
Honey, I shrunk the GIS: Developing scalable and lightweight geospatial software applications
with microservices and containerization

Arne Schumacher

German Federal Office for Radiation Protection (BfS), Köpenicker Allee 120, 10318 Berlin - aschumacher@bfs.de

Keywords: geospatial software development, microservices, containerization

Abstract

This paper presents a containerized and modular approach to developing a geospatial application using Docker and geospatial open
source software. The system is designed to ingest, store, manage and visualize radiological measurement data within a portable and
scalable framework. Core technologies include PostgreSQL with PostGIS for spatial data storage, GeoServer for OGC-compliant
map services, Node.js for package dependencies and OpenLayers for web-based visualization. Each component is isolated in its own
Docker container, promoting ease of deployment and maintainability. The architecture demonstrates an effective and transferable
solution that can be applied to other geospatial software projects, particularly those seeking to implement a similar setup or initiate
the development of containerized applications. This architecture not only simplifies development and deployment but also provides
a robust foundation for building more complex geospatial systems that support advanced spatial analytics and statistics or elaborate
data pipelines.

1. Introduction

1.1 Containerization and microservices

Traditional GIS systems are generally monolithic in nature, re-
quiring the installation of bulky desktop applications. Both,
proprietary and open source GIS typically follow a ’one size
fits all’ philosophy despite the fact that in many cases geodata
is thematic data with coordinates plotted on a map. Historically,
GIS have emerged as full-fledged applications that manage the
key components of a GIS - by definition - capturing, storing,
analyzing and managing of geodata (IBM, 2025). The mono-
lithic nature of such development presents numerous pitfalls.
Monolithic refers to the concept of coupling and a high degree
of dependence between the different modules within an applic-
ation. This tight coupling in software development results in
several disadvantages:

• Reduced flexibility - need to modify multiple modules
when changes occur.

• Impeded maintainability - changes in source code may
have cascading effects.

• Limited reusability - transferring a system to another con-
text can be difficult or impossible.

• Higher risk of failure - intertwined systems have a cas-
cading risk of failure.

• Complex debugging - identifying the root cause is more
difficult.

• Decreased efficiency - more resources, time and person-
nel are required throughout the software development life-
cycle.

In contrast to the monolithic approach - in which the software is
a single code base, inseparable and components are tightly in-
tegrated - modern software development emphasizes modular-
ization and code separation. Decoupling addresses many of the
issues mentioned above. Components communicate via well-
defined services and interfaces, such as an Application Pro-
gramming Interface (API), which outlines protocols and com-
munication rules. This encapsulation enables components to

evolve independently. For instance, a database management
system can completely rewrite its internal data handling while
maintaining compatibility through its API - for example, via a
Web Feature Service delivering GeoJSON.

1.1.1 What is the difference between containerization and
microservices? The distinction between the terms container-
ization and a microservice architecture (MSA) lies in their re-
spective roles within software design and development. Con-
tainerization refers to a deployment technique that encapsu-
lates an application module and its dependencies into a con-
tainer, thereby enhancing portability and scalability. The em-
phasis is on container images that define and build the run-
ning instances. In contrast, a microservice represents an ar-
chitectural pattern in which each service performs a specific
function. These services operate collaboratively within a dis-
tributed, service-oriented architecture. Microservices are inde-
pendently deployable, loosely coupled, and technologically ag-
nostic. (Newman, 2019).

1.1.2 Advantages of modularization Both concepts aim to
isolate functionality and minimize unintended interactions. “A
microservice architecture decomposes a business domain into
small, consistently bounded contexts implemented by autonom-
ous, self-contained, loosely coupled, and independently deploy-
able services” (Blinowski et al., 2022). Service orchestration
is encapsulated and communication between them is organized
through standardized protocols and APIs. As in the physical
world and as the word suggests, containers provide the flexib-
ility of lightweight, portable and interchangeable modules that
can be used across different environments and between each
other. This approach supports a wide range of use cases, such as
deploying software, running development or production stacks
and much more. Key benefits include:

• Portability - containers encapsulate all required libraries,
dependencies, software and configurations.

• Efficiency - containers use fewer resources than VMs or
server infrastructures. They also have a positive effect on

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-225-2025 | © Author(s) 2025. CC BY 4.0 License.

225

human resources because they lessen dependencies between
developers.

• Scalability - supports both horizontal and vertical scaling.
• Isolation - containers are self-contained and reduce the

risk of conflicts.
• Continuous integration - testing and production environ-

ments can be identical, accelerating development cycles.
• Clear ownership - containers have well-defined boundar-

ies, which prevents individuals from interfering with each
other’s work and thereby improving efficiency.

• Interoperability - containers and services can easily be
consumed with no special needs in terms of operating sys-
tem or software.

For these reasons, they are well suited for cloud infrastructures.
“Cloud computing is inherently rooted on virtualization techno-
logies” (Combe et al., 2016). Containers integrate tightly with
the host system, minimizing the software overhead typical of
virtual machines or physical servers. Virtualization and to a
larger degree containerization enable more precise hardware al-
location. Containers offer a self-sufficient ecosystem including
components such as operating system, software and dependen-
cies, often deployable with minimal effort.

Containerization is also considered to be very fast. While im-
ages may take time to pull and assemble all layers - starting,
stopping, pausing or removing Docker containers usually oc-
curs in seconds. Both processes, building images and running
the containers require little to no human interference and can be
highly automated.

The acceleration of development cycles and the concept of the
12 Factor App outline best practices for cloud-native applica-
tion development, focusing on availability, portability and main-
tainability. For a program “in the 1960s and 1970s, it was
enough [...] to run” (Lerner, 2014). Today, applications must be
scalable, maintainable, portable and highly available. Docker
Hub and similar registries facilitate sharing these applications.
Containerization and microservices are part of an “architectural
style as a way of working with systems in which scale is a
factor” (Nadareishvili et al., 2016). The spread of container
technologies is a response to the growth pressure big tech com-
panies faced when the volume of activity outgrew the capacity
of traditional technology choices. The growing popularity of
containerization date back to 2013 when Docker was founded
and to 2011 when the term microservice was coined and the 12
Factor App was introduced (Blinowski et al., 2022).

1.1.3 The 12 Factor App Methodology The Twelve-Factor
App pursues similar goals but from a slightly different perspect-
ive. It emerged from the challenge developers faced when at-
tempting to deploy locally tested applications into production
environments. The primary objective was to minimize diver-
gence between development and production. To address this,
a set of twelve principles was established to promote portab-
ility, maintainability, scalability, and resource efficiency. This
methodology has had a significant influence on the design of
cloud-native, containerized, and microservice-based infrastruc-
tures. Originating in the context of software-as-a-service (SaaS)
applications (Wikipedia, 2025), it continues to have widespread
implications for modern software architecture. The core prin-
ciples include the following:

• I Codebase - keep only one codebase in a tracked version
control system.

• II Dependencies - all dependencies should be declared
and isolated.

• III Config - store config in environment variables.
• IV Backing Services - treat backing services as attached

resources.
• V Build, release, run - the delivery pipeline should strictly

consist of build, release, run.
• VI Processes - execute the app as one or more stateless

processes.
• VII Port binding - expose services by specified ports.
• VIII Concurrency - scale out via the process model.
• IX Disposability - fast startup and graceful shutdown.
• X Dev/Prod parity - all environments should be as similar

as possible.
• XI Logs - treat logs as event streams.
• XII Admin Processes - run admin/management tasks as

one-off processes.

Particularly, "I Codebase", "II Dependencies", "III Config", "VII
Port binding" and "VIII Concurrency" had a significant influ-
ence on this project, as will be discussed in the methodological
chapter.

1.1.4 Limitations of containerization and microservice ar-
chitectures In spite of these advantages, containerization is
not always the optimal choice. Determining the most suitable
software development approach requires consideration of factors
such as the application’s size, complexity, and purpose. Con-
tainerization may not be the best fit under the following condi-
tions:

• Size - For small applications with a limited number of
users, modularization may complicate the development un-
necessarily.

• Simplicity - Containerization adds complexity and tools
and techniques must be learned by developers. It is also
harder to understand the software holistically.

• Performance and latency - In-process calls are generally
faster than over-the-network communication.

• Security - Vulnerabilities in the container runtime or mis-
configurations can lead to security issues; a monolithic ap-
plication can be secured more easily.

• Debugging - More complex to debug and find errors. Mono-
lithic software have simpler workflows, are easier to mon-
itor, log and troubleshoot.

• Resource Overhead - Although lightweight, each con-
tainer adds CPU and memory overhead.

The decision regarding which architectural paradigm to adopt
remains a complex one and is rarely clear-cut. However, as
software projects grow in size and complexity, the advantages
of containerization and microservices generally outweigh their
disadvantages. The separation of modules enables greater flex-
ibility in updating, relocating, and replacing code and data, there-
by simplifying the development of adaptable or "liquid" soft-
ware. (Kalske et al., 2017). Additionally, the good integration
and acceptance in cloud-based environments have convinced
big tech companies such as Amazon, eBay, IBM, Zalando, Spo-
tify, Uber, Airbnb, LinkedIn, Twitter, Groupon and Coca-Cola
to adopt this strategy (Su et al., 2024). The flexibility and agility
offered by containerization and microservices increase service
innovation and enable businesses to respond more effectively to
changing environments and trends (Hasan et al., 2023).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-225-2025 | © Author(s) 2025. CC BY 4.0 License.

226

1.2 Containerization and OGC-compliant services

Containerization and OGC-compliant services complement each
other well. With the advent of the internet and the growing
volume of geospatial data from sensors and devices, distribut-
ing geodata beyond traditional GIS platforms has become in-
creasingly important. To encourage a wider dissemination of
geodata, the OGC has developed interoperable standards. As
server-client architectures gained prominence, standards like the
Web Map Service (WMS) and the Web Feature Service (WFS)
became increasingly popular. The exchange of geodata on the
internet is grounded in standards that propagate the distribution
of data according to the FAIR principle; findable, accessible,
interoperable and reusable. Acceptance of these principles de-
pends on well-defined and harmonized standards that operate
independently of operating systems and proprietary software.

Particularly the more modern standards - e.g. OGC API - Fea-
tures or OGC API - Maps - provide RESTful alternatives that
neatly integrate with microservice and cloud-native design pat-
terns. The standards facilitate the scalability of geospatial soft-
ware that can be deployed in web-based and/or mobile applica-
tions. Just like traditional OGC services their aim is to encour-
age and facilitate the use of geospatial vector and raster data.

The following chapter outlines the methodological approach of
the containerization project presented for this case study - more
specifically, the visualization of radiological data on a client-
side web map. The case study is fully based on open source
software including Docker, PostgreSQL, GeoServer, OpenLay-
ers and Node.js.

2. Methodology

The objective of this project is to develop a containerized geo-
spatial application that follows a modular approach while meet-
ing the core GIS requirements of data ingestion, storage, man-
agement, and visualization. The thematic content is radiolo-
gical sensor information gathered by German and European au-
thorities. The application should be open-source, portable and
deployable with minimal effort. Each component is encapsu-
lated in a separate Docker container and communicates with
others via standardized interfaces.

2.1 Project essentials

Docker and Podman are two well-known containerization tools.
This project uses Docker to containerize the application. Docker
enables a Platform-as-a-Service (PaaS) model, aligning with
various XaaS paradigms (where X may represent Infrastructure,
Software, Data, AI, etc.). It can encapsulate all components
of an IT ecosystem, including the operating system, software,
data, configurations, libraries, frameworks and dependencies.

The repository is published at:
https://github.com/arneschum/bfsrad.git

and provides a configuration that pulls the following compon-
ents as an image and later as a running service (container). The
project implements a 4-tier container orchestration to visualize
the geodata:

1. PostgreSQL
2. pgAdmin
3. GeoServer
4. Node.js

The key components include the following images and contain-
ers:

Container 1: PostgreSQL with PostGIS PostgreSQL and
PostGIS are the backend that manage the geodata. It contains
a spatially enabled PostgreSQL database (PostGIS). If need be
the size of the images can be significantly reduced by serving
flat files through e.g. a GeoPackage instead of an entire data-
base management system and its graphical user interface (GUI)
pgAdmin. However, due to the many advantages of a DBMS,
i.e. multi-user editing and user and role management, trans-
action control, data consistency and data integrity, backup and
recovery etc., a DBMS outperforms any file-based approach.

The database holds the content of the application in form of
a denormalized table “measdata”. This table is the source for
GeoServer’s Web Map Service.

Container 2: pgAdmin pgAdmin is the GUI for PostgreSQL
data management. pgAdmin is not necessary but a comple-
mentary tool to access data in a convenient way. The DBMS can
also be fully accessed by the psql command line tool without
the need for a GUI.

Container 3: GeoServer The third component is the web
map server GeoServer. GeoServer serves spatial data using
OGC standards. It connects to the PostgreSQL/PostGIS data-
base and publishes the table containing the sensor data. Geo-
Server is responsible for delivering the data as map layers that
can be consumed by external clients.

The Web Map Service is the OGC standard used in this pro-
ject. It is one the most well-established OGC standards and
serves server-side, georeferenced map images (e.g. png, jpg or
giff) over the internet. It does not, per se, serve raw data or
geospatial datasets - for that, the Web Feature Service (WFS)
is used for vector data and the Web Coverage Service (WCS)
for raster data. The only additional information that can be
queried beyond the thematic map image itself is through the
GetFeatureInfo request, which returns information about the
selected feature at the clicked location.

Every WMS layer is associated with a style that defines how
the vector objects - points, lines and polygons - are rendered on
the map. In this project a XML-based Styled Layer Descriptor
(SLD) file named "measdata.sld" is used to style objects based
on two attributes; shape and size. SLD is the only fully nat-
ive styling option in GeoServer, other options like CSS, YSLD
(YAML-based) and MBStyle (JSON-based) can be installed as
extensions. To use these alternatives, the corresponding *.jar
files must be placed in the appropriate folder, for this project
this is: ./geoserver-init/styles (Figure 1).

Container 4: Client application The client webpage includes
a basic triplet of HTML, CSS & JS code. Additionally, Open-
Layers to visualize the data and node.js for package dependen-
cies is included. Node.js is a convenient way to fulfill the needs
of the client application such as OpenLayers. Vite serves as the
local development and testing server.

The images used here include configuration details about soft-
ware components as well as the application’s source code. As
such, containerization merges the roles of the software developer
- responsible for writing the application and defining its depend-
encies - and the system administrator - responsible for system
configuration and resource deployment (Nickoloff and Kuenzli,
2019). While this merging of roles may seem at odds with the
previously mentioned advantages and separation of logic, it is
necessary in this context to build containers efficiently and to
produce consistent, reproducible images for cross-environment
use.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-225-2025 | © Author(s) 2025. CC BY 4.0 License.

227

https://github.com/arneschum/bfsrad.git

2.2 Containerization for fault tolerance, resilience and high
availability

Reproducible images are very important for failover or switch-
over mechanisms on georedundant (geographically redundant)
servers. Each server can be a physical machine, a virtual in-
stance (VM) or a container. For the first two options, auto-
mation tools like Ansible or Puppet can streamline this setup.
Such approaches, however, are generally more inefficient and
resource-intensive than containerization. “Unlike traditional vir-
tualization or paravirtualization technologies, [containers] do
not require an emulation layer or a hypervisor layer to run and
instead use the operating system’s normal system call interface.
This reduces the overhead required to run containers and can
allow a greater density of containers to run on a host” (Turn-
bull, 2014). Similarly, Jaramillo et al. argue that Docker con-
tainers enable “the sharing on operating system and supporting
libraries, which is more lightweight, prompt and scalable than
Hypervisor based virtualization. These features make it ideally
suited for applications deployed in microservice architecture”
(Jaramillo et al., 2016).

2.3 Pulling images and starting containers

Docker pulls images - like the four listed above - from its re-
gistry. They are the backbone of every container. It gathers
all necessary instructions to consistently build the same image
across different environments. For single containers this is usu-
ally specified in the Dockerfile with the keyword FROM. For
multiple and orchestrated containers and to serve a full stack
software application this is typically achieved in the docker-
compose.yml with the keyword image. These files provide
step-by-step instructions for assembling the necessary image(s)
including configuration details.

These plain text files require minimal storage and can be version-
controlled in a Git repository (see Section 1.1.3) containing
all the information needed to reproduce exact replicas using
a single docker command docker compose up --build (see
below) or two commands at most docker compose build and
docker compose run. The build command assembles images;
if no elaborate customization is required and the image is avail-
able on the docker hub, it can also be retrieved using the docker
compose pull command. Essentially, build or pull retrieves
the image and run creates the running instance (i.e. execution)
of the image. A built image is a read-only object and thus im-
mutable. Containers, in contrast, are writable running processes
based on these images.

2.4 Persisting data in a container

A key concern of containers is the persistence of data. “Data
written to the container layer doesn’t persist when the container
is destroyed. This means it can be difficult to get the data out of
the container if another process needs it [...] You can’t easily ex-
tract the data from the writeable layer to the host, or to another
container” (Docker Homepage, 2025). There are several reas-
ons why data exchange between the host and a container is ne-
cessary, especially for reading logfiles or writing (e.g. configur-
ation changes, dynamic content or to update datasets). Docker
supports shared storage that allows both the host and container
to access data in real time.

Two key concepts enable this:

• Volumes are persistent storage resources that remain intact
even after containers are removed. They are managed by
the Docker daemon and are ideal for persistent storage.
Since they are more isolated, they are considered safer than
bind mounts.

• Bind mounts link a directory from the host machine to
the container. These are not managed by Docker and are
well-suited for real-time data access from the host.

Volumes play a crucial role in the configuration of open-source
software and the exchange of data. The remainder of this chapter
introduces the volumes used in this project to support the cre-
ation of reproducible containers.

2.5 Project volume details

Figure 1 illustrates the directory structure of the project and
highlights the core components of the repository. Data inges-
tion into the DBMS is handled through the ./db-init folder.
GeoServer objects such as the workspace, data store, layer, and
style - will be created in the ./geoserver-init folder. The
client visualization and web interface are contained within the
./app folder.

|-- app
| |-- index.html
| |-- main.js
| |-- css.css
| |-- package.json
|-- db-init
| |-- init.sql
| |-- measdata.csv
|-- geoserver-init
| |-- create_geoserver_objects.sh
| |-- setup.sh
| |-- styles
| |-- |-- measdata.sld
|-- .env.example
|-- postgres_data
|-- docker-compose.yml

Figure 1. Directory structure of project (condensed for
illustration)

The project uses Docker volumes for PostgreSQL, GeoServer
and node.js. For simplified configuration and for data loading,
PostgreSQL and GeoServer are connected to multiple volumes
each. More specifically the setup includes the following volumes:

./ postgres_data :/var/lib/postgresql/data/

The postgresql data directory contains important configuration
details related to security (pg_hba.conf) and hardware alloca-
tion and administration (postgresql.conf). This folder needs to
be empty when the image is first built!

./db-init:/ docker-entrypoint-initdb.

The docker-entrypoint-initdb.d directory (inside the container)
contains an init.sql file that holds all the SQL commands ne-
cessary to initialize the database. It includes both Data Defini-
tion Language (DDL) and Data Manipulation Language (DML)
commands. This script creates the database, builds the data
model, and populates the tables. A denormalized GeoServer-
compatible view called measdata is included, containing a geo-
metry column named geom as a spatial data type. The data is
loaded from a comma-separated-value (CSV) file named meas-
data.csv. As a volume, this folder is accessible both inside and
outside the container, enabling quick updates of the data upon
restart.

The following steps are executed when the container is started:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-225-2025 | © Author(s) 2025. CC BY 4.0 License.

228

1. (Re)create the Database
DROP DATABASE IF EXISTS bfsrad;

CREATE DATABASE bfsrad;

2. Connect to the Database
\connect bfsrad

3. (Re)create the table
DROP TABLE IF EXISTS measdata;

CREATE TABLE measdata (...);

4. Insert Data
COPY measdata FROM 'measdata.csv' CSV HEADER

./ geoserver-init:/init

Similar to PostgreSQL’s init.sql, the geoserver-init folder in-
cludes a shell script (create_geoserver_objects.sh) that automates
the creation of:

1. The workspace: groups the objects in a namespace
2. The data store: the connection to the database
3. The style - the folder ’styles’ can be used to load any num-

ber of styles which need to be added to GeoServer.

Automation of GeoServer objects can be achieved through:

• The GeoServer REST API, or
• Direct configuration of the GeoServer data directory

In this project, the REST API is accessed via a shell script
that is executed when the container starts. All database tables
must exist before GeoServer may setup its own objects. It must
be able to access the PostgreSQL tables during startup; other-
wise the logs will show errors and GeoServer will fail to start.
The docker-compose.yml ensures PostgreSQL is running be-
fore starting GeoServer through the keyword:

geoserver:

..

depends_on:

- postgres

Docker can complete this setup within seconds, as the config-
uration resides in the container (not the image), enabling fast
container initialization. Testing has shown that the containers
start significantly faster than GeoServer itself, which undergoes
various setup processes. For this reason, the script setup.sh
(Figure 2) serves the purpose to wait until GeoServer is ready
before it sets up the objects.

#!/ bin/bash
catalina.sh run &
PID=$!

echo "Waiting for GeoServer to start..."
until curl -s -u $GEOSERVER_USER:$GEOSERVER_PASS \
http :// localhost :8080/ geoserver/rest/about/version.xml\
> /dev/null; do

sleep 5
done

echo "GeoServer is ready. Configuring..."
bash /init/create_geoserver_objects.sh
wait $PID

Figure 2. Shellscript waiting for GeoServer to be ready

Once GeoServer is ready, the required objects can be initialized.
Figure 3 illustrates the creation of the workspace and the data
store. The figure has been shortened for illustration purposes.

1. Create Workspace
curl -u $GEOSERVER_USER:$GEOSERVER_PASS -XPOST -H \
"Content-type: text/xml" \
-d "<workspace ><name >${WORKSPACE}</name ></workspace >"\
"${GEOSERVER_URL }/rest/workspaces"

2. Create PostGIS Store
curl -u $GEOSERVER_USER:$GEOSERVER_PASS -XPOST -H \
"Content-type: text/xml" -d "<dataStore >

<name >${STORE}</name >
<connectionParameters >

<entry key =\" host\">${PG_HOST}</entry >
<entry key =\" port\">${PG_PORT}</entry >
<entry key =\" database\">${PG_DB}</entry >
<entry key =\" user\">${PG_USER}</entry >
<entry key =\" passwd\">${PG_PASSWORD }</entry >
<entry key =\" dbtype\">postgis </entry >

</connectionParameters >
</dataStore >" \

"${GEOSERVER_URL }/.../.../${WORKSPACE }/ datastores"

3. Publish Layer (table must exist in PostGIS)
curl -u ...
4. Publish style (found in folder ./ styles)
curl -u ...
5. Associate the style with the layer
curl -u ...

Figure 3. Shellscript to create GeoServer objects (shortened for
illustration)

./app and node.js

Node modules and client information are mounted in the app
folder - both on the host and in the container (./app). This folder
(commonly also referred to as "src" in Node.js projects) hosts
the client application and contains its source code, including the
main webpage. Typically, index.html serves as the application’s
entry point. It is a simple webpage that loads and displays the
Web Map Service via OpenLayers using ol.TileWMS.

During the build process, numerous libraries (including Open-
Layers) are downloaded, particularly in the node_modules fold-
er, which includes all required dependencies. Similarly, the
PostgreSQL image downloads various tools and configuration
files during its initial build. However, these files should not be
included in the Git repository, as doing so would unnecessarily
increase its size and complicate dependency management. Con-
sequently, these files and folders are listed in the .gitignore

file. As the name implies, this file ensures that the specified
files and directories are excluded from the Git staging area and
the main repository.

The core repository (Figure 1) only contains lightweight text
configuration files that define:

• Image building and service configuration: specifies which
images to pull (services), which ports to expose, and the
volumes each service connects to.

• Login credentials: sensitive credentials are passed into
the docker-compose.yml via environment variables. These
should never be stored directly in the repository - even if
the repository is private. Instead, an .env.example file is
included as a template. Users should copy and rename this
file to .env and customize it for their environment. This
.env file is the only file that should differ between indi-
vidual clones of the repository.

• Client application: contains all the web page source code,
libraries and node module definitions for the client inter-
face.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-225-2025 | © Author(s) 2025. CC BY 4.0 License.

229

To build the images and start the services in a single command,
the command docker-compose up with the --build can be
used:

docker compose up -d --build --force-recreate

The command pulls all the required images:

docker image ls

REPOSITORY TAG IMAGE ... SIZE
node latest cd86d0acabd6 ... 1.11GB
postgis/postgis latest 9acc3941fc21 ... 609MB
dpage/pgadmin4 latest 73 ce6afcb76d ... 487MB
osgeo/geoserver latest b070c291a0d7 ... 685MB

Figure 4. List of Docker images

and starts the containers as services:

docker ps

ID IMAGE ... PORTS NAMES
fd87... node:latest ... *:3001- >5173/ tcp nodejs
cc20... osgeo/geoserver... *:8904- >8080/tcp geoserver
83e5... dpage/pgadmin4 ... *:5050- >80/tcp pgadmin
84b8... postgis/postgis... *:5432- >5432/ tcp postgres

Figure 5. List of Docker containers: * represents 0.0.0.0

All client applications are now accessible at the following URLs:

PostgreSQL: psql -h localhost postgres postgres

GeoServer: http :// localhost :8904/ geoserver/web/

Webpage: http :// localhost :3001/

Each component runs in its own image and container, promot-
ing a service-oriented architecture. It is generally considered
best practice to separate applications into independent processes,
as demonstrated here, to enable a modular and interconnected
service infrastructure. This modularization helps to untangle
complex monolithic architectures and facilitates clean, efficient
communication through APIs, well-defined addresses, and ex-
posed ports.

This streamlined deployment model makes containerization par-
ticularly well-suited for horizontal scaling. In combination with
orchestration tools like Docker Swarm, Kubernetes, OpenShift
and load balancers such as HAProxy or Traefik, the infrastruc-
ture can be optimized for high availability and large-scale de-
ployment. Containers can be replicated in a n:m relationship
between components like the DBMS and GeoServer, allowing
scalability based on traffic demands.

Furthermore, the project’s structure and its composition with
Docker is currently tailored for a development environment.
There are several options, some of which were mentioned earlier,
to significantly downscale the system for production use:

1. The PostgreSQL GUI pgAdmin can be completely omit-
ted.

2. The DBMS can be reduced to a more compact database
such as SQLLite or GeoPackage.

3. Node.js and Vite, used as development tools, consume sig-
nificant resources and are not required in the final produc-
tion setup.

3. Results and discussion

3.1 Real-World Application: Radiological Emergency Pre-
paredness

The application showcases how radiological measurement data
can be deployed for various tasks from routine monitoring to
emergency response. The Federal German Office for Radiation
Protection (Bundesamt für Strahlenschutz) is responsible for
detecting, assessing, and reacting to nuclear and radiological
events. It collaborates with European member states and inter-
national agencies (e.g., Euratom, IAEA). In an emergency, it
must rapidly collect, analyze, and distribute information while
proposing protective measures to reduce the impact of nuclear
fallout.

Scalability is a key concern during emergencies, as public in-
terest can surge dramatically, leading to heavy traffic on web
platforms. Both internal and external access to information
must remain stable and fast. For nearly a decade, the agency has
emphasized component-based software development and con-
tainerization, thereby reducing the overhead of system admin-
istration and increasing fault tolerance.

Containerization has improved continuous integration and de-
ployment (CI/CD), scalability, maintainability, portability, resi-
lience (e.g. recovery of services) and performance of geospatial
applications. Data updates can be deployed in seconds, and the
application can be scaled across multiple servers to meet in-
creased demand.

3.2 Discussion

The current implementation only plots data in OpenLayers. How-
ever, the client now has access to a powerful DBMS, a web map
server, and client-side tools such as node modules, JavaScript,
and OpenLayers. This provides extensive opportunities to de-
velop the client further. OpenLayers is a comprehensive library
that supports transactional editing, visualization, and analysis
of geospatial data. When used in conjunction with additional
frameworks or libraries, it can serve as a solid foundation for
developing a rich client application.

Figure 6 shows the radiological data plotted on the map in the
border triangle of Switzerland, France and Germany. The pro-
ject visualizes a single layer containing approximately 5,100
measurement points (as of 9 May 2025) from the Integrated
Measurement and Information System for the Surveillance of
Environmental Radioactivity (IMIS), hosted by the BfS. In Fig-
ure 6 these are visualized as points. Additionally, data repor-
ted by European partner organizations are displayed as squares.
The number of layers, data sources and features can be extended
at any time. This project is intended to serve as an introductory
example for individuals interested in developing containerized
software applications.

The application presented here is a deliberately simplified ex-
ample, designed to reduce a geospatial application to its es-
sential components. From this foundation, it can be extended
into more complex web-based systems. Its primary goal is to
demonstrate the potential for rapid deployment across multiple
locations to ensure availability, resilience and fault tolerance.
Currently, the BfS operates three georedundant servers located
in Berlin, Munich, and Freiburg. These servers run a multi-
component software system used to monitor environmental ra-
dioactivity.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-225-2025 | © Author(s) 2025. CC BY 4.0 License.

230

Figure 6. Visualization of radiological data

4. Conclusions

This case study demonstrated the benefits of adopting a con-
tainerized, service-oriented architecture for geospatial applica-
tions. By isolating each functional component - data ingestion,
storage, service and visualization into independent Docker con-
tainers, the system achieves modularity, scalability, and ease of
maintenance. The use of open-source tools like PostgreSQL/
PostGIS, GeoServer, and OpenLayers ensures adaptability to a
wide range of GIS use cases. This architecture not only sim-
plifies development and deployment but also provides a robust
foundation for building more complex geospatial systems that
support advanced spatial analytics and statistics or elaborate
data pipelines.

References

Blinowski, G., Ojdowska, A., Przybyłek, A., 2022. Monolithic
vs. microservice architecture: A performance and scalability
evaluation. IEEE access, 10, 20357–20374.

Combe, T., Martin, A., Di Pietro, R., 2016. To docker or not to
docker: A security perspective. IEEE Cloud Computing, 3(5),
54–62.

Docker Homepage, 2025. Docker engine – storage. https://
docs.docker.com/engine/storage/.

Hasan, M. H., Osman, M. H., Novia, I. A., Muhammad, M. S.,
2023. From monolith to microservice: measuring architecture
maintainability. International Journal of Advanced Computer
Science and Applications, 14(5).

IBM, 2025. Docker engine – storage. https://www.ibm.com/
think/topics/geographic-information-system.

Jaramillo, D., Nguyen, D. V., Smart, R., 2016. Leveraging mi-
croservices architecture by using docker technology. Southeast-
Con 2016, IEEE, 1–5.

Kalske, M., Mäkitalo, N., Mikkonen, T., 2017. Challenges
when moving from monolith to microservice architecture. In-
ternational Conference on Web Engineering, Springer, 32–47.

Lerner, R. M., 2014. At the forge: 12-factor apps. Linux
Journal, 2014(245), 5.

Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M., 2016.
Microservice architecture: aligning principles, practices, and
culture. " O’Reilly Media, Inc.".

Newman, S., 2019. Monolith to microservices: evolutionary
patterns to transform your monolith. O’Reilly Media.

Nickoloff, J., Kuenzli, S., 2019. Docker in action. Simon and
Schuster.

Su, R., Li, X., Taibi, D., 2024. From Microservice to Monolith:
A Multivocal Literature Review. Electronics, 13(8), 1452.

Turnbull, J., 2014. The Docker Book: Containerization is the
new virtualization. James Turnbull.

Wikipedia, 2025. Twelve-factor app methodology. [Online; ac-
cessed 14-May-2025].

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-225-2025 | © Author(s) 2025. CC BY 4.0 License.

231

https://docs.docker.com/engine/storage/
https://docs.docker.com/engine/storage/
https://www.ibm.com/think/topics/geographic-information-system
https://www.ibm.com/think/topics/geographic-information-system

	Introduction
	Containerization and microservices
	What is the difference between containerization and microservices?
	Advantages of modularization
	The 12 Factor App Methodology
	Limitations of containerization and microservice architectures

	Containerization and OGC-compliant services

	Methodology
	Project essentials
	Containerization for fault tolerance, resilience and high availability
	Pulling images and starting containers
	Persisting data in a container
	Project volume details

	Results and discussion
	Real-World Application: Radiological Emergency Preparedness
	Discussion

	Conclusions

