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Abstract 

 

Urban Heat Islands (UHI) represent an increasing challenge in cities worldwide, including smaller urban centres such as Varaždin, 

Croatia. This study analyses UHI dynamics over a Varaždin city during a ten-year period (2014–2024) using exclusively Free and 

Open-Source Software (FOSS) and publicly available Earth Observation (EO) data. Landsat 8 thermal imagery was used to calculate 

Land Surface Temperature (LST), and to analyse its relationship with vegetation cover through the Normalized Difference Vegetation 

Index (NDVI) and the Proportion of Vegetation (PV). Urban expansion was examined using the Normalized Difference Built-up Index 

(NDBI). All indices were derived from multispectral and thermal bands using QGIS 3.24 and Python 3.12 libraries including GDAL, 

rasterio, NumPy, and Matplotlib. The results show a measurable increase in surface temperature, with the average LST rising by 

+4.41 °C, accompanied by a loss of 3,230 pixels in the dense vegetation class (NDVI > 0.4). Simultaneously, NDBI values indicate 

expansion of built-up areas across the southern and eastern parts of the city. These changes confirm the spatial transformation towards 

the urbanization and reduced vegetation cover as main cause of local thermal intensification. This study gives a standardized, open-

sourced, transparent and reproducible analysis applicable to other medium-sized cities. The study also explores the potential integration 

of additional EO sources (Sentinel-3, MODIS, VIIRS) and supporting geospatial data (OpenStreetMap) for enhanced spatiotemporal 

resolution. The findings highlight the value of FOSS tools and open data in supporting evidence-based urban climate planning and 

advocate for scalable, cost-effective approaches to UHI mitigation through green infrastructure and adaptive design. 

 

 

1. Introduction 

 

During the past decades, the rapid expansion of urban 

development - attributable to population migration - has led to 

considerable spatial alterations and lifestyle transformations. 

Such urbanization, where urbanized infrastructure replaces 

natural cover, brings economic as well as infrastructural 

advantages but also poses challenges to city management: energy 

consumption, reduced ecosystem services, pollution, and climate 

risks. 

 

A key consequence is the Urban Heat Island (UHI) effect, with 

built-up areas recording higher air and surface temperatures than 

rural surroundings (Zhou et al., 2017; Oke, 1982). UHI arises 

from replacing vegetation with impervious surfaces (asphalt, 

concrete, metal) that absorb and store heat, limiting cooling 

processes like evapotranspiration and shading. These materials, 

with low albedo and high thermal mass, retain heat by day and 

release it at night, intensifying warming. UHI occurs globally, 

with urban–rural temperature gaps often over 10 °C (Ranagalage 

et al., 2018; Santamouris, 2020). It alters microclimates, raises 

cooling energy needs, stresses public health systems, and reduces 

urban liveability. Hence, integrating microclimatic factors into 

planning is vital for resilient, sustainable cities (Brigham & 

Suding, 2023). 

 

Though most evident in large cities, recent studies show smaller 

ones are also vulnerable—especially where green infrastructure 

is lacking (Wang, 2019; Kalogeropoulos et al., 2022; Ramos & 

Cladera, 2022). Key mitigation actions include increasing canopy 

cover, conserving natural land, and integrating vegetation into 

urban design. Even minor land-use changes impact local 

temperatures (Iungman et al., 2023). In Croatia, many medium-

sized cities lack formal green infrastructure strategies, missing 

opportunities to mitigate UHI and protect environmental quality 

(Gašparović & Jukić, 2022; Kovačić & Štrbac, 2020). 

Understanding UHI drivers and effects helps local authorities 

develop targeted adaptations. Effective measures include urban 

greening, reflective materials, green roofs/facades, water 

features, and designs promoting air flow and passive cooling. 

These interventions have reduced heat buildup in both large cities 

(Shanghai, Warsaw, Vienna) and smaller ones (Bydgoszcz, 

Reggio Emilia) (Viecco et al., 2021; Zhao et al., 2016; Price et 

al., 2015; Damyanoic et al., 2016; Mohamed, 2024; European 

Commission, n.d.). 

 

Croatian studies confirm UHI effects in national urban areas. 

According to the UHI Mitigation Manual (Ministry of Physical 

Planning, Construction and State Assets, 2022), key factors 

include green space loss, heat-retaining materials, climate 

change, and increasing hot days/nights. A Zagreb case study in 

Dugave showed microclimatic differences driven by urban form, 

vegetation, water presence, and building height (UNIC, 2023). 

Accurate, spatially detailed data are essential for analysing UHI 

dynamics. Yet, limited budgets often restrict access to high-

resolution imagery and proprietary software. Freely available 

Earth observation (EO) data (e.g., Landsat) and Free and Open-

Source Software (FOSS) offer a scalable, transparent, low-cost 

solution for assessing climate risks. Here, “free” refers not just to 

cost-free access, but also to the freedom to use, modify, and share 

data and software, in line with the principles of the FOSS 

movement. Tools like QGIS allow spatial analysis without 

expensive licenses, improving accessibility and reproducibility, 

especially in resource-limited settings. Public EO datasets at 

various resolutions enable robust assessments, empowering even 

smaller municipalities to plan adaptations without commercial 

tools. 

 

This study presents a ten-year spatio-temporal analysis of the 

UHI effect in the city of Varaždin, in northern part of Croatia, 

using only free datasets (Landsat 8 from USGS Earth Explorer) 

and open-source tools (QGIS). It aims to quantify urban–rural 
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surface temperature differences, assess seasonal and interannual 

UHI variations, and examine vegetation's role in moderating 

urban heat. Satellite-derived indices like Normalized Difference 

Vegetation Index (NDVI) and Proportion of Vegetation (PV) 

Cover are used to evaluate spatial correlations between 

vegetation and LST. 

 

Analysis uses annual July imagery through the span of ten years 

period (July 7, 2014, and July 11, 2024), representing peak 

summer heat and favourable atmospheric conditions for UHI 

detection (the selected scenes show skies without noticeable 

cloud cover) (Weng, 2009). The selected years meet three 

criteria:  

- the ten-year interval enables robust trend analysis 

- both years experienced exceptionally hot summers, as 

reported by the Croatian Meteorological and Hydrological 

Service (DHMZ) (Croatian Meteorological and 

Hydrological Service). 

- 2014 marks the beginning of full Landsat 8 operational 

coverage with the Operational Land Imager (OLI) and 

TIRS (Thermal Infrared Sensor) sensors, which are 

essential for consistent monitoring of surface temperature 

and vegetation indices (Roy et al., 2014). 

-  

Also, the city of Varaždin launched initiatives during this period 

to improve building energy efficiency and promote renewables 

(Varaždin County Development Agency, 2022). 

 

 

2. Study area and Data Sources 

 

2.1 Study area 

Varaždin lies in northwestern Croatia (Figure 1). The city 

features a temperate continental climate with warm summers, 

cold winters, and uniformly distributed yearly precipitation 

ranging from 900 to 1,000 mm (Climate-Data.org, n.d.). Yearly 

average temperatures range from 10 to 11 °C. The thermal 

condition of the city during winter is influenced by recurring fog 

and high humidity. 

 

 
 

Figure 1. The Area of the City of Varaždin. 

 

Varaždin has a population of around 46,000 (according to the 

2021 Census), but like many other middle smaller cities, it's 

experiencing demographic decline. The city includes a well-

preserved historic centre, surrounding residential 

neighbourhoods, industrial and logistics zones, and green areas 

on the outskirts. Urban planning faces ongoing challenges, such 

as scattered spatial development and traffic congestion, while 

climate change adds further pressure—especially when it comes 

to managing the UHI effect and stormwater runoff. What makes 

Varaždin particularly suitable for UHI analysis is its compact 

form, clearly defined spatial structure, and the availability of 

freely accessible satellite imagery. 

 

The variation in land cover—from a densely built city centre to 

vegetated outskirts—enables the comparison of Land Surface 

Temperature (LST) distribution using tools such as QGIS and 

Google Earth Engine (GEE) with data from the Landsat mission.  

 

2.2 Data sources 

The Landsat 8 satellite is equipped with two main sensors: the 

OLI and the TIRS. OLI captures information across nine spectral 

bands (from visible to shortwave infrared), while TIRS records 

thermal data (Bands 10 and 11), enabling the estimation of LST. 

The multispectral bands have a spatial resolution of 30 meters, 

the panchromatic band 15 meters, and each scene spans 185 

kilometers in width. The satellite revisits the same location every 

16 days, covering the electromagnetic spectrum from visible to 

thermal infrared: (Visible spectrum - VIS, Near-Infrared spectral 

band - NIR, Shortwave Infrared spectral band - SWIR, Thermal 

Infrared - TIR). 

 

Satellite imagery for this study was obtained from the publicly 

accessible USGS Earth Explorer platform 

(https://earthexplorer.usgs.gov/). Two sets cloud-free Landsat 8 

scenes were selected to represent a decade of change: July 7, 

2014 (Path 190 / Row 028) and July 11, 2024 (Path 189 / Row 

028) (Table 1). Although the scenes originate from adjacent 

satellite paths, the overlap at their edges (due to the 185 km scene 

width) allowed for the selection of spatially corresponding areas. 

This ensured direct comparability of land surface conditions, 

despite the slight variation in acquisition geometry. 

 

The use of neighbouring paths was a methodological 

compromise, driven by the limited availability of cloud-free 

scenes for the exact same Path/Row and time period. By focusing 

only on intersecting zones with consistent land cover, the analysis 

maintains temporal and spatial consistency in evaluating 

vegetation (via NDVI), urbanization (Normalized Difference 

Built-up Index, NDBI), and surface temperature (LST). All 

indices were derived using the same spectral bands: Band 4 (red), 

Band 5 (near-infrared), Band 6 (shortwave infrared), and Band 

10 (thermal infrared). 

 

Scene ID Date Band 

LC08_L1TP_190028_20140707_2

0200911_02_T1_B4 

2014-07-07 B4 

LC08_L1TP_190028_20140707_2

0200911_02_T1_B5 

2014-07-07 B5 

LC08_L1TP_190028_20140707_2

0200911_02_T1_B6 

2014-07-07 B6 

LC08_L1TP_190028_20140707_2

0200911_02_T1_B10 

2014-07-07 B10 

LC08_L1TP_189028_20240711_20

240719_02_T1_B4 

2024-07-11 B4 

LC08_L1TP_189028_20240711_20

240719_02_T1_B5 

2024-07-11 B5 

LC08_L1TP_189028_20240711_20

240719_02_T1_B6 

2024-07-11 B6 

LC08_L1TP_189028_20240711_20

240719_02_T1_B10 

2024-07-11 B10 

 

Table 1. Selected scenes. 

 

By focusing on intersection areas with consistent land cover, we 

have ensured a comparability in vegetation characteristics, which 
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is essential for achieving temporal consistency in surface 

condition analysis. 

 

Visual inspection of the individual spectral bands also provided 

insight into raw data characteristics and possible seasonal or 

atmospheric differences. Differences in brightness, contrast, and 

tone between the two satellite images point to visible changes in 

land cover, vegetation condition, the extent of urban 

development, and surface temperature patterns. These variations 

highlight why spectral analysis is such an important starting point 

when monitoring UHI effects. 

 

 

3. Methodology 

 

All data processing and analysis in this study were carried out 

entirely using FOSS, in accordance with the principles of 

transparency and reproducibility. The core software used was 

QGIS 3.34, applied for data visualization, spatiotemporal index 

calculation, and raster processing.  GDAL 3.9 was not used 

directly, it formed part of the workflow through its integration 

with QGIS and Python-based tools. It was applied mainly for 

coordinate reprojection, data format conversion, and working 

with georeferenced spatial data. For custom operations, the 

analysis relied on Python 3.12. Several open-source libraries 

supported this process: rasterio was used to handle raster input 

and output, while numpy and pandas were responsible for 

numerical and statistical tasks, respectively. To visualize the 

results, matplotlib was employed. In the early phase of the study, 

GEE served as a supplementary platform for preliminary 

validation, helping to ensure consistency across datasets before 

the main local analysis was conducted. Although not fully open-

source, GEE provides free access to satellite data and supports 

Python-based workflows, aligning with the principles of the 

FOSS4G approach. 

 

This study utilizes multispectral data from the Landsat 8 satellite 

mission, downloaded via the USGS Earth Explorer platform from 

the Collection 2, Level 1 archive. The analytical framework is 

based on a multi-step processing workflow that includes the 

derivation of Top of Atmosphere (TOA) reflectance, Brightness 

Temperature (BT), PV, and surface emissivity. These parameters 

serve as input values for calculating three key indices: NDVI, 

NDBI, and LST, which enable a quantitative assessment of the 

vegetation, urbanization, and thermal characteristics of the study 

area.   

 

3.1 Preprocessing of Satellite Data 

As a preprocessing step for the analysis, the Digital Number 

(DN) values of the Landsat satellite imagery were first converted 

to TOA reflectance. This is done to ensure data comparability 

over time. The process typically involves a two-step 

transformation: first, DN values are converted to spectral 

radiance, and then, if needed, to reflectance using the metadata 

provided with each scene. For the thermal bands used in LST 

calculation, only the first step of preprocessing was applied—

conversion to radiance—which was subsequently used to derive 

Brightness Temperature (BT). In contrast, TOA reflectance was 

calculated from multispectral bands as a standard step for 

computing NDVI and other indices. Spectral radiance (Lλ) is 

calculated using the following formula: 

 

 Lλ = ML · Qcal + AL-Oi      (1)  

 

where  ML = multiplicative rescaling factor 

 Qcal  = digital number (DN) 

 AL = additive rescaling factor 

 Oi = correction constant 

 

Brightness Temperature is used as an intermediate variable in the 

calculation of LST. BT is derived from the spectral radiance 

obtained from the thermal band (Band 10 for Landsat 8), 

converting radiative energy into temperature expressed in 

Kelvin: 

 

𝐵𝑇 =
𝐾2

ln[(
𝐾1
𝐿𝜆

)+1]
− 273.15      (2) 

 

where  BT = brightness temperature in °C 

 K1, K2 = calibration constants (Landsat thermal band) 

 Lλ = spectral radiance from the thermal band 

 273.15 = correction factor - Kelvin to degrees Celsius 

 

The resulting BT values represent the temperature as detected 

from space and include atmospheric effects. 

 

3.2 Calculation of Indices and Surface Parameters 

The Normalized Difference Vegetation Index is one of the most 

popular satellite indices for assessing vegetation activity and land 

cover condition. NDVI was calculated from Landsat 8 satellite 

data using the difference in reflectance between band 4 (red, 

RED) and band 5 (near-infrared, NIR) according to the standard 

formula: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
      (3) 

 

a) 

 
 

b) 

 
 

Figure 2. NDVI values on a study area for 2014 (a) and 2024 (b). 
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Figure 2 shows a comparative display of NDVI values for 2014 

(a) and 2024 (b) in the study area. The NDVI maps are visualized 

using a green color gradient, with darker tones representing 

denser vegetation and lighter ones indicating sparse or no 

vegetation. 

 

Healthy vegetation tends to reflect a large amount of NIR 

radiation while absorbing most of the red light, which creates a 

clear spectral contrast.  NDVI values can range from –1 to +1. 

Values closer to +1, usually signal areas with dense and healthy 

vegetation. Values near zero tend to indicate limited or sparse 

plant cover, while negative values are often linked to non-

vegetated surfaces, such as water, exposed soil, or built-up land.  

 

NDVI provides a reliable insight into the spatial distribution of 

vegetation and, in this study, served as the basis for calculating 

vegetation cover (PV) and surface emissivity, both necessary for 

further LST estimation. 

 

The PV is a quantitative measure of vegetation cover fraction 

within one pixel, calculated from NDVI values. PV is calculated 

using the formula: 

 

𝑃𝑣 =     (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)2     (4) 

 

where  NDVImin, NDVImax = minimum and maximum NDVI 

values within the analysed area 

 

The resulting PV has values ranging between 0 (no vegetation 

cover) and 1 (complete vegetation cover). PV played a dual 

function: it was used both as an independent indicator of 

vegetation condition and as an input parameter for calculating 

surface emissivity, which is required for correcting brightness 

temperature in the calculation of LST. 

 

Surface emissivity (ε) is defined as the ratio of the actual surface 

thermal emission to that of an ideal blackbody and is essential for 

accurately estimating LST. Since various land cover types 

(vegetation, water, built-up areas) possess different emissive 

characteristics, pixel-by-pixel emissivity estimation is necessary. 

Emissivity was determined based on the vegetation proportion 

index, which estimates the vegetation fraction and its 

corresponding emissivity. This method assumes a linear 

relationship between vegetation cover and surface emissivity and 

is expressed by the formula: 

 

ɛ = 0.0004 · 𝑃𝑣 + 0.986      (5) 

 

The resulting emissivity values are applied to correct BT, 

enabling a reliable estimation of the actual LST. LST represents 

the estimated physical temperature of the Earth's surface, derived 

from satellite thermal data. Unlike BT, which includes the 

influence of the atmosphere and surface emissivity, LST reflects 

the true thermal characteristics of the surface, corrected for these 

effects. LST was calculated using thermal band 10 of the Landsat 

8 satellite, with emissivity correction (ε):  

 

𝐿𝑆𝑇 =
𝐵𝑇

1+(
𝜆·𝐵𝑇

𝜎
)·ln(ɛ)

      (6) 

 

where  λ = wavelength of the thermal band used (for Landsat 

8: ≈ 10.895 × 10⁻⁶ m) 

 𝜎 = radiation constant 1.438 × 10⁻² 

 

 

 

a) 

 
 

b)  

 
 

Figure 3. LST for 2014 (left) and 2024 (right). 

 

The results of LST estimation, obtained after applying all the 

above corrections, are presented in Figure 3, showing the spatial 

distribution of LST for 2014 (a) and 2024 (b).  The maps illustrate 

a clear temporal increase in LST, especially in urban and low-

vegetation areas, highlighting the relevance of emissivity 

correction and vegetation proportion in thermal analysis. 

 

The NDBI is used to identify and analyse urbanized areas such 

as buildings, roads, and other artificial infrastructure. The index 

is based on the reflective properties of materials, where urban 

surfaces reflect more strongly in the SWIR spectrum, while 

vegetation reflects more strongly in the NIR. NDBI was 

calculated using Landsat 8 bands (band 6 – SWIR and band 5 – 

NIR) according to the formula: 

 

𝑁𝐷𝐵𝐼 =
𝑆𝑊𝐼𝑅−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅+𝑁𝐼𝑅
     (7) 

 

NDBI values range between –1 and +1. Positive values indicate 

urbanized surfaces (higher SWIR reflectance), while negative 

values correspond to vegetation or water bodies (higher NIR 

reflectance). NDBI is not an absolute measure, but a relative 

index that depends on the context of the area, spatial resolution, 

time of acquisition, and the sensor used. NDBI was used for 

detecting built-up areas and for spatial comparison with NDVI 

and LST layers, aiming to explore the correlation between the 

degree of urbanization and the increase in LST. Such analysis 

enables the identification of areas susceptible to the development 

UHI and provides insights into spatial patterns of urban 

expansion.  
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a) 

  
 

 

b) 

 
 

Figure 4. NDBI for 2014 (a) and 2024 (b) 

 

Figure 4 presents the spatial distribution of NDBI values for 2014 

(a) and 2024 (b), clearly indicating the intensification and spatial 

spread of urbanized surfaces over the ten-year period. The 

comparative analysis of these maps with NDVI and LST results 

enables a deeper understanding of how urban growth patterns 

contribute to thermal characteristics and vegetation loss within 

the study area. 

 

 

4. Discussion 

 

The analysis of spatial and statistical changes in NDVI, LST, and 

NDBI indices between 2014 and 2024 reveals transformations in 

vegetation distribution, urbanization levels, and LST in the 

Varaždin area. These changes were quantified and visualized 

through statistical indicators, thematic maps, and classification 

outputs. 

 

As Table 2 shows, the NDVI decreased slightly from 0.39 to 0.37 

(change: −0.014), along with a small drop in range and standard 

deviation (from 0.136 to 0.135). This indicates a modest decline 

in vegetation cover, primarily due to a reduction in densely 

vegetated areas. In addition, the mean LST has increased 

significantly over the ten-year period. The mean value rose by 

4.41 °C, from 26.31 °C in 2014 to 30.72 °C in 2024, accompanied 

by increases in both minimum and maximum values, from 

17.35 °C to 21.23 °C and from 35.53 °C to 39.70 °C, respectively.  

The increase in standard deviation (from 2.369 to 2.596) reflects 

growing thermal variability across the area. These results indicate 

increasing thermal inequality and overall surface warming, with 

spatial manifestations particularly evident in urban cores and 

fringe zones. 

 

The mean value of the NDBI increased slightly from −0.19 in 

2014 to −0.17 in 2024, while the minimum and maximum values 

shifted from −0.53 and 0.31 to −0.45 and 0.36, respectively. 

Standard deviation rose marginally (from 0.106 to 0.119), 

suggesting a broader spread of NDBI values. These statistical 

changes align with the observed expansion of built-up areas. 

  
Year Min Max Mean SD Change 

NDVI 2014 -0.14 0.65 0.39 0.136 -0.014  
2024 -0.13 0.63 0.37 0.135 

 

LST  2014 17.35 35.53 26.31 2.369 +4.410 

 2024 21.23 39.70 30.72 2.596  

NDBI 2014 -0.53 0.31 -0.19 0.106 +0.017  
2024 -0.45 0.36 -0.17 0.119 

 

 

Table 2. Statistical indicators for NDVI, LST(°C) and NDBI  

 

NDVI values were classified according to the standard range 

(Weier and Herring, 2000) and further adjusted based on the 

actual value distribution in the dataset. Class descriptions were 

designed to reflect vegetation characteristics in the specific 

spatial context. Table 2 shows the analysis of classified NDVI 

values (Figure 2) confirms the observed trend of vegetation cover 

change between 2014 and 2024. The number of pixels in the class 

4 (dense vegetation class/forests, intensive agriculture) decreased 

by 3230 pixels (from 36274 to 33044). At the same time, class 3 

(medium vegetation cover/grasslands, croplands) and areas in 

class 2 (low vegetation cove/degraded areas) increased by 2493 

and 811 pixels, respectively. The class 1 (no vegetation/built-up 

or water surface) recorded a minor decrease of 74 pixels. Spatial 

analysis (Figure 5) further confirms that vegetation loss primarily 

occurs along infrastructure corridors and urban edges, where 

built-up areas have expanded at the expense of vegetated cover. 

 

 
 

Figure 5. Spatial distribution of NDVI change, 2014–2024. 

 

NDVI 

class 

Values No. pixel 

2014 

No. pixel 

2024 

Change 

1 -0.14 – 0.00 1108 1034 -74 

2 0.00 – 0.20 5615 6426 +811 

3 0.20 – 0.40 23502 25995 +2493 

4 0.40 – 0.65 36274 33044 -3230 

 

Table 3. NDVI Classification.  
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Figure 6. Spatial distribution of LST change, 2014–2024. 

 

The classification of LST values (Table 4) points to a substantial 

redistribution of surface areas toward higher temperature classes. 

The number of pixels in class 2 decreased drastically by 31093 

(from 32523 to 1430), while class 1 recorded a decline of 1281 

pixels. Conversely, the higher temperature classes – class 4 and 

class 5 – saw a sharp increase of 28852 and 6920 pixels, 

respectively. The most prominent increases in LST are spatially 

concentrated in the central and southern parts of the city, as well 

as along urban fringe zones (Figure 6). 

 

LST 

class 

Values (°C) No. pixel 

2014 

No. pixel 

2024 

Change 

1  < 22 1602 321 -1281 

2 22 – 26 32523 1430 -31093 

3 26 – 30 26576 23178 -3398 

4 30 – 34 5748 34600 +28852 

5 > 34 50 6970 +6920 

 

Table 4. LST Classification.  

 

The classification of NDBI values was carried out into four 

classes based on the range of values present in the analysed 

scenes (2014 and 2024), as well as their spatial distribution and 

interpretation in relation to visible changes in built-up areas. 

Although not based on universal thresholds, this approach is 

commonly applied in the literature when the aim is local-scale 

spatial analysis of urban sprawl (Zha et al., 2003). 

 

 
 

Figure 7. Spatial distribution of NDBI change, 2014–2024. 

 

The spatial map of NDBI changes (Figure 7) clearly visualizes 

these processes. Red areas, indicating an increase in built-up 

land, spread across nearly the entire analysed area, particularly in 

peri-urban zones where residential, transport, and commercial 

expansion has occurred. 

 

According to the data presented in Table 5, which shows 

classified NDBI values, the number of pixels in the class 1 

(natural or vegetated areas) decreased from 32554 to 28587, 

representing a loss of 3967 pixels. At the same time, the class 2 

(sparsely built-up or transitional zones) increased by 1522 pixels, 

while the class 3 (moderately built-up urban zones) almost 

doubled, by 2433 pixels. The class 4 (densely built-up urban 

cores), although small in absolute numbers, also recorded an 

increase, from 9 to 21 pixels. 

 

The comparison of thematic NDBI maps for 2014 and 2024 

(Figure 4) further confirms these trends. The 2024 map shows a 

wider spatial extent of higher NDBI values, especially in central 

parts of the city and along major transport routes. The more 

evenly distributed light red and red areas in 2024 indicate an 

expansion of built-up surfaces at the expense of natural and 

vegetated zones, as also evidenced by the reduction in the number 

of pixels in the class of natural or vegetated surfaces. 

 

NDBI 

class 

Values No. pixel 

2014 

No. pixel 

2024 

Change 

1 -0.53 – 0.30 32554 28587 -3967 

2 -0.30 – 0.10 31479 33001 +1522 

3 -0.10 – 0.10 2457 4890 +2433 

4 0.10 – 0.36 9 21 +12 

 

Table 5. NDBI Classification. 

 

 

5. Conclusion 

 

Over the past ten years, Varaždin has experienced clear signs of 

UHI intensification, from higher surface temperatures to 

shrinking green areas and expanding built-up zones. Between 

2014 and 2024, average LST rose by 4.41 °C, while the area of 

dense vegetation (NDVI > 0.4) dropped by 3230 pixels 

(approximately 2.91 km²), especially in the southern and eastern 

parts of the city.  

 

These changes are not evenly distributed. Instead, they reflect 

fragmented urban growth and increasing thermal pressure in 

residential and industrial zones. As green areas disappear and 

construction spreads, heat stress becomes more pronounced – 

highlighting a direct relationship between land use change and 

surface temperature rise.  

 

Such disparities point to a growing pattern of thermal inequality, 

where certain areas (particularly residential and industrial zones) 

experience disproportionately higher surface temperatures. This 

trend may be linked to land use intensity, vegetation loss, and 

infrastructure density, underscoring the need to view heat 

exposure not only as an environmental issue, but also as a matter 

of urban equity and public health. 

 

This highlights the urgent need for urban planning to prioritize 

green infrastructure as an essential part of development, not just 

an optional addition for the landscaping. The results of this study 

can support the City of Varaždin in developing urban planning 

strategies aimed at mitigating UHI effects, such as identifying 

priority areas for green infrastructure, optimizing land use, and 

integrating thermal indicators into spatial plans. 
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By using freely available satellite data and FOSS tools, this study 

demonstrates that reliable and reproducible analysis is achievable 

even in with limited access to commercial software, funding, or 

infrastructure. Future research over the studied area should build 

on this approach by integrating multi-sensor data, increasing 

temporal resolution, and developing automated classification and 

detection models. Such a data-driven and scalable system would 

enable continuous monitoring of UHI phenomena and more 

effective urban climate management, ultimately increasing the 

resilience of medium-sized cities to the impacts of global 

warming and spatial transformation.  

 

While the use of Landsat 8 imagery and FOSS tools proved 

effective, the study was constrained by the spatial resolution of 

30 meters and the availability of only two summer scenes. Future 

research should consider multi-temporal approaches and 

incorporate complementary data sources such as Sentinel-3 or 

MODIS, which offer improved temporal frequency and day–

night thermal information, albeit at coarser resolution.  

 

These satellite missions, while limited in spatial resolution (750–

1,000 m), can nonetheless enrich intra-urban UHI research by 

capturing temporal variability and day–night thermal differences. 

Open vector datasets such as OpenStreetMap (OSM) offer 

practical advantages for validating built-up area classifications, 

particularly at urban edges where satellite data alone may be 

insufficient. Although these sources were not utilized in this 

study, their future integration could improve classification 

accuracy and enable more robust multi-sensor fusion strategies 

for analysing fine-scale spatial heterogeneity in UHI effects. 
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