today's Internet, AES and RSA, and explain why 

combining them is common practice. 

 

Advanced Encryption Standard (AES): AES is a block cipher 

that NIST adopted in 2001 and is used in almost all TLS sessions. 

The key sizes are 128, 192, and 256 bits, and the performance of 

the hardware instructions (AES NI) allows mid-range CPUs to 

encrypt several hundred megabytes per second, as confirmed in 

cloud-based benchmarks by Omar et al., (BBC News. 2019) and 

the security status is that a practical attack has broken the full 256 

bit version, making it the de facto choice for bulk data encryption.  

 

Rivest–Shamir–Adleman (RSA): Many public key 

infrastructures continue to rely on RSA for key exchange and 

digital signatures.  The key sizes are 2048 bits is the current 

minimum for strong security; 3072 or 4096 bits are 

recommended for long-term archives (Rivest R.L., et al., 1978). 

Functionality that allows one party to encrypt a short secret (here, 

an AES key) with another party's public key, ensuring only the 

matching private key can decrypt it and the widespread use of 

TLS certificates, code signing, and email encryption all rely 

heavily on RSA, demonstrating its maturity and tooling support. 

 

 

3. Problem Statement, Design and Methodology 

Smart Cities planning teams must exchange critical geospatial 

layers with departments, contractors, and regulatory bodies while 

maintaining confidentiality, integrity, and traceability. 

 

3.1 Problem Statement 

Urban planners must integrate high-resolution location layers 

from zoning, utilities, emergency services, and private 

contractors. These datasets often contain coordinates whose 

disclosure, or silent manipulation, could disrupt city operations 

or jeopardise public safety. Although most Smart cities rely on 

central GIS servers with role-based access, three systemic 

weaknesses remain: 

 

The precise locations of subterranean fiber trunks or undisclosed 

police sites, which are sensitive layers, are typically saved 

unencrypted on shared network drives.  Incidents such as the 

Johannesburg City Power ransomware assault have shown how 

rapidly an intruder may exfiltrate or take control of a completely 

geographic repository (BBC News, 2019). Furthermore, privacy 

legislation (e.g., GDPR Article 4 on "personal data relating to 

location") holds smart cities accountable when insufficient 

measures reveal citizen-related coordinates (Zhu, B., et al., 

2019).  Integrity Blind Spots is a single unchecked shapefile 

alteration that can cause rippling effects in downstream models 

that assign flood mitigation funding or emergency evacuation 

routes.  Traditional checksum logs are useful, but they are stored 

on the same server, which could be compromised.  Land 

registration tests in Sweden demonstrated that external 

notarisation (via blockchain) enhances provenance tracing, but 

their prototypes kept big map PDFs off-chain and unencrypted 

(Proskurovska, et al., 2022). 

 

Coarse Access Control is intended to be a zoning department that 

shares a parcel layer with an external consultant.  Nothing 

prevents the file from being distributed further after the 

consultant has downloaded it.  Shared passwords or symmetric 

keys provide little redress if employees leave or contracts expire.  

Supply chain platforms such as IBM Food Trust use blockchain 

hashes, but they still rely on organisational memberships rather 

than per-user cryptographic rights (Singh V., et al., 2023). 

 

3.2 Research Questions 

Our contribution is the interface design and concrete 

implementation of a scheme that can address the following 

general challenges: How can a smart city planning office protect 

confidential geospatial layers so that a) only explicitly authorized 

individuals can decrypt them, b) any offline modification is 

immediately detectable, and c) permissions can be granted or 

revoked on a per-stakeholder basis rather than relying on a single 

trusted server? 

Our research prototype can help answer detailed research 

questions such as: 

1. Can AES256 encrypt planning files ranging from 2 MB 

to 120 MB quickly enough for weekly updates? 
 

2. Is a 256-bit hash on a smart contract a reliable indicator 

of ciphertext swap or rollback (Rawal D.; et al., 2024)? 
 

3. Is it practical to employ RSA-2048 key wrapping when 

many departments and contractors demand separate 

access? 
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4. What interface designs can enable non-technical 

workers to handle key management and transaction 

signing with little cognitive load (Zhu, B., et al., 2019)? 

 

3.3 Hybrid Encryption Workflow (Design Prototype): 

A Hybrid Encryption Workflow Prototype typically combines 

the efficiency of symmetric encryption with the security of 

asymmetric encryption. Both symmetric and asymmetric ciphers 

solve the complementary problems: AES is faster for huge data, 

but RSA makes distribution easier, as demonstrated in Figure 2. 

 
 

 

 

In reality, the user stores their RSA private key offline.  When 

decryption is required, the user receives the encrypted AES key, 

which he unwraps locally and decrypts the ciphertext.  This 

solution maintains confidentiality, as only authorized key holders 

can access the data, and integrity, because any ciphertext swap 

will fail the on-chain hash check. 

 

3.4 Methodology Overview 

The purpose of this paper is to design and evaluate a 

decentralized system for secure geospatial data management. 

The approach uses AES-256 encryption to off-chain encode 

critical location data, and symmetric keys are wrapped with RSA 

to enforce per-user access.  Similarly, it records a cryptographic 

digest of each ciphertext on a tamper-proof blockchain (Boulos 

M.N.K., et al., 2018,; Chafiq T., et al.,. 2024; Rawal D. et al., 

2024,; Alghamdi T., et al., 2021).  Data secrecy is preserved off-

chain, but integrity and access control can be validated on-chain 

by integrating these complementary cryptographic approaches 

Zhu, B., et al., 2019,; Christidis K., et al., 2016). 

 

Our iterative method, which was based on Blockchain 

Architecture (Zheng Z., et al., 2018) was utilized to create a 

prototype without delays and in a controlled and progressive 

manner. The first step included implementing version control, 

virtual environments for Python and Node.js, and smart contract 

tooling (Figure 3).  The coordinates were confirmed, duplicates 

eliminated, and standardized JSON/CSV files exported after 

absorbing and cleaning the raw spatial files.  The core encryption 

phase followed, during which AES256 scripts converted datasets 

to ciphertext and RSA key management routines generated per-

user-wrapped keys.  A Solidity contract was created to safeguard 

our data by maintaining digest anchors and permission mappings, 

which are necessary for blockchain integration. 

The workflow (Figure 3) evolved into API and frontend 

development, with FastAPI endpoints orchestrating encryption 

and on chain calls and a React application offering a user-friendly 

interface.  In succeeding rounds, all components were validated 

by rigorous testing, unit, integration, and performance 

benchmarks.  Following that, we put the whole stack in Docker 

containers and talked about future improvements, such as keys 

that are resistant to quantum attacks, zero-knowledge proofs, and 

Layer 2 scaling.  Each phase concluded with the development 

team and domain supervisors assessing tangible outputs such as 

scripts, contracts, and UI components to confirm technological 

robustness and compliance with geographic management 

standards. 

4. Prototype Implementation  

The application of code, smart contracts, and user-friendly 

interfaces has made it feasible to construct a secure geospatial 

system. The initial step is to provide an overview of the major 

components and then go into detail for each component, 

highlighting the libraries used, presenting key code excerpts, and 

including diagrams and screenshots as needed. 

 

4.1 Data Preparation 

Geospatial Location data may contain incorrect coordinates, 

duplicate features, or incompatible attribute standards.  Phase B 

cleans and standardizes these layers so that encryption and 

hashing can work on reliable input. 

 

City datasets come from a variety of sources, including cadastral 

shapefiles, GeoJSON exports from contractors, and Excel lists of 

facility addresses (Figure 4).  Feeding these straight into an 

encryption pipeline risks encoding mistakes that subsequent 

studies cannot discover, as shown in the figure.  As a result, Phase 

B establishes a consistent cleaning schedule. 

 

4.2 Encryption Module 

The secure geospatial system proposed in this work begins with 

a strong encryption pipeline that converts cleaned geospatial files 

Raw Shape 
file

Validation of 
Lat/Long 

range

Duplicate 
Check

Attribute 
Standardize

Clean CSV + 
JSON

Figure 3. Methodology/Workflow. 

Figure 4. Data‑Cleaning Pipeline. 

Figure 2. Hybrid encryption and key wrapping. 
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to ciphertext and prepares key material for controlled 

distribution.  This module is written in Python and mostly uses 

the PyCryptodome library for cryptographic operations (BBC 

News, 2019), as well as conventional modules for file I/O and 

hashing. 

 

Encrypting each cleaned dataset before it leaves the local 

workstation is the cornerstone of the system’s confidentiality 

goal. Phase C transforms the validated CSV / JSON files 

produced in Phase B into ciphertext files (*.enc) and records a 

cryptographic fingerprint (SHA-256) that later phases will write 

to the blockchain. 

 

AES 256 Encryption: Any data that leaves the local 

environment must be kept inaccessible to unauthorized parties.  

The AES 256 Encryption script accomplishes this by reading 

each file, encrypting it in CBC mode, and generating both 

ciphertext and integrity metadata.  

 

The key libraries Crypto. Cipher. AES and cryptocurrency. Util. 

Python block ciphers require padding from PyCryptodome to 

function.  Python includes its own pathlib for filesystem paths 

and hashlib for SHA256 hashing. 

 

RSA Key-Wrapping: Once the data is encrypted, each 

stakeholder must be able to access the AES key without sharing 

a single symmetric secret. The RSA Key Wrapping utilities 

create per-user key pairs and encrypt the AES key under each 

public key. 
 

Key libraries include Crypto.PublicKey.RSA and 

Crypto.Cipher.PKCS1_OAEP from PyCryptodome (BBC News, 

2019). Use Python's base64, json, and pathlib for encoding 

information and file paths.  

 

4.3 Smart Contracts 

The system's integrity and access control are based on a Solidity 

smart contract that keeps cryptographic hashes of encrypted 

information and enforces user rights.  This contract was created 

with Solidity 0.8.4 and uses patterns from OpenZeppelin's library 

for ownership and security (Christidis K., et al., 2016).  The use 

of Hardhat and Ethers.js is utilized to deploy and test it to ensure 

thorough validation before integration. 

 

The GeoDataStorage as in figure 5 contract maintains a mapping 

from dataset IDs to entries, each holding a ciphertext hash and an 

access-control mapping. It inherits Ownable from OpenZeppelin 

to restrict management functions to the deployer. 

 

 

 

 

 

 

 

 

 

 

 

 

The GeoDataStorage.sol contract uses OpenZeppelin's Ownable 

module to restrict administrative functions to the deployer, 

provides events for on-chain auditing, and includes methods for 

storing ciphertext hashes and managing user access permissions. 

Use Hardhat's runtime environment to compile and deploy the 

contract to a local test network.  The script stores the deployed 

address in a.env file for later use by the backend.  Comprehensive 

testing guarantees that each function performs as expected under 

various authorization settings.  The Hardhat framework 

(Christidis K., et al., 2016). is made up of Mocha, Chai, and 

Waffle. 

Backend Integration (Web3.py & FastAPI) 

To connect encryption, key wrapping, and blockchain 

interactions, the Python backend uses Web3.py for Ethereum 

connectivity, Python dotenv for configuration, and FastAPI for 

REST endpoints.  The configuration of the Web3 client, 

encapsulation of contract calls in a service layer, and exposing 

HTTP routes to coordinate the entire workflow are discussed in 

this section. 

 

Before any contract method can be called, the backend requires a 

Web3 connection, as well as the contract's ABI and address.  The 

HTTP provider is created through the use of Python's dotenv to 

load environment variables (BLOCKCHAIN_PROVIDER, 

CONTRACT_ADDRESS, PRIVATE_KEY), followed by the 

setup of Web3.py (React. 2020). 

 

Rather than incorporating blockchain calls into our API routes, 

we wrap them in a Blockchain Service class.  This design 

simplifies unit testing by separating concerns.  The service 

provides mechanisms for storing data hashes and managing 

access permissions. 

 

 Use store_data_hash(dataset_id, hash_hex) to create, 

sign, and transmit a storeData transaction. 

 Use grant_access(dataset_id, user_addr) to grant access 

to a contract. 

 Use revoke_access(dataset_id, user_addr) to revoke 

access to a contract. 

 

The Blockchain Service class has methods for creating, signing, 

and sending transactions, as well as storing data hashes and 

controlling access rights on the blockchain. 

The FastAPI application provides RESTful endpoints for 

orchestrating Phases C-E in a single HTTP call.  FastAPI is 

utilized for route declaration and automatic validation. 

4.4 Frontend Implementation 

The user-facing element of our system is a React application that 

abstracts cryptography and blockchain complexities, providing 

smart city workers with a simple interface for file upload, 

encryption monitoring, and access management.  Unlike the 

backend, the frontend does not employ a utility CSS framework; 

instead, it uses CSS Modules for scoped styling, along with a tiny 

collection of global styles in src/styles/main.css. 

The application's entry point, src/index.js, loads <App /> and 

imports global CSS.  Routes are defined in src/App.jsx, and 

primary views in src/pages/.  Reusable UI elements are stored in 

src/components/, which is divided into data/, layout/, 

blockchain/, and map/.  State and context providers are found in 

src/contexts/. Key dependencies (package.json):  React ^18.2.0 
Figure 5. Contract Class Diagram. 
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supports component rendering and hooks (React. 2020).  Use 

React Router DOM ^6.20.1 for client-side routing between  

Dashboard (figure 6), Data Management, and Blockchain 

Management pages (React Router. 2023).  Axios version 1.6.2 

supports HTTP interactions with the FastAPI backend (Axios 

Contributors. 2023).  Web3.js ^4.3.0 and Ethers ^6.9.0 are used 

for Ethereum contract calls in the UI (Web3.js Contributors. 

2023 ; Ethers.js Contributors. 2023).  Leaflet ^1.9.4 and React 

Leaflet ^4.2.1 are tools for visualizing public GeoJSON data on 

maps (React-Leaflet. 2023). 

Global styles in src/styles/main.css provide base typography 

and layout resets; all component-specific styles are included. 

module.css and jsx files. 

The key components of systems are: 

 

 
 

 

 

The FileUpload component shown in Figure 7 enables users to 

pick one or more files and send them to /api/upload.  It shows 

progress, success messages, and errors. After upload, FileList, 

as shown in Figure 8, retrieves encrypted datasets and shows 

their IDs and hashes in a table, with a button to unlock access 

controls. 

 

After decrypting a dataset, Data Statistics summarizes feature  

 

 

React Leaflet links Leaflet mapping in Figure 9 to React 

components (React-Leaflet. 2023). Each component's .css file 

defines only its classes, eliminating leakage.  

 

5. Results & Discussion 

Empirical results from the evaluation of a secure geospatial 

system are presented, along with their implications.  We focus on 

three critical dimensions: performance, security, and usability, to 

determine how the prototype satisfies design objectives and 

where further enhancements are required. 

5.1 Performance Evaluation 

To determine if the system can manage real-world geographic 

demands, we measured: 

 

 AES 256 encryption throughput refers to the rate at 

which files are processed. 

 Blockchain latency refers to the time between 

submitting a transaction and its confirmation on a local 

Hardhat node. 

 Ethereum gas consumption for crucial smart contract 

functions. 

Benchmarks were run on a development system (Intel i5 8265U, 

16 GB RAM, Ubuntu 20.04) with the benchmark_encrypt.py and 

Hardhat's gas reporter. 

The measured encryption rate (247.42 MB/s) is comparable to 

the speeds reported for PyCryptodome's AES-CBC 

implementation.  Blockchain transactions are confirmed in 

around one second, which is sufficient for non-real-time 

operations in a trusted pilot environment.  Gas usage for storing 

a 32-byte hash (~34 k gas) and changing access limits (~45 k gas) 

is consistent with other smart contract designs. 

 

Blockchain Testing 
 

To validate the blockchain integration module 

(test_blockchain.py), a thorough interaction test was performed 

on a locally installed contract on Hardhat.  The test validated the 

connection, transaction execution, and on-chain data retrieval. 

 This output confirms that the system successfully connected to 

the local Ethereum test network. 

 

   Data was successfully anchored on the chain using 

storeData. 

 GrantAccess provided access, and access control functioned 

properly. 

 Successfully retrieved saved hash values and metadata. 

 On-chain storage ensured integrity across multiple datasets. 

 

Figure 7.  File Listing. 

Figure 9. Geospatial Visualization. 

Figure 6. Dashboard home page. 

 

Figure 8. Uploaded file-listing page. 
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Security Analysis 

 

The security analysis tests were carried out by us: 

 

1. Unit Testing :The encryption, RSA wrapping, and 

contract-service modules have over 90% code 

coverage, ensuring correct behavior in both normal and 

edge circumstances (e.g., incorrect key unwrapping 

causes issues).  

2.  Smart Contract Audits: A manual inspection of 

GeoDataStorage.sol revealed that only the owner 

(deployer) can perform administrative activities, 

preventing illegal state modifications.  The built-in 

checks in Solidity 0.8.4 detected no reentrancy or 

overflow hazards. 

3. Integration Testing: End-to-end testing 

(test_fastapi.py) confirmed that data uploaded, 

encrypted, and stored on the chain can only be retrieved 

and decrypted with authorized keys. 

 

These findings show that the system maintains confidentiality, 

integrity, and access control as planned, with no serious 

vulnerabilities discovered during our testing phase. 

 

5.2 Usability and UX Feedback 

To determine how well smart city workers can run the system, 

and conducted informal usability sessions with three individuals 

who were unfamiliar with blockchain: 

The average completion time for a 10 MB upload is 9.016 

seconds (based on three runs).  Encrypt (10 MB): 5.590 seconds 

(average of three runs),  Grant access to a colleague's address: 

2.143 seconds (average of three runs),  Decrypt and analyze data 

statistics.  Participants only reported issues when entering invalid 

Ethereum addresses (1 out of 10 attempts), indicating effective 

UI validation. 

Users' feedback about clear progress messages and simple table 

arrangement.  Some users requested inline assistance tooltips for 

terminology like "cipher hash" and "tx hash" to help them 

understand blockchain jargon better. 

The UI design, which includes CSS Modules for consistency and 

React Leaflet for map previews, allows first-time users to 

perform fundamental operations without developer support. 

While the prototype satisfies its security and performance 

requirements for pilot deployment, some drawbacks have arisen. 

 Scalability: Single‑threaded Python encryption may 

bottleneck on large batch jobs. A parallel or streaming 

approach could improve throughput. 

 Blockchain costs: Gas usage on public Ethereum 

networks could be prohibitive; deploying to a Layer-2 

solution or private consortium chain may be necessary. 

 Authentication: The current trusted-operator model 

lacks per-user authentication. Integrating 

Web3-signature or JWT flows (see Phase H) will be 

essential for untrusted environments. 

 UX enhancements: Adding contextual help, more 

robust input validation, and mobile‑responsive charts 

would improve accessibility for field officers. 

 

These insights serve as a road map for future work, with a focus 

on scalability, cost minimization, and improved user 

management. 

 

6. Conclusion & Future Work 

Finally, the secure geospatial system's accomplishments should 

be summarized, its current constraints should be considered, and 

a route for future improvements should be plotted.  The prototype 

shows how smart cities may protect sensitive location data by 

combining AES256 and RSA encryption, blockchain-anchored 

immutability, and fine-grained access controls. 

6.1 Contributions and Findings 

The paper presents a full, end-to-end solution for securely storing 

and exchanging geographical datasets.  Its main contributions 

are:  The Hybrid Encryption Pipeline includes an AES 256 

encryption module that converts geographic data into ciphertext, 

as well as RSA-based key wrapping that allows for per-user 

decryption without exposing a shared symmetric key. 

 

Blockchain-anchored integrity and access control are 

implemented using a Solidity smart contract 

(GeoDataStorage.sol), which saves SHA 256 hashes of encrypted 

files and enforces owner-managed rights to ensure tamper 

evidence and auditability. 

 

To create a seamless backend orchestration.   The Python 

backend leverages FastAPI and Web3.py to manage encryption, 

key wrapping, and on-chain transactions over simple HTTP 

endpoints, removing complexity from end users. 

 

The User Centric Frontend Interface is created with a React 

application that includes CSS Modules, Axios, Web3.js, and 

React Leaflet. It enables simple workflows for file upload, 

permission control, and data visualization. 

 

Empirical validation verifies encryption throughputs of around 

185 MB/s and sub-second blockchain latencies.  Security testing 

confirmed confidentiality and integrity guarantees, and usability 

tests showed that first-time users could execute activities with 

minimum assistance. 

 

These studies collectively demonstrate that combining 

cryptography and decentralized ledger technologies can protect 

sensitive geographical data while maintaining usability. 

6.2 Limitations 

Despite its advantages, the prototype has many limits that 

require attention: 

 The AES-CBC implementation processes files 

sequentially, resulting in limited speed for big datasets 

or concurrent uploads. 

 The Trusted Operator Assumption system lacks per-

user authentication, assuming all backend clients are 

pre-trusted. This makes it unsuitable for open or multi-

institutional installations. 

 Blockchain cost and scalability are determined by gas 

usage for each store. Data and grantAccess transactions 

on public Ethereum may make the approach 

economically untenable at scale. 

 The phrases "cipher hash" and "transaction hash" can 

be confusing for non-technical users without 

contextual guidance or tooltips. 
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Recognizing these limits helps shape the path for improving 

robustness, security, and user experience. 

 

7. Future Work 

Further study may take place in the future.  Building on the 

prototype, further development will take the following 

directions: 

 The encryption module is refactored to use multi-processing 

or streaming ciphers (e.g., AES GCM in chunked mode) for 

faster big or batch uploads. 

 Integrate decentralized identity and authentication with 

Web3-based signature authentication or JWT flows to 

restrict access to sensitive API endpoints to authenticated 

users, eliminating the need for trusted operators. 

 Smart contracts will be deployed on low-cost Layer 2 

networks, such as Polygon, or private consortium chains to 

decrease gas expenses and maintain immutability 

guarantees. 

 Zero Knowledge Proofs for Privacy can use ZK SNARKs to 

verify data attributes (e.g., spatial coverage) on a chain 

without revealing raw geospatial content. 

 Advanced Access Policies allow smart contracts to enable 

time-bound, role-based, or geofenced permissions, limiting 

decryption to certain time windows or geographic borders. 

 Implement inline tooltips, guided tutorials, and increase 

mobile responsiveness to reduce barriers for non-technical 

stakeholders. 

 Evaluate post-quantum cryptography at the block level in 

blockchain key encapsulation systems (e.g., Kyber) for 

future-proofing against emergent threats. 
 

By pursuing these developments, the secure geospatial 

framework can evolve into a production-grade platform that can 

adapt to varied institutional, technical, and regulatory settings. 
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