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Abstract 

 

The exponential growth of Earth Observation (EO) data generated by satellites demands scalable, efficient, and interoperable methods 

not only for storing and managing, but also for distributing data packages tailored to diverse use cases. The Open Container Initiative 

(OCI) registries, together with the OCI artifact specifications, present a promising framework for packaging, exchanging, and managing 

EO-derived and combined datasets. Originally developed for software containers, OCI registries offer key capabilities such as content-

addressable storage, data integrity verification, cryptographic attestation, layered packaging, and version control. A notable advantage 

is their ability to act as access gateways—enforcing access control at the artifact level without requiring direct exposure of the 

underlying storage backends (e.g., S3, GCS, Azure Blob, NFS, Ceph, IPFS). The ubiquity of OCI registries—spanning public 

platforms, managed enterprise services, and open-source deployments—makes them a practical foundation for distributing EO data 

across heterogeneous environments without custom infrastructure. This paper investigates the applicability of today’s OCI registry 

ecosystem to EO data pipelines, evaluating both strengths and current limitations in handling large, complex, and dynamic datasets. 

We explore design conventions and layout strategies to align EO products with the OCI artifact model, with a focus on metadata 

representation, access efficiency, and storage reuse. By comparing self-contained data packages with modular, layered asset stores, we 

highlight trade-offs in retrieval performance, interoperability, and client complexity. Recent trends in machine learning model 

distribution further underscore the growing relevance of OCI-based artifacts for scientific and geospatial workflows. Ultimately, this 

research positions OCI artifacts as a viable foundation for scalable, standards-aligned, and interoperable EO data handling—paving 

the way toward more streamlined and resilient data supply chains in the EO domain. 

 

1. Introduction 

The increasing volume and complexity of Earth Observation 

(EO) data—driven by advancements in satellite constellations, 

sensor technologies, and remote sensing methodologies—pose 

significant challenges for efficient distribution, management, and 

utilization. EO data products, typically comprising high-

resolution, time-series, and spatially rich information, must be 

delivered in a way that meets the diverse and often stringent 

requirements of different use cases. In many instances, raw EO 

data is reshaped, transformed, or fused with complementary 

datasets—such as meteorological records, environmental indices, 

and in situ measurements—to derive actionable insights tailored 

to specific analytical tasks. 

 

Effective distribution in this context demands not only 

scalability, low overhead, and rapid access but also robust 

support for data provenance, lineage, and compliance as part of 

the data product supply chain. These aspects are critical for 

ensuring reproducibility of analyses, validating the integrity of 

derived products, and meeting regulatory and institutional 

mandates—especially as EO data increasingly underpins 

decision-making in domains such as climate monitoring (WMO, 

2024), disaster response (Rolla, A., 2025), and precision 

agriculture (FAO, n.d.). Traditional data distribution methods, 

however, often depend on bespoke architectures and ad hoc 

tooling, which can hinder interoperability, complicate 

maintenance, and inhibit broader adoption across heterogeneous 

environments. 

 

The Open Container Initiative (OCI) presents a promising 

alternative. Originally developed to package and distribute 

software applications, OCI registries provide a standardized and 

scalable framework with built-in features such as versioning, 

immutability, layered storage, and cryptographic attestation. 

These capabilities enable secure, auditable, and traceable 

distribution—qualities that are just as valuable in data-intensive 

domains like Earth Observation (EO) as they are in the software 

supply chain. 

 

Although the use of OCI registries for EO datasets is still 

emerging, the ubiquity and maturity of OCI infrastructure make 

it an appealing foundation for data packaging and distribution. 

This existing infrastructure landscape spans: 

 

• public cloud platforms like Docker Hub, AWS ECR, 

• managed enterprise services e.g., Quay.io (Quay, n.d.),  

• open-source deployments e.g., Harbor (Harbor, n.d.) 

 

and supports a range of storage backends—including centralized 

cloud storage, on-premises systems, or even decentralized 

platforms such as IPFS (IPFS, n.d.). Together, these options 

support flexible deployment across centralized cloud 

environments, on-premises systems, and emerging distributed 

architectures. 

 

We argue that OCI registries are particularly well-suited to EO 

data workflows, offering a structured and observable mechanism 

for organizing and managing datasets used in domain-specific 

analyses, automated inference pipelines, compliance archiving, 

and AI/ML development. By leveraging existing tooling and 

standards—already deeply integrated into modern software 

development and operations ecosystems—EO data producers 

and consumers can reduce the operational friction and technical 
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debt associated with maintaining bespoke distribution systems. 

This paper investigates how EO data can be structured and 

packaged as OCI artifacts to conform to the OCI artifact 

specification while preserving efficiency across diverse registry 

implementations. We focus on practical strategies for organizing 

datasets to optimize retrieval speed, storage efficiency, and 

scalability, with particular attention to the varying constraints and 

behaviors of different OCI registries. Rather than modifying OCI 

registry technology itself, we explore how EO data packaging can 

be aligned with the capabilities and limitations of existing OCI 

infrastructure. Based on a benchmark artifact set and 

experimental evaluation, we provide guidance for practitioners 

seeking to adopt OCI-based workflows for EO data distribution. 

 

Our findings aim to motivate the EO community with practical 

strategies for harnessing existing OCI registry solutions to 

support real-time analysis, secure data access, and sustainable 

long-term data management—particularly in distributed and 

decentralized environments. By framing OCI as a foundational 

framework for EO data handling, we highlight its potential to 

drive greater standardization, interoperability, and scalability 

across the Earth Observation ecosystem. 

 

2. Data and Materials 

The efficient and scalable distribution of EO data remains a 

central challenge in modern remote sensing workflows. These 

pipelines must accommodate large volumes of geospatial and 

temporal data, often under strict requirements for reproducibility, 

traceability, and accessibility—principles actively promoted by 

initiatives such as EarthCODE (Anghelea et al., 2024). 

Conventional architectures typically rely on cloud-based object 

storage systems, complemented by metadata catalogs—most 

notably the SpatioTemporal Asset Catalog (STAC, 2023), which 

provides a standardized interface for describing and indexing 

geospatial assets. While widely adopted, these systems often lack 

native mechanisms for version control, content reuse, and 

coherent packaging of heterogeneous data. These capabilities—

established in software engineering and ML model versioning—

are becoming essential for scientific reproducibility and 

operational consistency. 

 

In recent years, the need for structured and reproducible data 

access has become increasingly urgent in analytics and machine 

learning workflows. Relying solely on live, mutable data 

streams—such as satellite imagery, meteorological feeds, or in 

situ measurements accessed via HTTP or S3 APIs—is no longer 

sufficient. Users increasingly demand materialized and curated 

datasets: well-defined, harmonized collections that are 

immediately usable for downstream analysis or model training. 

Platforms like Hugging Face Datasets (HF Datasets, n.d.) have 

demonstrated the effectiveness of this paradigm by offering 

versioned datasets with structured metadata and reproducibility 

guarantees. Domain-specific initiatives like the Earth 

Observation Training Data Lab (EOTDL, n.d.) are now emerging 

to bring similar capabilities to the Earth Observation community. 

To ground our discussion in a practical and representative 

example, we focus on the Panoptic Agricultural Satellite Time 

Series (PASTIS, 2024) dataset (Sainte Fare Garnot & Landrieu, 

2021)—an arbitrarily selected yet illustrative case. It integrates 

multiple Earth Observation modalities: 

 

• Optical time-series data from Sentinel-2, 

• Radar time-series data from Sentinel-1, 

• Very High Resolution imagery from SPOT satellites,  

• Curated annotations, including label masks and 

semantic classifications. 

All data is spatially tiled and georeferenced. Sentinel data is 

stored in NumPy array format, SPOT imagery in TIFF format, 

and annotations in structured formats suitable for semantic 

labeling tasks. With a total size of approximately 80 GB across 

four distinct regions in France, the dataset exemplifies several 

common challenges in EO workflows: multi-modal integration, 

heterogeneous formats, tile-based partitioning, and the 

coexistence of dense temporal sequences with high-resolution 

spatial snapshots. 

 

All benchmarking, packaging experiments, and structural 

evaluations in this study are based on two intentionally 

contrasting partitioning strategies applied to the PASTIS dataset. 

However, the packaging approaches we explore are data-agnostic 

and readily applicable to other EO datasets, regardless of their 

origin or internal format. For example: 

 

• Gridded data could be stored as NetCDF or Zarr 

chunks instead of NumPy arrays. 

• Imagery could be provided in formats such as 

JPEG2000 or Cloud Optimized GeoTIFFs (COGs) 

rather than standard TIFF. 

• Auxiliary sources—such as meteorological feeds or in-

situ observations—can be integrated just as easily. 

 

That said, these format variations are not the focus of this study; 

they are mentioned to emphasize the broader applicability of the 

methods presented. 

 

The packaged OCI artifacts produced in this work are immutable, 

content-addressable, and versioned data units. While OCI was 

originally designed for containerized software delivery, registries 

have since evolved to support arbitrary digital artifacts, enabling 

new applications well beyond DevOps. These artifacts can be 

published, discovered, pulled, and verified using existing 

container tooling such as the ORAS CLI (ORAS Project, 2024) 

and infrastructure (e.g., DockerHub, AWS ECR, Quay.io, 

Harbor). This introduces a robust, interoperable mechanism for 

data delivery—supporting structured metadata, referrers, artifact 

linking, and layered reuse to promote modularity and efficiency. 

 

The remainder of this chapter introduces the relevant components 

of the OCI specification and presents two architectural strategies 

for applying OCI to EO workflows: 

 

• Monolithic Packaging Model – Entire datasets or 

spatial tiles are encapsulated as self-contained, 

immutable OCI artifacts. This approach is particularly 

relevant for data package supply chains and is therefore 

of primary interest in this study. 

 

• Layered Asset Store Model – A modular design in 

which different data modalities (e.g., optical, radar, 

annotations) are distributed across distinct layers to 

support reuse and differential updates. 

 

2.1 The OCI Specification and OCI Artifact Format 

The Open Container Initiative (OCI) was established in 2015 

under the Linux Foundation to formalize standards for 

containerized software. Initially focused on container images and 

runtimes, the initiative has expanded through community-led 

efforts—most notably the OCI Artifacts project—to 

accommodate broader use cases, including configuration and 

policy management, machine learning models, scientific 

datasets, and general-purpose digital content (Lorenc, 2021). 
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The OCI specification comprises three core components: 

 

• Image Specification – Defines the structure of artifacts 

and their metadata. 

• Distribution Specification – Governs the protocol for 

pushing and retrieving artifacts from registries. 

• Runtime Specification – Describes how artifacts are 

executed; less relevant in the context of OCI artifacts 

used for data rather than software containers. 

 

At the core of an OCI artifact are three structural elements, as 

exemplified in Figure 1: 

 

• Config Blob – Traditionally used for container runtime 

parameters, but in EO contexts, it can be repurposed to 

hold structured metadata such as spatial extent, 

temporal coverage, data lineage, or sensor type. 

• Layers – The actual data payloads, stored as 

compressed binary blobs and addressed via 

cryptographic hashes (e.g., SHA-256). Layers may be 

partitioned by spatial regions, time slices, or thematic 

dimensions. 

• Manifest – The central descriptor linking the config 

and layers. It specifies digests, media types, and 

ordering, ensuring that all components of an artifact 

can be cohesively resolved and retrieved. 

 

Together, these features make OCI registries viable for 

packaging EO datasets as portable, versioned, and content-

addressable artifacts. 

 

2.2 OCI for EO Data Distribution 

Several characteristics of OCI align closely with the needs of EO 

data distribution: 

 

• Layered Storage and Deduplication – Shared 

components (e.g., base imagery or auxiliary datasets) 

can be stored once and reused across artifacts. Updates 

require only the transfer of changed layers. 

• Versioning and Traceability – Support for immutable 

digests and mutable tags enables fine-grained version 

control. Cryptographic signatures allow provenance 

and authenticity attestation. 

• Infrastructure Ubiquity – OCI registries are widely 

supported across cloud providers, enterprise platforms, 

and open-source tools, enabling integration into 

heterogeneous environments. 

 

As introduced earlier, we identify two emerging design patterns: 

the self-contained artifact model and the modular, layered asset 

store. These approaches are not mutually exclusive, but they 

emphasize different capabilities and trade-offs in data 

management. Each leverages distinct aspects of the OCI 

ecosystem to address EO-specific distribution challenges. 

 

2.2.1 Self-Contained OCI Data Packages 

 

Self-contained packaging involves bundling data into monolithic 

OCI artifacts, where all relevant content is pre-aggregated and 

structured for consumption as a cohesive unit. In the EO context, 

this typically means packaging all data for a specific region and 

time window into a single artifact—often referred to as a patch. 

Figure 2 provides an illustrative example of how different content 

is packaged together. 

 

While OCI layers may still be used internally to partition content 

(e.g., by file type or modality), the conceptual model is atomic: 

the artifact is designed to be pulled and consumed in full. 

Metadata is embedded either in the config object or within the 

layer files themselves. 

 

This approach aligns well with common EO usage patterns and 

reflects established practices in high-performance computing 

(HPC) and machine learning (ML), where datasets and execution 

environments are often encapsulated together. Figure 3 

demonstrates the ability to retrieve a single, versioned artifact 

using standard OCI tooling—conceptually relying only on a 

push-and-pull model—which simplifies orchestration and 

reduces dependency on external services. 

 

This self-contained model serves as the basis for our experiments. 

We evaluate it using two intentionally contrasting partitioning 

strategies applied to the PASTIS dataset: 

 

• PASTIS-2433: The whole PASTIS dataset is divided 

into 2,433 per-patch subsets. Each patch is packaged 

into a separate TAR archive and added as a layer in a 

$ oras manifest fetch localhost:5000/pastis-

2433:sample --format json 

 

 

{ 

  "mediaType": 

"application/vnd.oci.image.manifest.v1+json", 

  "config": { 

    "digest": "sha256:6e19...", 

    "mediaType": 

"application/vnd.oci.image.config.v1+json", 

    "size": 3093 

  }, 

  "layers": [ 

    { "digest": "sha256:7cff...", "mediaType": 

"application/vnd.oci.image.layer.v1.tar" }, 

    { "digest": "sha256:b9af...", "mediaType": 

"application/vnd.oci.image.layer.v1.tar" }, 

    { "digest": "sha256:6f57...", "mediaType": 

"application/vnd.oci.image.layer.v1.tar" } 

  ], 

  "schemaVersion": 2 

} 

$ oras push localhost:5000/pastis-2433:sample \ 

  --artifact-type application/vnd.whatever.v1+tar \ 

  --config 

config.json:application/vnd.oci.image.config.v1+json \ 

  10000.tar:application/vnd.oci.image.layer.v1.tar \ 

  10001.tar:application/vnd.oci.image.layer.v1.tar \ 

  10002.tar:application/vnd.oci.image.layer.v1.tar 

 

... 

 

$ oras pull localhost:5000/pastis-2433:sample -o /tmp 

 

$ tree /tmp 

. 

├── config.json 

├── 10000.tar 

├── 10001.tar 

└── 10002.tar 

├── ANNOTATIONS 

│   └── TARGET_10001.npy 

├── DATA_S1A 

│   └── S1A_10001.npy 

├── DATA_S1D 

│   └── S1D_10001.npy 

├── DATA_S2 

│   └── S2_10001.npy 

├── DATA_SPOT 

│   └── PASTIS_SPOT6_RVB_1M00_2019 

│       └── SPOT6_RVB_1M00_2019_10001.tif 

└── INSTANCE_ANNOTATIONS 

    ├── HEATMAP_10001.npy 

    └── INSTANCES_10001.npy 

Figure 1: Example OCI manifest fetched via ORAS CLI. 

Figure 2: Example patch from PASTIS after partitioning. 

Figure 3: Example flow demonstrating publishing (push) 

and retrieval (pull) of OCI artifacts using the ORAS CLI. 
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single OCI artifact. The result is a package with 2,433 

layers, each approximately 30–35 MB in size. The 

config object describes the metadata for each patch. 

• PASTIS-t4: The whole PASTIS dataset is divided into 

four larger tile-based subsets, each covering a distinct 

spatial region. Each tile is packaged into a separate 

TAR archive and added as a layer in the OCI artifact. 

The result is a package with 4 layers, each 

approximately 15–20 GB in size. The config object 

contains metadata relevant to each tile. 

 

Given that the OCI standard supports selective layer retrieval, the 

first partitioning strategy (PASTIS-2433) offers clear advantages 

in terms of granularity and flexibility compared to the second 

(PASTIS-t4). Individual patches can be pulled independently, 

enabling fine-grained access and potentially reducing bandwidth 

and storage costs when only subsets of the data are required. 

However, this flexibility comes with trade-offs: if the analysis 

requires all layers, the overhead of managing a large number of 

small layers may negatively impact scalability—not only on the 

registry side but also on the client side (e.g., UI rendering). 

 

That said, the primary goal of this study is not to optimize for a 

performance metrics, but to demonstrate the viability and 

flexibility of OCI-based packaging for EO data. We deliberately 

focus on approaches that align with the ubiquity of existing OCI 

registries and tooling. Both partitioning strategies were selected 

to reflect real-world applicability while staying within the 

practical limits of current OCI infrastructure—and to highlight 

meaningful contrasts in packaging design. 

 

2.2.2 OCI as a Modular Layered Asset Store 

 

Beyond self-contained packaging, the OCI registry can also 

function as a modular, general-purpose content store, more 

closely aligned with how data is structured in live and mutable 

data streams. Interestingly, even platforms like Hugging Face 

Datasets and EOTDL, which provide curated and versioned 

snapshots, often retain an internal structure that reflects their 

streaming origins—organized by product source, timestamps, or 

other data modalities. 

This design, as illustrated in the example in Figure 4, follows the 

natural grouping principle of keeping data from the same source 

together. It supports the incremental addition of new data to each 

source segment as it becomes available, thereby promoting 

extensibility and updatability. These source segments can even 

be packaged as separate OCI artifacts, each with its own manifest 

and index. The OCI Referrers API allows these individual 

artifacts to be linked into composite datasets, enabling the 

registry to maintain coherence across related components. 

 

However, this approach comes at the cost of increased packaging 

complexity and may require more sophisticated client logic to 

interpret and resolve referrers—overhead that is unnecessary in 

cases involving immutable, packaged datasets, which remain the 

primary focus of this study. 

 

2.2.3 Industry Trends 

 

Several domains have begun adopting OCI registries for 

structured, versioned, and modular data distribution. The 

bioinformatics community has explored OCI for packaging 

genomic references and alignment indices, where modularity and 

reproducibility are key (Davis et al., 2021). In high-performance 

computing, projects using Apptainer and Singularity have pushed 

scientific data containers to OCI registries, often separating 

simulation input/output from runtime environments (Apptainer 

Project, 2023). Similarly, ML training pipelines are starting to 

use registries to manage large datasets and model checkpoints as 

standalone artifacts, benefiting from OCI's support for layering, 

metadata, and reuse (Lorenc, 2023). 

 

In support of this direction, Docker Inc. recently introduced 

support for non-container artifact types on Docker Hub, 

including a dedicated model type for machine learning (ML) 

payloads (Docker Inc., 2022). These artifacts feature structured 

metadata, rich UI integration, and type-specific search 

capabilities—validating the layered registry model. Earth 

Observation (EO) datasets could adopt similar conventions by 

registering artifact types such as earth-observation. 

 

More recently, Docker introduced the Docker Model Runner, 

which allows ML models to be stored in OCI registries and 

directly executed for inference—blurring the line between 

packaging and serving (Docker Inc., 2024). This approach 

mirrors a concept already adopted by KServe, a Kubernetes-

native model serving platform that uses OCI artifacts to package 

and manage versioned models, enhancing reproducibility and 

traceability in machine learning workflows (KServe 

Documentation, n.d.).  

 

2.2.4 Insurance Industry Agricultural Use Case 

 

To illustrate the rationale behind the proposed data packaging 

approach, we briefly outline a real-world scenario inspired by 

actual requirements in the agricultural insurance sector. In this 

case, an insurance company needs to combine various geospatial 

data sources to support field operations such as crop monitoring, 

damage assessment, and irrigation analysis. 

 

The company operates an internal, modular data lake, but 

delivers curated, attestable data packages to field agents using an 

OCI artifacts. This layer assembles relevant content into 

optimized artifacts for efficient, on-demand consumption. 

 

• Data Assembly: The core dataset is following a similar 

structure as PASTIS, containing satellite timeseries as 

well as VHR satellite imagery, extended with 

$ tree 

. 

├── ANNOTATIONS 

│   ├── ParcelIDs_10000.npy 

│   ├── ParcelIDs_10001.npy 

│   ├── ParcelIDs_10002.npy 

│   ├── TARGET_10000.npy 

│   ├── TARGET_10001.npy 

│   ├── TARGET_10002.npy 

 ... 

├── DATA_S1A 

│   ├── S1A_10000.npy 

│   ├── S1A_10001.npy 

│   ├── S1A_10002.npy 

 ... 

├── DATA_S1D 

│   ├── S1D_10000.npy 

│   ├── S1D_10001.npy 

│   ├── S1D_10002.npy 

 ... 

├── DATA_S2 

│   ├── S2_10000.npy 

│   ├── S2_10001.npy 

│   ├── S2_10002.npy 

 ... 

├── DATA_SPOT 

│   └── PASTIS_SPOT6_RVB_1M00_2019 

│       ├── SPOT6_RVB_1M00_2019_10000.tif 

│       ├── SPOT6_RVB_1M00_2019_10001.tif 

│       ├── SPOT6_RVB_1M00_2019_10002.tif 

 ... 

├── INSTANCE_ANNOTATIONS 

│   ├── HEATMAP_10000.npy 

│   ├── HEATMAP_10001.npy 

│   ├── HEATMAP_10002.npy 

│   ├── INSTANCES_10000.npy 

│   ├── INSTANCES_10001.npy 

│   ├── INSTANCES_10002.npy 

│   ... 

 

Figure 4: Unpartitioned version of the PASTIS dataset. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-3-2025 | © Author(s) 2025. CC BY 4.0 License.

 
6



 

additional layers such as meteorological data, soil 

moisture indices, and irrigation-related information. 

Data is spatially and temporally aligned during 

preprocessing, with reprojection or resampling applied 

as needed. The system regularly synchronizes with the 

inputs from the data lake. 

• Packaging & Metadata: The processed data is 

structured into region-specific layers (comparable to 

the patching concept described earlier). A 

corresponding config blob includes metadata such as 

bounding boxes, acquisition dates, time series 

durations, and provenance including automated quality 

masks and attestations. Packages are published to be an 

OCI registry. 

• Field Agent Usage: Field agents download the relevant 

packages for the areas they plan to visit upfront—

typically onto mobile edge devices, even in offline 

regions with limited or no internet connectivity. These 

devices support exploratory data tools and on-device 

ML inference, enabling real-time analysis directly in 

the field. All actions—including the models used, 

predictions made, and associated data attestations—are 

logged for auditability and compliance. 

• Model Review and Benchmarking: Internal teams 

(Analysts, Data Scientists) reuse the same OCI artifacts 

to review model performance, conduct benchmarking, 

and maintain consistency across development and 

deployment. Metadata and manifests provide the 

necessary hooks for reproducibility and traceability. 

 

This use case demonstrates how OCI artifacts can enhance data 

governance, reproducibility, and operational efficiency in EO-

driven workflows. By adopting OCI’s modular and verifiable 

packaging model, organizations can streamline data delivery, 

ensure data integrity, and bridge the gap between centralized 

processing and decentralized consumption in the field. 

 

3. Methodology 

A central methodological focus of this study is to evaluate how 

Earth Observation (EO)–derived, use-case-specific datasets—

typically the result of fusion, harmonization, and preprocessing 

pipelines—can be structured, packaged, and distributed 

effectively as OCI artifacts. 

 

Unlike conventional approaches that store raw EO data in generic 

data lakes or expose them via APIs optimized for exploratory 

access—usually involving an open-ended, two-step process of 

search and retrieval—this work concentrates on the delivery of 

ready-to-use, tightly scoped data bundles. These curated 

packages are designed to support specific downstream tasks, such 

as on-device inference, model training, regulatory compliance 

auditing, or manual field assessments on remote edge devices. 

The goal is not to enable search and browsing, but to ensure that 

the correct partition of pre-validated data is directly applicable to 

a targeted operational task. 

 

While OCI artifacts are not inherently file-based, they 

encapsulate file-based content in a structure that is both modular 

and familiar. The use of immutable layers to store data and a 

config blob to store metadata creates a layout that closely 

resembles traditional file-based storage. This is a significant 

advantage, as it aligns with the mental models of users, machine 

learning frameworks such as PyTorch and TensorFlow, and 

many legacy geospatial tools and libraries that assume file-based 

input. Thus, although OCI artifacts are formally structured as 

object-based packages, their ability to encapsulate and present 

file-based content makes them both practical and interoperable 

across a wide range of EO applications. This dual nature bridges 

the gap between modern object storage paradigms and the file-

based expectations of existing tools and workflows. 

 

The broader implication of this methodology is that domain-

specific packaging standards can—and should—emerge from 

practical, real-world usage. While the OCI specification provides 

a robust structural foundation, achieving true interoperability will 

require community-driven conventions, including consistent 

field naming, labeling practices, and annotation schemas. 

 

Establishing such conventions begins with pragmatic 

experimentation. This study aims to lay that groundwork—

demonstrating viable models that can be refined and expanded 

through collaborative iteration. 

 

3.1 Structuring EO-Derived Data Products as OCI Artifacts 

The individual layers of an OCI artifact correspond to logical 

partitions of the dataset. Each layer represents the actual data for 

a given partition—whether defined spatially, temporally, or 

thematically—and is stored as a TAR archive, optionally 

compressed (e.g., using gzip or zstd). These archives contain all 

content relevant to that partition, ensuring self-sufficiency. 

 

This paper does not focus on the internal data formats of each 

partition; instead, it assumes that all bytes of a partition are 

needed once the layer is pulled. As such, partial access or 

streaming within a layer is not a primary concern. However, the 

efficiency of compression remains relevant: specifically, whether 

the savings in transfer size justify the computational cost of 

decompression at the edge or client side. The choice of 

compression algorithm can significantly impact usability 

depending on the execution environment—whether in the cloud, 

on local clusters, or at remote edge devices. Even after the data 

is pulled to a target environment, the chosen format and 

compression scheme determine whether additional extraction 

steps are required or if the data can be consumed immediately. 

For example, simple TAR archives may be preferable for 

lightweight, offline processing, as they avoid the overhead 

associated with more complex or nested formats. In such 

contexts, selecting a compression method that balances size 

reduction with low extraction latency becomes crucial. From the 

OCI registry's perspective, both the number of layers and the size 

of individual layers are relevant factors. 

 

While the OCI specification defines a consistent structure for 

how layers are represented—including media types such as: 

 

• application/vnd.oci.image.layer.v1.tar 

• application/vnd.oci.image.layer.v1.tar+gzip 

• application/vnd.oci.image.layer.v1.tar+zstd 

 

—it does not enforce strict standardization of the internal formats 

used within those layers. Instead, these aspects are governed by 

convention and shaped by domain-specific requirements, 

allowing flexibility in how content is structured and interpreted 

within each layer (OCI Image Specification, n.d.).  

 

OCI tooling—such as Docker, ORAS CLI—natively supports 

these formats. With the introduction of OCI Artifacts in version 

1.1, it is now also possible to define custom media types at both 

the artifact and layer level. One could define types such as: 

 

• application/vnd.org.geotiff.layer.v1+tar 

• application/vnd.eo.timeseries+zarr 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-3-2025 | © Author(s) 2025. CC BY 4.0 License.

 
7



 

to signal domain semantics and expectations. However, most 

OCI clients do not treat these media types differently unless 

explicitly configured to do so. As such, they serve primarily as 

descriptive metadata rather than functional directives for 

behavior or processing. In this study, we adhered to the existing, 

widely supported layer media types to ensure broad compatibility 

across registries and tools. 

 

Next to the layers sits the config object, intended for descriptive, 

domain-specific metadata. It is not involved in the layout or 

retrieval of the artifact but provides a flexible space for users to 

encode meaningful information about the artifact’s contents. The 

config blob is required (OCI Image Specification, 2023) and must 

be a valid JSON object with the media type 

 

• application/vnd.oci.image.config.v1+json 

 

In this study, we chose to leverage the config object as a custom 

metadata schema that enriches the artifact beyond its technical 

structure. Specifically, we: 

 

• Included a list of all dataset partitions (each 

corresponding to a layer), 

• Attached relevant metadata for each partition (e.g., 

spatial boundaries, temporal coverage), and 

• Embedded the digest of each TAR file directly in the 

config, matching the corresponding entry in the 

manifest. 

 

This dual declaration—linking layers by digest in both the 

manifest and the config—serves multiple purposes. It enhances 

data integrity, supports verifiability, and enables domain-specific 

clients to validate or inspect the artifact structure independently 

of OCI tooling. In this sense, the manifest acts as a technical table 

of contents, while the config serves as a semantic index or 

annotation layer—intended for clients, researchers, and 

operational workflows. 

 

For EO-specific applications, this approach aligns well with 

existing standards such as STAC and related OGC metadata 

models, which define common field names and structures for 

describing geospatial assets. Mapping those conventions into, or 

even directly using, a STAC Item or OGC record as the OCI 

config allows artifacts to remain compatible with established 

metadata expectations. 

 

A practical limitation of the current OCI specification is that only 

a single config blob can be attached to an artifact, and it must be 

a JSON object with a defined media type (OCI Image 

Specification, 2023). For datasets involving thousands of 

partitions or fine-grained provenance, encoding all metadata into 

a single config can become cumbersome or inefficient. 

 

At the same time, this raises the broader question of whether such 

a use case still constitutes a well-scoped data package—or 

whether it would be more appropriate to treat it as a modular asset 

store (cf. Section 2.2.2), where metadata catalogs must support 

mutability and implementation should follow different strategies. 

 

3.2 Evaluation Setup and used OCI Registries 

To assess practical suitability, we conducted a comparative 

evaluation across a representative selection of OCI-compatible 

registry backends. These include public, enterprise-managed, and 

self-hosted services: 

 

• Docker Hub – docker.io/versioneer (Docker Inc., 

2025) 

• Quay.io – quay.io/versioneer-inc (Red Hat, 2025) 

• Harbor (hosted by OVHCloud) -###.c1.de1.container-

registry.ovh.net/versioneer (Harbor Project, n.d.) 

• Amazon Elastic Container Registry –###.dkr.ecr.eu-

central-1.amazonaws.com/versioneer (Amazon Web 

Services, 2025) 

• Zot Registry - localhost:5000 (Zot Registry, n.d.) 

 

As benchmark artifacts, we used three OCI-compatible data 

packages derived from the PASTIS dataset (cf. Section 2.2.1), 

designed to reflect diverse packaging strategies and workload 

characteristics: 

 

• pastis-2433:full - high-partitioned artifact comprising 

2,433 individual layers (~30-35 MB each) 

• pastis-t4:full - low-partitioned artifact with 4 large 

layers (~15–20 GB each) 

• pastis-2433:sample - minimal variant of pastis-

2433:full, including only the first three layers, serves 

both as a lightweight smoke test and as a reproducible 

reference published in the companion GitHub 

repository 

 

All artifacts were created and pushed using the ORAS CLI, 

relying on standard OCI operations without registry-specific 

tuning or enhancements. This approach reflects the typical usage 

pattern expected emphasizing interoperability and out-of-the-box 

compatibility. Uploads were performed using consistent 

commands, and optional concurrency flags were applied 

uniformly where supported. This controlled setup ensures a fair 

comparison of registry behavior under realistic but standardized 

conditions. 

 

3.3 Evaluation Dimensions for OCI Registry Suitability 

To assess the registry-side behavior relevant to data distribution, 

we define a focused set of evaluation dimensions derived from 

the characteristics of the benchmark artifacts. Each dimension 

targets a specific feature or constraint that may influence the 

packaging, transfer, or usability of OCI artifacts. Wherever 

available, we relied on official registry documentation to 

establish expected behavior. Direct testing was conducted when 

behavior was undocumented, implementation-specific, or 

expected to vary. 

 

• Size-related constraints are a fundamental 

consideration, as registries may enforce limits on 

individual layer sizes or overall artifact size. Given the 

presence of large blobs as well as many layers in our 

benchmark artifacts, we verified registry behavior 

through empirical uploads across all cases. 

• Storage deduplication was evaluated by examining 

whether shared layers between artifact variants (e.g., 

full and sample) were re-uploaded or recognized and 

skipped, and how this influenced reported storage 

consumption. While most OCI registries implement 

content-addressable storage, we verified this behavior 

experimentally to confirm effective layer reuse. 

• Support for selective layer access via blob digests was 

recorded, as all registries conforming to the OCI 

specification expose blob-level APIs. Although not a 

differentiating feature in practice, we verified this 

behavior experimentally to confirm that individual 
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layers could be retrieved independently of the full 

artifact. 

• Resumability of uploads and downloads was evaluated 

insofar as it could be observed through client tooling. 

Where documentation was insufficient, we conducted 

targeted tests to assess whether interrupted sessions 

could be resumed without restarting the entire transfer. 

• Support for the OCI Referrers API was determined 

from registry announcements and specifications. Since 

rollout is ongoing across platforms, we limited testing 

to confirming acceptance of referrer uploads and 

querying referrers where supported. 

• Finally, we noted whether registries preserve custom 

annotations and tolerate non-standard media types. 

These features are part of the OCI specification, and we 

assumed compliance unless documentation or prior 

reports suggested limitations. Where feasible, we 

confirmed manifest integrity after upload. 

 

This set of dimensions offers a practical framework to 

characterize registry behavior with respect to layered, large-

scale, and metadata-rich artifacts, while balancing empirical 

testing with documentation-based inference. 

 

4. Results 

The complete evaluation benchmark—including setup, scripts, 

and discussion of results—has been published in the research 

section of our website (Versioneer, 2025).  

 

The following summarizes observed registry behavior across a 

focused set of evaluation dimensions tailored to our benchmark 

artifacts. Findings combine direct testing with documentation 

analysis and highlight only behavior with practical impact. 

 

• Docker Hub: Empirical testing confirmed that Docker 

Hub accepted artifacts with both many small layers and 

a few large ones. However, reliability significantly 

decreased when uploading multi-gigabyte layers under 

the free-tier plan, likely due to bandwidth throttling and 

rate limits. Shared layers were correctly deduplicated 

across tags. Blob-level access worked as expected, and 

resumable uploads/downloads were supported through 

client-side retries. OCI referrers are not yet supported. 

While custom media types and annotations were 

preserved, they are not exposed in the Docker Hub UI. 

• Quay.io: The managed Quay service reliably handled 

artifacts across all tested size and layer count 

configurations. It demonstrated effective 

deduplication, supported blob-level access and partial 

downloads, and allowed upload/download resumption 

within protocol limits. The Referrers API is fully 

supported, and both annotations and custom media 

types were preserved without issue, but not exposed in 

the UI. 

• Harbor (hosted by OVHCloud): The private Harbor 

instance accepted all artifacts and supported high layer 

counts. Deduplication and blob access functioned 

reliably, and resumable transfers were validated. OCI 

referrers were supported, and custom metadata was 

retained and visible in the Harbor UI. 

• Amazon Elastic Container Registry: The private AWS 

Elastic Container Registry (ECR) supports large layer 

sizes—up to 52 GiB per layer in private ECR and up to 

10 GiB in public ECR. We encountered no issues 

related to the number of layers per artifact during our 

tests. Deduplication was effective across repositories, 

and blob-level access was verified via the API. Upload 

and download resumption was supported through 

client-side logic. OCI referrers are supported, and 

although custom metadata is retained, it is not 

displayed in the AWS Console UI. 

• Zot Registry (local): The local Zot Registry handled 

both artifact variants without issues related to size or 

layer count. Layer reuse worked as expected, and 

HTTP range requests enabled blob-level access. 

Transfer resumption is supported at the protocol level. 

Annotations and custom media types were preserved. 

 

5. Conclusion and Acknowledgements 

Our evaluation results strongly indicate that today’s landscape of 

OCI registries—spanning public platforms, managed enterprise 

services, and open-source deployments—is well-equipped to 

handle data artifacts of varying granularity and size. This makes 

them readily usable for Earth Observation (EO) data packages in 

the range of several dozen gigabytes without requiring substantial 

adaptation or customization. Core features such as deduplication, 

blob-level access, resumability, and metadata preservation are 

reliably supported, providing a robust foundation for scalable and 

interoperable data distribution. 

 

While our focus was on registry-side behavior, it is clear that the 

broader OCI ecosystem—including tools for building and 

managing artifacts—is equally critical. Although the ORAS CLI 

served as our primary interface, tools such as Docker, Podman, 

Skopeo, Singularity, and emerging domain-specific clients are 

becoming increasingly relevant. Their suitability for EO-specific 

workflows—or the potential need for purpose-built tooling—

remains an open area for further investigation. 

 

Standardization is another critical area of ongoing work, 

particularly around domain-specific media types, annotation 

keys, and metadata conventions. This challenge is not unique to 

EO. The machine learning community, for example, is actively 

developing OCI-based packaging strategies for ML models to 

streamline the process from model packaging to inference results. 

Such developments reflect a broader momentum toward 

formalizing domain-aware artifact specifications atop the OCI 

foundation. 

 

Beyond the distribution of immutable data packages within data 

product supply chains, OCI’s foundational principles—layered 

storage, content addressing, and manifest-driven composition—

make it a compelling candidate for general-purpose data asset 

management. As columnar and chunked formats gain traction 

and high-performance analytical tools become mainstream, OCI 

registries could evolve into intelligent, versioned storage 

backends for next-generation data workflows. 

 

In a general-purpose asset store, mutability is an inherent 

requirement—essential for managing metadata that evolves over 

time, reflects ingestion progress, or supports dynamic indexing. 

A key enabler of this model is support for partial access, 

particularly through HTTP range requests. These allow clients to 

retrieve only the necessary byte ranges from large blobs—

especially important for formats such as COG, Zarr, or 

GeoParquet. In such contexts, partial access is not merely a 

performance optimization but a structural necessity. Storing 

metadata in queryable formats like GeoParquet enables efficient 

remote access without requiring full file downloads. Building on 

this, open table formats and versioned indexing schemes offer 

promising mechanisms for supporting scalable, dynamic 

metadata layers atop OCI-based infrastructure. 
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