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Abstract 

 

As part of the RETURN project, a model for assessing landslide susceptibility through logistic regression within a GIS environment 

has been developed, aimed at supporting public authorities and professionals in managing ground instability risks. The model utilizes 

freely accessible national-scale datasets to ensure high transferability and transparency of results. The analysis is implemented in 

Python and integrated into GRASS GIS, with the objective of automating the workflow and making the procedure accessible even to 

non-expert users. The methodology was tested in the Province of Savona (Liguria, Italy), using eight predisposing factors and landslide 

data from the IFFI inventory. The results demonstrated reliability exceeding 75% in most cases. The resulting susceptibility maps are 

reclassified into three qualitative categories—low, medium, and high susceptibility—to improve interpretability. The case study 

highlighted both the strengths and limitations of the approach, notably the need to standardize data and procedures to ensure 

applicability at broader scales. Ongoing development efforts are focused on enhancing the identification of relevant factors and 

minimizing subjectivity in data preparation. The automation of the model paves the way for extensive testing across different areas 

and geomorphological settings, contributing to the development of a robust tool for landslide risk management. 

 

1. Introduction 

Within the Piano Nazionale di Ripresa e Resilienza (PNRR, 

literally National Recovery and Resilience Plan) Extended 

Partnership (EP) “Multi-Risk sciEnce for resilienT commUnities 

undeR a changiNg climate” (RETURN), the research group of 

the Department of Civil, Chemical and Environmental 

Engineering (DICCA) of the University of Genoa is developing 

a system for processing landslide susceptibility maps in 

Geographic Information System (GIS) environment. The 

expected result is a tool meant to be used by administrations and 

local authorities for ground instability assessment and 

management. Therefore, high usability is required, that implies 

free and easily available input data, readily interpretable results, 

and clearly explained limitations of use and reliability levels.  

To accomplish this objective, some stakes have been established: 

- flows, slides, areas subject to diffuse shallow landslides and 

those landslides classified as “undetermined” and “complex” 

were considered for the processing of susceptibility maps. It 

does not apply to falls, topples and areas subject to diffuse 

falls and topples and Deep-seated Gravitational Slope 

Deformations. 

- the analysis method is the logistic regression, which is widely 

used and documented in scientific literature (Chang et al., 

2019; Chowdhury et al., 2024; Goyes-Peñafiel et al., 2021; 

Kadavi et al., 2019; Lin et al., 2017; Süzen et al, 2011; Zhao 

et al., 2019);  

- the proposed tool should be scalable and transferable; 

- minimum “guaranteed” reliability threshold is imposed. 

Tests are undergoing in several areas to verify that a 

reliability of at least 75% is achieved in the calibration phase. 

Alternatively, the conditions contributing to lower outcomes 

should be identified, and potential corrective measures 

should be evaluated; 

- to facilitate the usability of the procedure for users with 

limited GIS experience and to ensure the accurate 

implementation of the planned operations, the entire 

procedure is currently being developed in Python (Python 

Software Foundation, 2025), initially within the GRASS GIS 

environment (GRASS Development Team, 2025), and 

potentially as a standalone tool in the future. 

2. Context: the province of Savona (Italy) case study 

The work builds upon an already tested methodology of 

statistical analysis within a GIS environment, based on logistic 

regression (Bovolenta et al., 2016; Marzocchi et al. 2015). The 

aim of this study is to adapt it to the current version of GRASS 

GIS (ver. 8.4), to streamline and standardize the individual steps, 

and to optimize the methodology for large-scale applications.  

The procedure was tested on the province of Savona (Italy), an 

area of about 1000 km2, considering the pixel as the minimum 

spatial unit, with a nominal scale of 1:100,000 and a raster 

resolution of 20 m.  

Eight predisposing factors were chosen: elevation, slope, 

exposure, water accumulation, land use/land cover, lithology and 

rainfall influence. From the literature review, several other 

factors have been considered in logistic regression procedures 

(Chaohai et al., 2025; Liu et al., 2025; Salmona et al., 2025; Wu 

et al., 2023; Yang et al., 2024). However, the decision was made 

to start with the mentioned variables, as they are independent 

from one another and openly available across the entire Italian 

territory, either directly at the national scale or provided by 

individual Regions. 

The first phase consisted of pre-processing and discretization of 

the base data, allowing general data quality checks and to reduce 

the possible combinations of factors to a manageable number. 

The eight considered factors were then brought into raster format 

at the set resolution and divided into qualitative (e.g., land use 

type) or ordinal (e.g., elevation intervals, from 0 to maximum 

elevation) classes. 

The resulting maps were compared in a bivariate analysis with 

the Inventory of Landslide Phenomena in Italy (IFFI) (ISPRA, 

2025a), and the classes of each factor were reordered based on 

conditional probability. Then the factors were related to each 

other and to the presence of landslides in a multivariate analysis 

by logistic regression, defining the probability values.  
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This procedure was applied both by considering all landslide 

areas as the statistical sample and by analyzing each landslide 

mechanism individually. The tests conducted to date have shown 

that each type of landslide is affected differently by the 

considered factors, and the model is more reliable if the different 

types of slope failure mechanisms are treated separately.  

The procedure described above resulted in an Area Under the 

Curve (AUC) in calibration generally above the preset threshold 

of 75%. Diffuse shallow landslides and complex landslides 

remain below the threshold, although they still exceed 73%. 

The resulting maps report probability values aggregated into 

three qualitative classes to indicate the high, medium and low 

levels of landslide susceptibility. 

2.1 Lessons learnt from the case study 

The procedure proved to be relatively straightforward and 

suitable for general screening purposes; however, it is 

undoubtedly time-consuming and prone to coarse errors, making 

it poorly suited for large-scale applications in its current form. 

The area selected for the case study, identified on an 

administrative basis, proved to be adequate in terms of spatial 

extent, but it encompasses two environments that differ 

significantly in geomorphological, climatic, and anthropogenic 

characteristics. A delineation based on physical boundaries could 

result in more homogeneous conditions and a less noisy context; 

however, it could also present challenges in acquiring base data, 

as these may fall under the jurisdiction of different administrative 

entities. 

While the quality of input data remains crucial, a minimum 

dataset must be defined to ensure the broad applicability of the 

proposed procedure and facilitating comparisons across diverse 

spatial and temporal contexts. Such data should be open, of high 

quality (or at least possess a clearly defined level of reliability), 

and available not only for a single case study but, at a minimum, 

on a national scale, as required by the RETURN project. 

Moreover, even when identical datasets and clear guidelines for 

applying the proposed methodology are provided, multiple stages 

remain at which a non-specialist operator may face technical 

challenges or be compelled to make subjective decisions. In this 

regard, the procedure should be considered a continuous work in 

progress, and it must be accompanied by detailed documentation, 

allowing for ongoing integration of improvements or adjustments 

as new needs arise. 

2.2 The Python script 

In response to this issue, the mode, initially developed within the 

GRASS GIS environment, is being rewritten as a Python script, 

not only to enable more efficient application, thus reducing time 

consumption and minimizing the risk of gross errors, but also to 

establish a standardized procedure that ensures accessibility for 

users outside the research team and facilitates the production of 

comparable results. The presented tool includes a predominantly 

automated “basic version”, optimized for the use of a minimum 

dataset consisting of openly available data covering the entire 

Italian territory, to describe predisposing factors, and using 

landslide areas reported in the IFFI inventory as the statistical 

sample.  

Alternatively, the tool can be customized by introducing 

additional factors not included in the initial tests or by employing 

site-specific datasets (e.g., mapped landslides or land use derived 

from remote sensing). In this case, the initial phases of the 

procedure, namely, the data preparation, are not automated but 

are left to the operator, following more stringent specifications. 

2.3 Considerations about data 

The required data are listed in the themes outlined in Annexes 1, 

2, and 3 of INSPIRE directive (European Parliament, 2007). 

However, an analysis of the nationally available datasets revealed 

issues of insufficient quality; consequently, the same types of 

data were sourced from regional authorities. 

In the following, some recommendations for the selection of 

reference data are reported. 

 

2.3.1 Study area extent: It defines the boundary of the 

domain under analysis. It is advisable to start with a vector 

dataset, which will be used as a mask for all subsequent raster 

maps. While using an administrative boundary may be simpler 

for obtaining data distributed by local authorities, it is preferable 

to work with an area that does not exhibit highly divergent 

features (e.g., two slopes separated by a main watershed or 

contrasting regions such as alpine areas and plains). In this 

regard, a physical delineation, such as a hydrological basin or a 

large slope, may be preferable. 

From the experiments conducted to date, a scale of 1:100,000 

with a 20 m resolution for raster data resulted to be a good 

compromise, considering areas around 1000 km².  

 

2.3.2 Digital Terrain Model (DTM): It represents the 

elevation of an area. Based on the resolution of the DTM, the 

resolution of all other maps is defined, including those derived 

directly from it (slope, aspect, and water accumulation), as well 

as those created independently. Regardless of its origin, it is 

important that the DTM is seamless and that it does not result 

from an upscaling operation, meaning it should not be resampled 

to increase its resolution. 

 

2.3.3 Lithology: For the Italian context, Digital Lithological 

Map of Italy at 1:100,000 scale (Bucci et al., 2021; Bucci et al., 

2022) was chosen. It classifies the different lithological types 

present in the Italian territory into 19 classes, based on 

compositional and geo-mechanical criteria. These classes are 

identified by a number and a brief description. 19 classes are 

many, but by clipping the map to the study area, some are usually 

excluded, and in the bivariate statistics section, others report 0 

landslides and are therefore grouped as a single class. It is also 

possible to use other geological and lithological maps with 

different grouping methods. The simplest method, based on the 

origin of geological formations, results in 5 classes, but with 

noticeably less accurate results. 

 

2.3.4 Land Use: Any land use/land cover map may be 

utilized; however, it is recommended that, in the case of large-

scale and highly detailed nominal maps, land units be grouped 

according to soil cover rather than “economic” use. For instance, 

an olive grove may be classified as “agricultural” in terms of land 

use, but as “tree-covered” in terms of land cover. A reliable 

reference is the ESA WorldCoverMap v200 of 2021 (Zanaga et 

al., 2022), with a 10 m resolution, which identifies 11 classes. For 

instance, in the case study, the Land Use map of the Liguria 

Region (Regione Liguria 2019a, Regione Liguria 2019b), 

originally with 82 classes, was grouped into 8 classes according 

to the ESA WorldCoverMap v200 legend. Each class should also 

be assigned a progressive number, which will be used in the 

statistical analyses. 

 

2.3.5 Distance from the road network: This factor is 

intended to evaluate the impact of slope modifications and road 

presence on the occurrence of landslide phenomena.  
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It is derived from the road and railway networks (excluding 

tunnels and bridge/viaduct sections) by applying progressively 

widening buffers around each segment, based on the assumption 

that beyond 200 meters, the influence of slope cuts diminishes 

substantially (Brenning et al., 2015). In the case of Italy, although 

national-level data are available, it may be preferable to use 

region-specific data if they are more up-to-date and accurate. If 

the data are at a more detailed scale (1:5000 or 1:10000), this 

does not significantly affect the results, as small curves and 

details are lost in the rasterization and buffering process, 

ultimately reaching a similar level of detail. It is worth 

emphasizing that, since the analysis approach takes the road 

network into account, the resulting mapping may be useful for 

the monitoring of these infrastructures. 

 

2.3.6 Rainfall influence: It is quantified through Climatic 

Aggressiveness, an indicator that characterizes the degree to 

which an area is exposed to extreme rainfall events by relating 

average monthly and annual precipitation over an extended 

multi-year period. Climatic aggressiveness is calculated using the 

following equation (Arnoldus, 1980): 

AC = ∑
p

i
2

P

12

i = 1

 (1) 

where pi is the average rainfall for each month and P is the 

average annual rainfall. This parameter describes how the 

presence of drought periods and extreme rainfall events influence 

ground instability. To incorporate this factor into the model, 

monthly cumulative precipitation data for the study area over a 

minimum period of 30 years is required; if such data are 

unavailable, the longest possible time series should be used (21 

years in the presented case study). In Italy, the “National System 

for the Collection, Processing, and Dissemination of Climate 

Data – SCIA” (ISPRA, 2025b) provides point-specific climate 

data collected by a network of monitoring stations distributed 

throughout the country. Alternatively, rainfall data collected by 

local operators (Regional authorities, municipalities, 

associations, private institutions, etc.) or continuous data (raster 

maps) from global sources can be used. In all cases, 

preprocessing is required. If the rainfall data is in point form, it 

must be interpolated to create continuous maps at the specified 

resolution. In the case of large-scale data, resampling to the 

desired resolution is likely necessary. 

 

2.3.7 Landslides: In Italy, at the national level, the most 

comprehensive and up-to-date dataset regarding landslide 

phenomena is the IFFI inventory, which provides delineation and 

identification points for landslide events collected by various 

River Basin Authorities at a 1:25,000 scale. Each landslide event 

is associated with the type of landslide mechanism (as a number 

and a brief description) and, when available, other descriptive 

data. The data are organized by Italian Regions and are readily 

accessible and downloadable as shapefiles, even for non-expert 

users. Therefore, the data from this dataset were selected as a 

basic statistical sample, and the statistical analysis procedure was 

optimized based on their defining characteristics. Alternative 

datasets may also be employed, for instance, when locally 

collected data are available or for areas outside of Italy. In such 

cases, it is essential that the data be structured in a manner 

consistent with the IFFI dataset. 

 

 

 

 

 

 

2.4 Workflow 

To sequence the GRASS commands used in the procedure, the 

grass.script package was employed. Additionally, the os, 

pandas, re and csv packages were utilized.The work consists of 

eight parts, initially developed separately and subsequently 

integrated into a sequential workflow. The portion completed so 

far represents the simplest scenario, which can be customized, for 

instance, by using different datasets, and extended by 

incorporating additional predisposing factors or by applying 

alternative methods for input data classification. The code is 

available on: https://github.com/LabGeomatica/SALSA 

(Salmona, 2025). The subsequent Figure 1 and Figure 2 represent 

graphically the eight steps of the workflow, that are more 

extensively described in sections 2.4.1-2.4.8. 

 

2.4.1 Working environment setting: The settings defined 

during this initial stage, specifically the working area, spatial 

resolution, and a designated folder for storing all files generated 

and used in subsequent phases, will be retained throughout the 

entire workflow. Once created a Location in a projected 

coordinates system, the first required input consists of a vector 

map of the study area and the specified spatial resolution. Based 

on this input, a mask is generated with the r.mask module, which 

is applied throughout the procedure to ensure that all input and 

output maps are consistently aligned with the same working area 

and resolution. Unfortunately, it is not always possible to clip 

maps representing the various predisposing factors with perfect 

spatial alignment, which may result in the presence of empty or 

undefined areas. This issue is particularly common along 

coastlines or administrative boundaries, where some maps do not 

precisely match the outline of the study area, leading to small 

gaps. 

 

2.4.2 Predisposing factors maps: The maps representing the 

various predisposing factors are imported and clipped using the 

mask. To ensure consistency across input data, it is required that 

the extent and resolution of the input datasets match with the 

predefined working area and resolution. For raster data, a control 

script is implemented to enforce this requirement: by comparing 

the dataset extent (calculated with r.info) with the current region 

extent (calculated with g.region), the script prevents the import 

of data with a smaller extent or resolution, generating an error 

message and skipping the map. If the resolution of the input is 

higher than the specified one, the map is resampled accordingly. 

Elevation, slope, aspect, and water accumulation are all derived 

from the DTM, which is therefore the only required input for 

these factors. Processing is performed at this stage using the 

r.slope.aspect and r.watershed commands, ensuring that border 

cells are also included in the computation. Regarding the 

lithology layer, it is based on the Digital Lithological Map of Italy 

for the present version of the procedure, which is applicable 

exclusively to areas within the Italian territory. For land use/land 

cover vector maps, once it has been verified that the bounding 

box is at least as large as the defined working region (using r.info 

and g.region), the features are rasterized directly within the mask 

and at the specified resolution. As no default dataset has been 

identified so far, users are expected to prepare the map using 

available data, in accordance with the specifications outlined 

above. Concerning the proximity to surface transportation 

networks, the required data are vector graphs representing 

ground-level segments of both the road and railway networks. 

Once imported, these are rasterized, merged, and used to generate 

buffer zones. 
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Figure 1. First phase of the workflow: (1) working environment 

setting, (2) import/creation of predisposing factors maps, (3) 

maps classification, (4) statistical sample setting. 

 
Figure 2. Second phase of the workflow: (5) bivariate statistical 

analysis, (6) multivariate statistical analysis, (7) validation; (8) 

susceptibility map. 

 

2.4.3 Ordinal variables maps setting: Factors represented by 

vector maps are already categorized into qualitative classes, each 

assigned a consecutive integer value starting from 1. In contrast, 

raster-based maps contain continuous values, which are 

reclassified into ordinal classes, likewise assigned consecutive 

integer values beginning with 1. For the elevation map, the 

classification begins with the minimum value of the DTM, and 

the amplitude of the intervals can be defined as needed. For 

aspect, accumulation, and slope maps, a fixed classification has 

currently been adopted; however, it would be desirable to allow 

for customizable parameters, for example, the number and 

orientation of aspect classes or the degree intervals between slope 

classes. 
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2.4.4 Statistical sample setting: The statistical sample refers 

to the area affected by landslide phenomena. This step handles 

the import of landslide data in the form of vector polygon files. 

In the IFFI database, landslides are divided into two layers, the 

first one consisting of polygon for individual landslides and 

another representing polygon for areas affected by widespread 

landslides. In both layers, landslide types are identified by 

numerical values listed in a column of the attribute table. 

Alternative datasets can also be used, provided that the associated 

attribute table includes a column containing a unique numeric 

identifier for each landslide type represented.  After a preliminary 

check to ensure the dataset fully covers the working area (by 

comparing the dataset extent using v.info with the region extent 

calculated using g.region), different types of soil landslides are 

extracted and loaded into GRASS as raster layers, where 

landslide areas are assigned a value of 1 and non-landslide areas 

a value of 0. For each landslide type, a dedicated mapset and a 

corresponding subfolder within the working directory are 

created, where the results of subsequent processing steps will be 

stored. To assess the reliability of the procedure and the influence 

of the various factors on each landslide type, 100% of the 

landslide polygons were initially considered. For a workflow that 

includes model calibration and validation, 80% of the polygons 

for each landslide type are randomly selected and used for 

calibration, while the remaining 20% are reserved for validation. 

The subsequent steps are conducted in parallel for each selected 

landslide type, and the resulting maps are stored in their 

respective mapsets. 

 

2.4.5 Bivariate analysis: The statistical sample is compared 

with each predisposing factor to identify the classes in which the 

ratio between landslide area and class area is highest, according 

to the conditional probability formula: 

Pcond = P(f|k) = 
P(f ∩k)

P(k)
 (2) 

where P(f ∩ k) is the probability that a pixel is inside a landslide 

area, and P(k) is the probability that a pixel belongs to a certain 

class. For each factor, a comparison is made between the 

landslide map and the classified factor map using the r.stats 

command, producing a .csv file that reports the number of cells 

affected and unaffected by landslides for each class. These values 

are used to calculate the conditional probability for each class. 

The classes are then re-ranked: a value of 1 is assigned to the 

class with the lowest conditional probability, with increasing 

values assigned to the other classes. In cases where two or more 

classes have the same probability, they are assigned the same 

value. In the experimental setup, the entire study area is 

considered potentially susceptible to landslides, even in areas 

where the probability is extremely low, such as flat terrains. 

Consequently, even when a class contains no landslide cells (i.e., 

conditional probability equal to zero), it is still assigned the 

lowest value. Moreover, when using the Digital Lithological Map 

of Italy, which comprises 19 classes, it is common for several 

classes to contain no landslide occurrences and thus be assigned 

a value of 1, or to exhibit significantly lower probability values 

compared to most other classes. In such cases, it may be 

advisable to implement a script that groups these low-probability 

classes into a single category. 

 

2.4.6 Multivariate statistics: Logistic regression is part of the 

family of Generalized Linear Models (GLMs). It can be regarded, 

in practical terms, as a form of linear regression of the type: 

z = β
0
 + β

1
(x1) + β

2
(x2) + … + β

i
(xi) (3) 

where x1, x2, ..., xi are the classified and reordered maps of the 

different predisposing factors, β0 is the intercept value, β1, β2, ..., 

βi are the weights assigned to the different factors. 

The expected value zi can be expressed as: 

logit(Y) = z = ln
P(Y = 1)

1 - P(Y = 1)
 (4) 

 

By the properties of logarithms, (4) can be rewritten as: 

P(Yi = 1) = 
ez'

1 + ezi
 (5) 

The first step is to calculate the logit from the landslide area map 

using the r.mapcalc function: 

logit = ln(landslide_map +10-8) + 

- ln(1 - landslide_map + 10-8) 
(6) 

where the value 10-8 is added to avoid the possibility of having 

ln(0). 

The GRASS command r.regression.multi establishes the 

relationships between the predisposing factors and the logit, 

producing a map of the expected values and a report containing 

various indices to assess the contribution of each factor. Even if 

the predisposing factors have been chosen as known to be related 

to landslide development and reciprocally independent, under 

specific environmental conditions, the influence of each one may 

vary. Among the indexes calculated by r.regression.multi, the 

Akaike Information Criterion (AIC) is particularly suitable to 

compare different models (Chakrabarti and Ghosh, 2011). 

Considering the models deriving from all the possible factors 

combinations, the lower the reported AIC value, the better is the 

model. Therefore, the factors combination that according to the 

AIC best fits the data is selected and it is used to process a map 

of the expected values.  

 

2.4.7 Model validation: AIC values tell which model is the 

best among the possible ones, but do not supply any information 

about the actual reliability of the model itself. Therefore, it was 

decided to use the r.edm.eval addon (Van Breugel and GRASS 

Development Team, 2025), which offers a general evaluation of 

model reliability as a percentage, along with the Receiver 

Operating Characteristic (ROC) curve. 

 

2.4.8 Identification of susceptibility classes: The map of 

expected values is converted into probability values, representing 

the actual susceptibility to landslides, using the inverse Logit 

formula (5). The values shown in this map are extremely small 

and difficult to interpret for land planning and management 

purposes. Therefore, it is useful to identify a few classes that 

qualitatively indicate the predisposition of each portion of the 

study area to landslide occurrence. The susceptibility map is 

compared with the actual landslide inventory, and the probability 

values within the landslide areas are analyzed. The mean 

probability value of these areas is used as the lower threshold for 

the “high” susceptibility class, while the remaining values are 

divided into two equal intervals corresponding to the “medium” 

and “low” susceptibility classes. Figure 3 reports an example of 

a resulting susceptibility map for the fast flows landslide type. 

However, this classification approach poses certain challenges, 

as it is sensitive to extreme values or outliers. As a result, 

alternative classification methods are currently under evaluation. 
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Figure 3. Fast flows susceptibility classes. 

 

3. Conclusions and future developments 

A model for assessing landslide susceptibility through logistic 

regression within a GIS environment has been developed, aimed 

at supporting public authorities and professionals in managing 

slope instability risk. The model focuses on flows, slides, and 

areas subject to diffuse shallow landslides and utilizes freely 

accessible national-scale datasets to ensure high transferability 

and transparency of results.  

The analysis is implemented in Python and integrated into 

GRASS GIS, with the objective of automating the workflow and 

making the procedure accessible even to non-expert users. The 

code is available here: https://github.com/LabGeomatica/SALSA 

The methodology has been applied in several areas of the Liguria 

region (Italy), directly providing the procedure and the input data 

to those who tested the method in other areas, yielding results 

consistent with those obtained for the province of Savona. 

Through automation, it will be possible to rapidly conduct 

analyses across multiple regions, thereby generating a sufficient 

volume of results to comprehensively evaluate the strengths and 

limitations of employing logistic regression for landslide 

susceptibility analysis. As part of the automation process, efforts 

are also underway to develop ancillary functions aimed at 

addressing issues encountered during experimentation. 

The definition of import procedures and specifications for the 

basic data has certainly accelerated the preliminary work and 

helped to standardize the results. However, since the preparation 

of land use/land cover and climatic aggressiveness maps remains 

the responsibility of the operator, the use of the described 

procedure still requires a certain level of expertise. Moreover, 

both factors introduce elements of subjectivity because the 

procedures required for their preparation vary from case to case.  

One potential approach currently under investigation involves 

utilizing satellite imagery in place of land use maps, from which 

different land cover types could be extracted via an unsupervised 

classification procedure. This method would enable the 

assessment of temporal changes in landslide susceptibility as a 

function of varying land cover.  

As regards the processing of climatic aggressiveness, it remains 

complex due to the frequent incompleteness of rainfall data 

series, the involvement of multiple administrative bodies, and the 

variability in calculation methods, which can range in complexity 

depending on the availability and quality of input data. On the 

other hand, rainfall is undoubtedly an important factor in the 

development of landslide phenomena (Brunetti et al., 2025; 

Passalacqua et al., 2016; Troncone et al., 2021; Zhang et al., 

2024) and the processing of time series data could help to better 

understand the relationship between extreme events and 

instability phenomena.  

With regard to the definition of the statistical sample, i.e., the 

areas actually affected by landslides, the perimeters provided in 

the IFFI inventory include, for each landslide, both the 

detachment area, from which the landslide originated, and the 

accumulation area, representing the portion of the territory 

impacted by the landslide effects within which the displaced 

material lies above the original ground surface. Moreover, in the 

case of complex landslides and areas subject to widespread 

shallow landslides, the total extent of all the landslide phenomena 

that make them up is considered, including in the statistical 

sample areas that are not affected by landslides or are subject to 

different types of landslide mechanisms. 

These situations certainly introduce noise into the model and 

reduce its accuracy. A preliminary solution is the development, 

currently in progress, of a script that separates the detachment 

area from the accumulation area based on elevation. 

What has been achieved so far represents only the foundational 

framework; however, the procedure can be expanded by 

incorporating additional data, whether generally relevant or site-

specific. It is essential that any new data introduced is 

independent of one another and of the variables included in the 

base model. Further customization may also involve 

implementing additional checks to verify the independence of the 

base data and to assess the influence of each factor on 

susceptibility. Moreover, in the case of large-scale landslides, 

post-event slope characteristics often differ substantially from 

those that contributed to the landslide initiation. In this regard, 

integrating the temporal dimension, such as time series on land 

cover and records of major rainfall events, could provide valuable 

insights. 

Acknowledgements 

This study was carried out within the RETURN Extended 

Partnership and received funding from the European Union Next-

GenerationEU (National Recovery and Resilience Plan – NRRP, 

Mission 4, Component 2, Investment 1.3 – D.D. 1243 2/8/2022, 

PE0000005). 

References 

Arnoldus, H. M. J., 1980: An approximation of the rainfall factor 

in the universal soil loss equation. In: Assessment of Erosion, De 

Boodt, M. and Gabriels, D. (Eds.), John Wiley and Sons, New 

York, 127–132 

 

Bovolenta, R., Passalacqua, R., Federici, B., Sguerso, D., 2016: 

LAMP—LAndslide Monitoring and Predicting for the analysis 

of landslide susceptibility triggered by rainfall events. Landslides 

and Engineered Slopes. Experience, Theory and Practice, 

Aversa, S., Cascini, L., Picarelli, L. and Scavia, C. (Eds.), 511–

516. https://doi.org/10.1201/9781315375007  

 

Brenning, A., Schwinn, M., Ruiz-Páez, A. P., Muenchow, J., 

2015: Landslide susceptibility near highways is increased by 1 

order of magnitude in the Andes of southern Ecuador, Loja 

province. Natural Hazards Earth System Sciences, 15, 45–57, 

https://doi.org/10.5194/nhess-15-45-2015  

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-209-2025 | © Author(s) 2025. CC BY 4.0 License.

 
214

https://github.com/LabGeomatica/SALSA


 

Brunetti, M. T., Gariano, S. L., Melillo, M., Rossi, M., 

Peruccacci, S., 2025: An enhanced rainfall-induced landslide 

catalogue in Italy. Scientific Data, 12. 

https://doi.org/10.1038/s41597-025-04551-6   

 

Bucci, F., Santangelo, M., Fongo, L., Alvioli, M., Cardinali, M., 

Melelli, L., Marchesini, I., 2021: A new digital lithological Map 

of Italy at 1:100000 scale [dataset]. 

https://doi.org/10.1594/PANGAEA.935673 

Bucci, F., Santangelo, M., Fongo, L., Alvioli, M., Cardinali, M., 

Melelli, L., Marchesini, I., 2022: A new digital lithological map 

of Italy at the 1:100 000 scale for geomechanical modelling. 

Earth System Science Data, 14(9), 4129–4151. 

https://doi.org/10.5194/essd-14-4129-2022 

 

Chang, K. T., Merghadi, A., Yunus, A. P., Pham, B. T., Dou, J., 

2019: Evaluating scale effects of topographic variables in 

landslide susceptibility models using GIS-based machine 

learning techniques. Scientific Reports, 9. 

https://doi.org/10.1038/s41598-019-48773-2  

 

Chaohai, L., Yuan, R., Ying, W., 2025: Distribution laws of 

landslides and theirs influencing factors in the Qiaojia segment 

of Jinsha River, China. Natural Hazards Research, 5(1), 48–60. 

https://doi.org/10.1016/j.nhres.2024.06.002 

 

Chakrabarti A., Ghosh J. K., 2011: AIC, BIC and Recent 

Advances in Model Selection. Philosophy of Statistics, 7, 583–

605. https://doi.org/10.1016/B978-0-444-51862-0.50018-6  

 

Chowdhury, M. S., Rahman, M. N., Sheikh, M. S., Sayeid, M. 

A., Mahmud, K. H., Hafsa, B., 2024: GIS-based landslide 

susceptibility mapping using logistic regression, random forest 

and decision and regression tree models in Chattogram District, 

Bangladesh. Heliyon, 10(1). 

https://doi.org/10.1016/j.heliyon.2023.e23424  

 

European Parliament and of the Council of the European Union, 

2007: Directive 2007/2/EC of the European Parliament and of the 

Council of 14 March 2007 establishing an Infrastructure for 

Spatial Information in the European Community (INSPIRE). 

https://eur-lex.europa.eu/eli/dir/2007/2/oj/eng  

 

Goyes-Peñafiel, P., Hernandez-Rojas, A., 2021: Landslide 

susceptibility index based on the integration of logistic regression 

and weights of evidence: A case study in Popayan, Colombia. 

Engineering Geology, 280. 

https://doi.org/10.1016/j.enggeo.2020.105958  

 

GRASS Development Team, 2025. Geographic Resources 

Analysis Support System (GRASS) Software, ver. 8.4. Open-

Source Geospatial Foundation. grass.osgeo.org (15 May 2025) 

 

ISPRA Istituto Superiore per la protezione e la Ricerca 

Ambientale, 2025a. IFFI – Inventario dei Fenomeni Franosi in 

Italia. https://www.progettoiffi.isprambiente.it/ (15 May 2025) 

 

ISPRA Istituto Superiore per la protezione e la Ricerca 

Ambientale, 2025b. SCIA Sistema nazionale per l’elaborazione 

e diffusione di dati climatici. https://scia.isprambiente.it/dati-e-

indicatori (22 April 2025) 

 

Kadavi, P. R., Lee, C. W., Lee, S., 2019: Landslide susceptibility 

mapping in Gangwon-do, South Korea, using logistic regression 

and decision tree models. Environmental Earth Sciences, 78. 

https://doi.org/10.1007/s12665-019-8119-1 

 

Lin, G. F., Chang, M. J., Huang, Y. C., Ho, J. Y., 2017: 

Assessment of susceptibility to rainfall-induced landslides using 

improved self-organizing linear output map, support vector 

machine, and logistic regression. Engineering Geology, 224, 62–

74. https://doi.org/10.1016/j.enggeo.2017.05.009 

 

Marzocchi, R., Rovegno, A., Federici, B., Bovolenta, R. e 

Berardi, R. 2015. Applicazione della regressione logistica per la 

zonazione della suscettibilità da frana in ambiente GIS. Bollettino 

della società italiana di fotogrammetria e topografia. 4 (giu. 

2015), 39–47 

 

Passalacqua, R., Bovolenta, R., Federici, B., Balestrero, D., 

2016: A physical model to assess landslide susceptibility on large 

areas: recent developments and next improvements. Procedia 

Engineering, 158, 487–492. 

https://doi.org/10.1016/j.proeng.2016.08.477 

 

Python Software Foundation, 2025. Python Language Reference, 

ver. 3.10.12. http://www.python.org (6 May 2025) 

 

Regione Liguria, 2019a. Uso del Suolo sc. 1:10000 - ed. 2019 

https://geoportal.regione.liguria.it/catalogo/mappe.html (17 

April 2025) 

 

Regione Liguria, 2019b. Uso del suolo - Allegato interpretativo 

alla carta dell’uso del Suolo della Regione Liguria. 

https://srvcarto.regione.liguria.it/repertoriocartografico/docume

ntazione/Fotoatlante_Uso_suolo_Liguria.pdf?type=DS (17 April 

2025) 

 

Salmona, P., 2025: https://github.com/LabGeomatica/SALSA 

 

Salmona, P., Bovolenta, R., Federici, B., Ferrando, I., 2025. 

Influence of data preprocessing and optimization in multivariate 

statistical analysis of landslide susceptibility. Communications in 

Computer and Information Science. Borgogno-Mondino, E., and 

Zamperlin, P., (Eds.). (in press) 

 

Süzen, M. L., Kaya, B. Ş., 2011: Evaluation of environmental 

parameters in logistic regression models for landslide 

susceptibility mapping. International Journal of Digital Earth, 

5(4), 338–355. https://doi.org/10.1080/17538947.2011.586443 

 

Troncone, A., Pugliese, L., Lamanna, G., Conte, E., 2021: 

Prediction of rainfall-induced landslide movements in the 

presence of stabilizing piles. Engineering Geology, 288. 

https://doi.org/10.1016/j.enggeo.2021.106143 

 

Van Breugel, P., GRASS Development Team, 2025: Addon 

r.edm.eval. Geographic resources analysis support system 

(GRASS) software, ver. 8.4. Open-Source Geospatial 

Foundation. https://grass.osgeo.org/grass-

stable/manuals/addons/r.edm.eval.html (20 May 2025) 

 

Wu, J., Zhang, Y., Yang, L., Zhang, Y., Lei, J., Zhi, M., Ma, G., 

2023: Identifying the essential influencing factors of landslide 

susceptibility models based on hybrid-optimized machine 

learning with different grid resolutions: a case of Sino-Pakistani 

Karakorum Highway. Environmental Science and Pollution 

Research, 30, 100675–100700. https://doi.org/10.1007/s11356-

023-29234-w 

 

Yang, Y., Peng, S., Huang, B., Xu, D., Yin, Y., Li, T., Zhang, R., 

2024: Multi-scale analysis of the susceptibility of different 

landslide types and identification of the main controlling factors. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-209-2025 | © Author(s) 2025. CC BY 4.0 License.

 
215



 

Ecological Indicators, 168. 

https://doi.org/10.1016/j.ecolind.2024.112797 

 

Zanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, 

W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, 

M., Fritz, S., Lesiv, M., Herold, M., Tsendbazar, N. E., Xu, P., 

Ramoino, F., Arino, O., 2022: ESA WorldCover 10 m 2021 v200 

[dataset]. https://doi.org/10.5281/zenodo.7254221 

 

Zhang, Q., Shen, D., 2024: Rainfall-induced landslides: 

influencing, modelling and hazard assessment. Water, 16. 

https://doi.org/10.3390/w16233384 

 

Zhao, Y., Wang, R., Jiang, Y., Liu, H., Wei, Z., 2019: GIS-based 

logistic regression for rainfall-induced landslide susceptibility 

mapping under different grid sizes in Yueqing, Southeastern 

China. Engineering Geology, 259. 

https://doi.org/10.1016/j.enggeo.2019.105147 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-209-2025 | © Author(s) 2025. CC BY 4.0 License.

 
216




