
Towards Standardization of the Earth Observation Data Product Supply Chain – Are OCI

Artifacts the Key to Ubiquitous and Scalable EO Data Handling?

Stefan Achtsnit1,2, Martin Rösel1, Stephan Meißl2

1Versioneer GmbH, Lower Austria, Austria – (stefan.achtsnit, martin.roesel)@versioneer.at

2EOX IT Services GmbH, Vienna, Austria – (stefan.achtsnit, stephan.meissl)@eox.at

Keywords: Open Container Initiative (OCI), OCI Registries and Artifacts, Layered Data Storage, Data Supply Chain

Abstract

The exponential growth of Earth Observation (EO) data generated by satellites demands scalable, efficient, and interoperable methods

not only for storing and managing, but also for distributing data packages tailored to diverse use cases. The Open Container Initiative

(OCI) registries, together with the OCI artifact specifications, present a promising framework for packaging, exchanging, and managing

EO-derived and combined datasets. Originally developed for software containers, OCI registries offer key capabilities such as content-

addressable storage, data integrity verification, cryptographic attestation, layered packaging, and version control. A notable advantage

is their ability to act as access gateways—enforcing access control at the artifact level without requiring direct exposure of the

underlying storage backends (e.g., S3, GCS, Azure Blob, NFS, Ceph, IPFS). The ubiquity of OCI registries—spanning public

platforms, managed enterprise services, and open-source deployments—makes them a practical foundation for distributing EO data

across heterogeneous environments without custom infrastructure. This paper investigates the applicability of today’s OCI registry

ecosystem to EO data pipelines, evaluating both strengths and current limitations in handling large, complex, and dynamic datasets.

We explore design conventions and layout strategies to align EO products with the OCI artifact model, with a focus on metadata

representation, access efficiency, and storage reuse. By comparing self-contained data packages with modular, layered asset stores, we

highlight trade-offs in retrieval performance, interoperability, and client complexity. Recent trends in machine learning model

distribution further underscore the growing relevance of OCI-based artifacts for scientific and geospatial workflows. Ultimately, this

research positions OCI artifacts as a viable foundation for scalable, standards-aligned, and interoperable EO data handling—paving

the way toward more streamlined and resilient data supply chains in the EO domain.

1. Introduction

The increasing volume and complexity of Earth Observation

(EO) data—driven by advancements in satellite constellations,

sensor technologies, and remote sensing methodologies—pose

significant challenges for efficient distribution, management, and

utilization. EO data products, typically comprising high-

resolution, time-series, and spatially rich information, must be

delivered in a way that meets the diverse and often stringent

requirements of different use cases. In many instances, raw EO

data is reshaped, transformed, or fused with complementary

datasets—such as meteorological records, environmental indices,

and in situ measurements—to derive actionable insights tailored

to specific analytical tasks.

Effective distribution in this context demands not only

scalability, low overhead, and rapid access but also robust

support for data provenance, lineage, and compliance as part of

the data product supply chain. These aspects are critical for

ensuring reproducibility of analyses, validating the integrity of

derived products, and meeting regulatory and institutional

mandates—especially as EO data increasingly underpins

decision-making in domains such as climate monitoring (WMO,

2024), disaster response (Rolla, A., 2025), and precision

agriculture (FAO, n.d.). Traditional data distribution methods,

however, often depend on bespoke architectures and ad hoc

tooling, which can hinder interoperability, complicate

maintenance, and inhibit broader adoption across heterogeneous

environments.

The Open Container Initiative (OCI) presents a promising

alternative. Originally developed to package and distribute

software applications, OCI registries provide a standardized and

scalable framework with built-in features such as versioning,

immutability, layered storage, and cryptographic attestation.

These capabilities enable secure, auditable, and traceable

distribution—qualities that are just as valuable in data-intensive

domains like Earth Observation (EO) as they are in the software

supply chain.

Although the use of OCI registries for EO datasets is still

emerging, the ubiquity and maturity of OCI infrastructure make

it an appealing foundation for data packaging and distribution.

This existing infrastructure landscape spans:

• public cloud platforms like Docker Hub, AWS ECR,

• managed enterprise services e.g., Quay.io (Quay, n.d.),

• open-source deployments e.g., Harbor (Harbor, n.d.)

and supports a range of storage backends—including centralized

cloud storage, on-premises systems, or even decentralized

platforms such as IPFS (IPFS, n.d.). Together, these options

support flexible deployment across centralized cloud

environments, on-premises systems, and emerging distributed

architectures.

We argue that OCI registries are particularly well-suited to EO

data workflows, offering a structured and observable mechanism

for organizing and managing datasets used in domain-specific

analyses, automated inference pipelines, compliance archiving,

and AI/ML development. By leveraging existing tooling and

standards—already deeply integrated into modern software

development and operations ecosystems—EO data producers

and consumers can reduce the operational friction and technical

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-3-2025 | © Author(s) 2025. CC BY 4.0 License.

3

debt associated with maintaining bespoke distribution systems.

This paper investigates how EO data can be structured and

packaged as OCI artifacts to conform to the OCI artifact

specification while preserving efficiency across diverse registry

implementations. We focus on practical strategies for organizing

datasets to optimize retrieval speed, storage efficiency, and

scalability, with particular attention to the varying constraints and

behaviors of different OCI registries. Rather than modifying OCI

registry technology itself, we explore how EO data packaging can

be aligned with the capabilities and limitations of existing OCI

infrastructure. Based on a benchmark artifact set and

experimental evaluation, we provide guidance for practitioners

seeking to adopt OCI-based workflows for EO data distribution.

Our findings aim to motivate the EO community with practical

strategies for harnessing existing OCI registry solutions to

support real-time analysis, secure data access, and sustainable

long-term data management—particularly in distributed and

decentralized environments. By framing OCI as a foundational

framework for EO data handling, we highlight its potential to

drive greater standardization, interoperability, and scalability

across the Earth Observation ecosystem.

2. Data and Materials

The efficient and scalable distribution of EO data remains a

central challenge in modern remote sensing workflows. These

pipelines must accommodate large volumes of geospatial and

temporal data, often under strict requirements for reproducibility,

traceability, and accessibility—principles actively promoted by

initiatives such as EarthCODE (Anghelea et al., 2024).

Conventional architectures typically rely on cloud-based object

storage systems, complemented by metadata catalogs—most

notably the SpatioTemporal Asset Catalog (STAC, 2023), which

provides a standardized interface for describing and indexing

geospatial assets. While widely adopted, these systems often lack

native mechanisms for version control, content reuse, and

coherent packaging of heterogeneous data. These capabilities—

established in software engineering and ML model versioning—

are becoming essential for scientific reproducibility and

operational consistency.

In recent years, the need for structured and reproducible data

access has become increasingly urgent in analytics and machine

learning workflows. Relying solely on live, mutable data

streams—such as satellite imagery, meteorological feeds, or in

situ measurements accessed via HTTP or S3 APIs—is no longer

sufficient. Users increasingly demand materialized and curated

datasets: well-defined, harmonized collections that are

immediately usable for downstream analysis or model training.

Platforms like Hugging Face Datasets (HF Datasets, n.d.) have

demonstrated the effectiveness of this paradigm by offering

versioned datasets with structured metadata and reproducibility

guarantees. Domain-specific initiatives like the Earth

Observation Training Data Lab (EOTDL, n.d.) are now emerging

to bring similar capabilities to the Earth Observation community.

To ground our discussion in a practical and representative

example, we focus on the Panoptic Agricultural Satellite Time

Series (PASTIS, 2024) dataset (Sainte Fare Garnot & Landrieu,

2021)—an arbitrarily selected yet illustrative case. It integrates

multiple Earth Observation modalities:

• Optical time-series data from Sentinel-2,

• Radar time-series data from Sentinel-1,

• Very High Resolution imagery from SPOT satellites,

• Curated annotations, including label masks and

semantic classifications.

All data is spatially tiled and georeferenced. Sentinel data is

stored in NumPy array format, SPOT imagery in TIFF format,

and annotations in structured formats suitable for semantic

labeling tasks. With a total size of approximately 80 GB across

four distinct regions in France, the dataset exemplifies several

common challenges in EO workflows: multi-modal integration,

heterogeneous formats, tile-based partitioning, and the

coexistence of dense temporal sequences with high-resolution

spatial snapshots.

All benchmarking, packaging experiments, and structural

evaluations in this study are based on two intentionally

contrasting partitioning strategies applied to the PASTIS dataset.

However, the packaging approaches we explore are data-agnostic

and readily applicable to other EO datasets, regardless of their

origin or internal format. For example:

• Gridded data could be stored as NetCDF or Zarr

chunks instead of NumPy arrays.

• Imagery could be provided in formats such as

JPEG2000 or Cloud Optimized GeoTIFFs (COGs)

rather than standard TIFF.

• Auxiliary sources—such as meteorological feeds or in-

situ observations—can be integrated just as easily.

That said, these format variations are not the focus of this study;

they are mentioned to emphasize the broader applicability of the

methods presented.

The packaged OCI artifacts produced in this work are immutable,

content-addressable, and versioned data units. While OCI was

originally designed for containerized software delivery, registries

have since evolved to support arbitrary digital artifacts, enabling

new applications well beyond DevOps. These artifacts can be

published, discovered, pulled, and verified using existing

container tooling such as the ORAS CLI (ORAS Project, 2024)

and infrastructure (e.g., DockerHub, AWS ECR, Quay.io,

Harbor). This introduces a robust, interoperable mechanism for

data delivery—supporting structured metadata, referrers, artifact

linking, and layered reuse to promote modularity and efficiency.

The remainder of this chapter introduces the relevant components

of the OCI specification and presents two architectural strategies

for applying OCI to EO workflows:

• Monolithic Packaging Model – Entire datasets or

spatial tiles are encapsulated as self-contained,

immutable OCI artifacts. This approach is particularly

relevant for data package supply chains and is therefore

of primary interest in this study.

• Layered Asset Store Model – A modular design in

which different data modalities (e.g., optical, radar,

annotations) are distributed across distinct layers to

support reuse and differential updates.

2.1 The OCI Specification and OCI Artifact Format

The Open Container Initiative (OCI) was established in 2015

under the Linux Foundation to formalize standards for

containerized software. Initially focused on container images and

runtimes, the initiative has expanded through community-led

efforts—most notably the OCI Artifacts project—to

accommodate broader use cases, including configuration and

policy management, machine learning models, scientific

datasets, and general-purpose digital content (Lorenc, 2021).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-3-2025 | © Author(s) 2025. CC BY 4.0 License.

4

The OCI specification comprises three core components:

• Image Specification – Defines the structure of artifacts

and their metadata.

• Distribution Specification – Governs the protocol for

pushing and retrieving artifacts from registries.

• Runtime Specification – Describes how artifacts are

executed; less relevant in the context of OCI artifacts

used for data rather than software containers.

At the core of an OCI artifact are three structural elements, as

exemplified in Figure 1:

• Config Blob – Traditionally used for container runtime

parameters, but in EO contexts, it can be repurposed to

hold structured metadata such as spatial extent,

temporal coverage, data lineage, or sensor type.

• Layers – The actual data payloads, stored as

compressed binary blobs and addressed via

cryptographic hashes (e.g., SHA-256). Layers may be

partitioned by spatial regions, time slices, or thematic

dimensions.

• Manifest – The central descriptor linking the config

and layers. It specifies digests, media types, and

ordering, ensuring that all components of an artifact

can be cohesively resolved and retrieved.

Together, these features make OCI registries viable for

packaging EO datasets as portable, versioned, and content-

addressable artifacts.

2.2 OCI for EO Data Distribution

Several characteristics of OCI align closely with the needs of EO

data distribution:

• Layered Storage and Deduplication – Shared

components (e.g., base imagery or auxiliary datasets)

can be stored once and reused across artifacts. Updates

require only the transfer of changed layers.

• Versioning and Traceability – Support for immutable

digests and mutable tags enables fine-grained version

control. Cryptographic signatures allow provenance

and authenticity attestation.

• Infrastructure Ubiquity – OCI registries are widely

supported across cloud providers, enterprise platforms,

and open-source tools, enabling integration into

heterogeneous environments.

As introduced earlier, we identify two emerging design patterns:

the self-contained artifact model and the modular, layered asset

store. These approaches are not mutually exclusive, but they

emphasize different capabilities and trade-offs in data

management. Each leverages distinct aspects of the OCI

ecosystem to address EO-specific distribution challenges.

2.2.1 Self-Contained OCI Data Packages

Self-contained packaging involves bundling data into monolithic

OCI artifacts, where all relevant content is pre-aggregated and

structured for consumption as a cohesive unit. In the EO context,

this typically means packaging all data for a specific region and

time window into a single artifact—often referred to as a patch.

Figure 2 provides an illustrative example of how different content

is packaged together.

While OCI layers may still be used internally to partition content

(e.g., by file type or modality), the conceptual model is atomic:

the artifact is designed to be pulled and consumed in full.

Metadata is embedded either in the config object or within the

layer files themselves.

This approach aligns well with common EO usage patterns and

reflects established practices in high-performance computing

(HPC) and machine learning (ML), where datasets and execution

environments are often encapsulated together. Figure 3

demonstrates the ability to retrieve a single, versioned artifact

using standard OCI tooling—conceptually relying only on a

push-and-pull model—which simplifies orchestration and

reduces dependency on external services.

This self-contained model serves as the basis for our experiments.

We evaluate it using two intentionally contrasting partitioning

strategies applied to the PASTIS dataset:

• PASTIS-2433: The whole PASTIS dataset is divided

into 2,433 per-patch subsets. Each patch is packaged

into a separate TAR archive and added as a layer in a

$ oras manifest fetch localhost:5000/pastis-

2433:sample --format json

{

 "mediaType":

"application/vnd.oci.image.manifest.v1+json",

 "config": {

 "digest": "sha256:6e19...",

 "mediaType":

"application/vnd.oci.image.config.v1+json",

 "size": 3093

 },

 "layers": [

 { "digest": "sha256:7cff...", "mediaType":

"application/vnd.oci.image.layer.v1.tar" },

 { "digest": "sha256:b9af...", "mediaType":

"application/vnd.oci.image.layer.v1.tar" },

 { "digest": "sha256:6f57...", "mediaType":

"application/vnd.oci.image.layer.v1.tar" }

],

 "schemaVersion": 2

}

$ oras push localhost:5000/pastis-2433:sample \

 --artifact-type application/vnd.whatever.v1+tar \

 --config

config.json:application/vnd.oci.image.config.v1+json \

 10000.tar:application/vnd.oci.image.layer.v1.tar \

 10001.tar:application/vnd.oci.image.layer.v1.tar \

 10002.tar:application/vnd.oci.image.layer.v1.tar

...

$ oras pull localhost:5000/pastis-2433:sample -o /tmp

$ tree /tmp

.

├── config.json

├── 10000.tar

├── 10001.tar

└── 10002.tar

├── ANNOTATIONS

│ └── TARGET_10001.npy

├── DATA_S1A

│ └── S1A_10001.npy

├── DATA_S1D

│ └── S1D_10001.npy

├── DATA_S2

│ └── S2_10001.npy

├── DATA_SPOT

│ └── PASTIS_SPOT6_RVB_1M00_2019

│ └── SPOT6_RVB_1M00_2019_10001.tif

└── INSTANCE_ANNOTATIONS

 ├── HEATMAP_10001.npy

 └── INSTANCES_10001.npy

Figure 1: Example OCI manifest fetched via ORAS CLI.

Figure 2: Example patch from PASTIS after partitioning.

Figure 3: Example flow demonstrating publishing (push)

and retrieval (pull) of OCI artifacts using the ORAS CLI.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-3-2025 | © Author(s) 2025. CC BY 4.0 License.

5

single OCI artifact. The result is a package with 2,433

layers, each approximately 30–35 MB in size. The

config object describes the metadata for each patch.

• PASTIS-t4: The whole PASTIS dataset is divided into

four larger tile-based subsets, each covering a distinct

spatial region. Each tile is packaged into a separate

TAR archive and added as a layer in the OCI artifact.

The result is a package with 4 layers, each

approximately 15–20 GB in size. The config object

contains metadata relevant to each tile.

Given that the OCI standard supports selective layer retrieval, the

first partitioning strategy (PASTIS-2433) offers clear advantages

in terms of granularity and flexibility compared to the second

(PASTIS-t4). Individual patches can be pulled independently,

enabling fine-grained access and potentially reducing bandwidth

and storage costs when only subsets of the data are required.

However, this flexibility comes with trade-offs: if the analysis

requires all layers, the overhead of managing a large number of

small layers may negatively impact scalability—not only on the

registry side but also on the client side (e.g., UI rendering).

That said, the primary goal of this study is not to optimize for a

performance metrics, but to demonstrate the viability and

flexibility of OCI-based packaging for EO data. We deliberately

focus on approaches that align with the ubiquity of existing OCI

registries and tooling. Both partitioning strategies were selected

to reflect real-world applicability while staying within the

practical limits of current OCI infrastructure—and to highlight

meaningful contrasts in packaging design.

2.2.2 OCI as a Modular Layered Asset Store

Beyond self-contained packaging, the OCI registry can also

function as a modular, general-purpose content store, more

closely aligned with how data is structured in live and mutable

data streams. Interestingly, even platforms like Hugging Face

Datasets and EOTDL, which provide curated and versioned

snapshots, often retain an internal structure that reflects their

streaming origins—organized by product source, timestamps, or

other data modalities.

This design, as illustrated in the example in Figure 4, follows the

natural grouping principle of keeping data from the same source

together. It supports the incremental addition of new data to each

source segment as it becomes available, thereby promoting

extensibility and updatability. These source segments can even

be packaged as separate OCI artifacts, each with its own manifest

and index. The OCI Referrers API allows these individual

artifacts to be linked into composite datasets, enabling the

registry to maintain coherence across related components.

However, this approach comes at the cost of increased packaging

complexity and may require more sophisticated client logic to

interpret and resolve referrers—overhead that is unnecessary in

cases involving immutable, packaged datasets, which remain the

primary focus of this study.

2.2.3 Industry Trends

Several domains have begun adopting OCI registries for

structured, versioned, and modular data distribution. The

bioinformatics community has explored OCI for packaging

genomic references and alignment indices, where modularity and

reproducibility are key (Davis et al., 2021). In high-performance

computing, projects using Apptainer and Singularity have pushed

scientific data containers to OCI registries, often separating

simulation input/output from runtime environments (Apptainer

Project, 2023). Similarly, ML training pipelines are starting to

use registries to manage large datasets and model checkpoints as

standalone artifacts, benefiting from OCI's support for layering,

metadata, and reuse (Lorenc, 2023).

In support of this direction, Docker Inc. recently introduced

support for non-container artifact types on Docker Hub,

including a dedicated model type for machine learning (ML)

payloads (Docker Inc., 2022). These artifacts feature structured

metadata, rich UI integration, and type-specific search

capabilities—validating the layered registry model. Earth

Observation (EO) datasets could adopt similar conventions by

registering artifact types such as earth-observation.

More recently, Docker introduced the Docker Model Runner,

which allows ML models to be stored in OCI registries and

directly executed for inference—blurring the line between

packaging and serving (Docker Inc., 2024). This approach

mirrors a concept already adopted by KServe, a Kubernetes-

native model serving platform that uses OCI artifacts to package

and manage versioned models, enhancing reproducibility and

traceability in machine learning workflows (KServe

Documentation, n.d.).

2.2.4 Insurance Industry Agricultural Use Case

To illustrate the rationale behind the proposed data packaging

approach, we briefly outline a real-world scenario inspired by

actual requirements in the agricultural insurance sector. In this

case, an insurance company needs to combine various geospatial

data sources to support field operations such as crop monitoring,

damage assessment, and irrigation analysis.

The company operates an internal, modular data lake, but

delivers curated, attestable data packages to field agents using an

OCI artifacts. This layer assembles relevant content into

optimized artifacts for efficient, on-demand consumption.

• Data Assembly: The core dataset is following a similar

structure as PASTIS, containing satellite timeseries as

well as VHR satellite imagery, extended with

$ tree

.

├── ANNOTATIONS

│ ├── ParcelIDs_10000.npy

│ ├── ParcelIDs_10001.npy

│ ├── ParcelIDs_10002.npy

│ ├── TARGET_10000.npy

│ ├── TARGET_10001.npy

│ ├── TARGET_10002.npy

 ...

├── DATA_S1A

│ ├── S1A_10000.npy

│ ├── S1A_10001.npy

│ ├── S1A_10002.npy

 ...

├── DATA_S1D

│ ├── S1D_10000.npy

│ ├── S1D_10001.npy

│ ├── S1D_10002.npy

 ...

├── DATA_S2

│ ├── S2_10000.npy

│ ├── S2_10001.npy

│ ├── S2_10002.npy

 ...

├── DATA_SPOT

│ └── PASTIS_SPOT6_RVB_1M00_2019

│ ├── SPOT6_RVB_1M00_2019_10000.tif

│ ├── SPOT6_RVB_1M00_2019_10001.tif

│ ├── SPOT6_RVB_1M00_2019_10002.tif

 ...

├── INSTANCE_ANNOTATIONS

│ ├── HEATMAP_10000.npy

│ ├── HEATMAP_10001.npy

│ ├── HEATMAP_10002.npy

│ ├── INSTANCES_10000.npy

│ ├── INSTANCES_10001.npy

│ ├── INSTANCES_10002.npy

│ ...

Figure 4: Unpartitioned version of the PASTIS dataset.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-3-2025 | © Author(s) 2025. CC BY 4.0 License.

6

additional layers such as meteorological data, soil

moisture indices, and irrigation-related information.

Data is spatially and temporally aligned during

preprocessing, with reprojection or resampling applied

as needed. The system regularly synchronizes with the

inputs from the data lake.

• Packaging & Metadata: The processed data is

structured into region-specific layers (comparable to

the patching concept described earlier). A

corresponding config blob includes metadata such as

bounding boxes, acquisition dates, time series

durations, and provenance including automated quality

masks and attestations. Packages are published to be an

OCI registry.

• Field Agent Usage: Field agents download the relevant

packages for the areas they plan to visit upfront—

typically onto mobile edge devices, even in offline

regions with limited or no internet connectivity. These

devices support exploratory data tools and on-device

ML inference, enabling real-time analysis directly in

the field. All actions—including the models used,

predictions made, and associated data attestations—are

logged for auditability and compliance.

• Model Review and Benchmarking: Internal teams

(Analysts, Data Scientists) reuse the same OCI artifacts

to review model performance, conduct benchmarking,

and maintain consistency across development and

deployment. Metadata and manifests provide the

necessary hooks for reproducibility and traceability.

This use case demonstrates how OCI artifacts can enhance data

governance, reproducibility, and operational efficiency in EO-

driven workflows. By adopting OCI’s modular and verifiable

packaging model, organizations can streamline data delivery,

ensure data integrity, and bridge the gap between centralized

processing and decentralized consumption in the field.

3. Methodology

A central methodological focus of this study is to evaluate how

Earth Observation (EO)–derived, use-case-specific datasets—

typically the result of fusion, harmonization, and preprocessing

pipelines—can be structured, packaged, and distributed

effectively as OCI artifacts.

Unlike conventional approaches that store raw EO data in generic

data lakes or expose them via APIs optimized for exploratory

access—usually involving an open-ended, two-step process of

search and retrieval—this work concentrates on the delivery of

ready-to-use, tightly scoped data bundles. These curated

packages are designed to support specific downstream tasks, such

as on-device inference, model training, regulatory compliance

auditing, or manual field assessments on remote edge devices.

The goal is not to enable search and browsing, but to ensure that

the correct partition of pre-validated data is directly applicable to

a targeted operational task.

While OCI artifacts are not inherently file-based, they

encapsulate file-based content in a structure that is both modular

and familiar. The use of immutable layers to store data and a

config blob to store metadata creates a layout that closely

resembles traditional file-based storage. This is a significant

advantage, as it aligns with the mental models of users, machine

learning frameworks such as PyTorch and TensorFlow, and

many legacy geospatial tools and libraries that assume file-based

input. Thus, although OCI artifacts are formally structured as

object-based packages, their ability to encapsulate and present

file-based content makes them both practical and interoperable

across a wide range of EO applications. This dual nature bridges

the gap between modern object storage paradigms and the file-

based expectations of existing tools and workflows.

The broader implication of this methodology is that domain-

specific packaging standards can—and should—emerge from

practical, real-world usage. While the OCI specification provides

a robust structural foundation, achieving true interoperability will

require community-driven conventions, including consistent

field naming, labeling practices, and annotation schemas.

Establishing such conventions begins with pragmatic

experimentation. This study aims to lay that groundwork—

demonstrating viable models that can be refined and expanded

through collaborative iteration.

3.1 Structuring EO-Derived Data Products as OCI Artifacts

The individual layers of an OCI artifact correspond to logical

partitions of the dataset. Each layer represents the actual data for

a given partition—whether defined spatially, temporally, or

thematically—and is stored as a TAR archive, optionally

compressed (e.g., using gzip or zstd). These archives contain all

content relevant to that partition, ensuring self-sufficiency.

This paper does not focus on the internal data formats of each

partition; instead, it assumes that all bytes of a partition are

needed once the layer is pulled. As such, partial access or

streaming within a layer is not a primary concern. However, the

efficiency of compression remains relevant: specifically, whether

the savings in transfer size justify the computational cost of

decompression at the edge or client side. The choice of

compression algorithm can significantly impact usability

depending on the execution environment—whether in the cloud,

on local clusters, or at remote edge devices. Even after the data

is pulled to a target environment, the chosen format and

compression scheme determine whether additional extraction

steps are required or if the data can be consumed immediately.

For example, simple TAR archives may be preferable for

lightweight, offline processing, as they avoid the overhead

associated with more complex or nested formats. In such

contexts, selecting a compression method that balances size

reduction with low extraction latency becomes crucial. From the

OCI registry's perspective, both the number of layers and the size

of individual layers are relevant factors.

While the OCI specification defines a consistent structure for

how layers are represented—including media types such as:

• application/vnd.oci.image.layer.v1.tar

• application/vnd.oci.image.layer.v1.tar+gzip

• application/vnd.oci.image.layer.v1.tar+zstd

—it does not enforce strict standardization of the internal formats

used within those layers. Instead, these aspects are governed by

convention and shaped by domain-specific requirements,

allowing flexibility in how content is structured and interpreted

within each layer (OCI Image Specification, n.d.).

OCI tooling—such as Docker, ORAS CLI—natively supports

these formats. With the introduction of OCI Artifacts in version

1.1, it is now also possible to define custom media types at both

the artifact and layer level. One could define types such as:

• application/vnd.org.geotiff.layer.v1+tar

• application/vnd.eo.timeseries+zarr

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-3-2025 | © Author(s) 2025. CC BY 4.0 License.

7

to signal domain semantics and expectations. However, most

OCI clients do not treat these media types differently unless

explicitly configured to do so. As such, they serve primarily as

descriptive metadata rather than functional directives for

behavior or processing. In this study, we adhered to the existing,

widely supported layer media types to ensure broad compatibility

across registries and tools.

Next to the layers sits the config object, intended for descriptive,

domain-specific metadata. It is not involved in the layout or

retrieval of the artifact but provides a flexible space for users to

encode meaningful information about the artifact’s contents. The

config blob is required (OCI Image Specification, 2023) and must

be a valid JSON object with the media type

• application/vnd.oci.image.config.v1+json

In this study, we chose to leverage the config object as a custom

metadata schema that enriches the artifact beyond its technical

structure. Specifically, we:

• Included a list of all dataset partitions (each

corresponding to a layer),

• Attached relevant metadata for each partition (e.g.,

spatial boundaries, temporal coverage), and

• Embedded the digest of each TAR file directly in the

config, matching the corresponding entry in the

manifest.

This dual declaration—linking layers by digest in both the

manifest and the config—serves multiple purposes. It enhances

data integrity, supports verifiability, and enables domain-specific

clients to validate or inspect the artifact structure independently

of OCI tooling. In this sense, the manifest acts as a technical table

of contents, while the config serves as a semantic index or

annotation layer—intended for clients, researchers, and

operational workflows.

For EO-specific applications, this approach aligns well with

existing standards such as STAC and related OGC metadata

models, which define common field names and structures for

describing geospatial assets. Mapping those conventions into, or

even directly using, a STAC Item or OGC record as the OCI

config allows artifacts to remain compatible with established

metadata expectations.

A practical limitation of the current OCI specification is that only

a single config blob can be attached to an artifact, and it must be

a JSON object with a defined media type (OCI Image

Specification, 2023). For datasets involving thousands of

partitions or fine-grained provenance, encoding all metadata into

a single config can become cumbersome or inefficient.

At the same time, this raises the broader question of whether such

a use case still constitutes a well-scoped data package—or

whether it would be more appropriate to treat it as a modular asset

store (cf. Section 2.2.2), where metadata catalogs must support

mutability and implementation should follow different strategies.

3.2 Evaluation Setup and used OCI Registries

To assess practical suitability, we conducted a comparative

evaluation across a representative selection of OCI-compatible

registry backends. These include public, enterprise-managed, and

self-hosted services:

• Docker Hub – docker.io/versioneer (Docker Inc.,

2025)

• Quay.io – quay.io/versioneer-inc (Red Hat, 2025)

• Harbor (hosted by OVHCloud) -###.c1.de1.container-

registry.ovh.net/versioneer (Harbor Project, n.d.)

• Amazon Elastic Container Registry –###.dkr.ecr.eu-

central-1.amazonaws.com/versioneer (Amazon Web

Services, 2025)

• Zot Registry - localhost:5000 (Zot Registry, n.d.)

As benchmark artifacts, we used three OCI-compatible data

packages derived from the PASTIS dataset (cf. Section 2.2.1),

designed to reflect diverse packaging strategies and workload

characteristics:

• pastis-2433:full - high-partitioned artifact comprising

2,433 individual layers (~30-35 MB each)

• pastis-t4:full - low-partitioned artifact with 4 large

layers (~15–20 GB each)

• pastis-2433:sample - minimal variant of pastis-

2433:full, including only the first three layers, serves

both as a lightweight smoke test and as a reproducible

reference published in the companion GitHub

repository

All artifacts were created and pushed using the ORAS CLI,

relying on standard OCI operations without registry-specific

tuning or enhancements. This approach reflects the typical usage

pattern expected emphasizing interoperability and out-of-the-box

compatibility. Uploads were performed using consistent

commands, and optional concurrency flags were applied

uniformly where supported. This controlled setup ensures a fair

comparison of registry behavior under realistic but standardized

conditions.

3.3 Evaluation Dimensions for OCI Registry Suitability

To assess the registry-side behavior relevant to data distribution,

we define a focused set of evaluation dimensions derived from

the characteristics of the benchmark artifacts. Each dimension

targets a specific feature or constraint that may influence the

packaging, transfer, or usability of OCI artifacts. Wherever

available, we relied on official registry documentation to

establish expected behavior. Direct testing was conducted when

behavior was undocumented, implementation-specific, or

expected to vary.

• Size-related constraints are a fundamental

consideration, as registries may enforce limits on

individual layer sizes or overall artifact size. Given the

presence of large blobs as well as many layers in our

benchmark artifacts, we verified registry behavior

through empirical uploads across all cases.

• Storage deduplication was evaluated by examining

whether shared layers between artifact variants (e.g.,

full and sample) were re-uploaded or recognized and

skipped, and how this influenced reported storage

consumption. While most OCI registries implement

content-addressable storage, we verified this behavior

experimentally to confirm effective layer reuse.

• Support for selective layer access via blob digests was

recorded, as all registries conforming to the OCI

specification expose blob-level APIs. Although not a

differentiating feature in practice, we verified this

behavior experimentally to confirm that individual

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-3-2025 | © Author(s) 2025. CC BY 4.0 License.

8

layers could be retrieved independently of the full

artifact.

• Resumability of uploads and downloads was evaluated

insofar as it could be observed through client tooling.

Where documentation was insufficient, we conducted

targeted tests to assess whether interrupted sessions

could be resumed without restarting the entire transfer.

• Support for the OCI Referrers API was determined

from registry announcements and specifications. Since

rollout is ongoing across platforms, we limited testing

to confirming acceptance of referrer uploads and

querying referrers where supported.

• Finally, we noted whether registries preserve custom

annotations and tolerate non-standard media types.

These features are part of the OCI specification, and we

assumed compliance unless documentation or prior

reports suggested limitations. Where feasible, we

confirmed manifest integrity after upload.

This set of dimensions offers a practical framework to

characterize registry behavior with respect to layered, large-

scale, and metadata-rich artifacts, while balancing empirical

testing with documentation-based inference.

4. Results

The complete evaluation benchmark—including setup, scripts,

and discussion of results—has been published in the research

section of our website (Versioneer, 2025).

The following summarizes observed registry behavior across a

focused set of evaluation dimensions tailored to our benchmark

artifacts. Findings combine direct testing with documentation

analysis and highlight only behavior with practical impact.

• Docker Hub: Empirical testing confirmed that Docker

Hub accepted artifacts with both many small layers and

a few large ones. However, reliability significantly

decreased when uploading multi-gigabyte layers under

the free-tier plan, likely due to bandwidth throttling and

rate limits. Shared layers were correctly deduplicated

across tags. Blob-level access worked as expected, and

resumable uploads/downloads were supported through

client-side retries. OCI referrers are not yet supported.

While custom media types and annotations were

preserved, they are not exposed in the Docker Hub UI.

• Quay.io: The managed Quay service reliably handled

artifacts across all tested size and layer count

configurations. It demonstrated effective

deduplication, supported blob-level access and partial

downloads, and allowed upload/download resumption

within protocol limits. The Referrers API is fully

supported, and both annotations and custom media

types were preserved without issue, but not exposed in

the UI.

• Harbor (hosted by OVHCloud): The private Harbor

instance accepted all artifacts and supported high layer

counts. Deduplication and blob access functioned

reliably, and resumable transfers were validated. OCI

referrers were supported, and custom metadata was

retained and visible in the Harbor UI.

• Amazon Elastic Container Registry: The private AWS

Elastic Container Registry (ECR) supports large layer

sizes—up to 52 GiB per layer in private ECR and up to

10 GiB in public ECR. We encountered no issues

related to the number of layers per artifact during our

tests. Deduplication was effective across repositories,

and blob-level access was verified via the API. Upload

and download resumption was supported through

client-side logic. OCI referrers are supported, and

although custom metadata is retained, it is not

displayed in the AWS Console UI.

• Zot Registry (local): The local Zot Registry handled

both artifact variants without issues related to size or

layer count. Layer reuse worked as expected, and

HTTP range requests enabled blob-level access.

Transfer resumption is supported at the protocol level.

Annotations and custom media types were preserved.

5. Conclusion and Acknowledgements

Our evaluation results strongly indicate that today’s landscape of

OCI registries—spanning public platforms, managed enterprise

services, and open-source deployments—is well-equipped to

handle data artifacts of varying granularity and size. This makes

them readily usable for Earth Observation (EO) data packages in

the range of several dozen gigabytes without requiring substantial

adaptation or customization. Core features such as deduplication,

blob-level access, resumability, and metadata preservation are

reliably supported, providing a robust foundation for scalable and

interoperable data distribution.

While our focus was on registry-side behavior, it is clear that the

broader OCI ecosystem—including tools for building and

managing artifacts—is equally critical. Although the ORAS CLI

served as our primary interface, tools such as Docker, Podman,

Skopeo, Singularity, and emerging domain-specific clients are

becoming increasingly relevant. Their suitability for EO-specific

workflows—or the potential need for purpose-built tooling—

remains an open area for further investigation.

Standardization is another critical area of ongoing work,

particularly around domain-specific media types, annotation

keys, and metadata conventions. This challenge is not unique to

EO. The machine learning community, for example, is actively

developing OCI-based packaging strategies for ML models to

streamline the process from model packaging to inference results.

Such developments reflect a broader momentum toward

formalizing domain-aware artifact specifications atop the OCI

foundation.

Beyond the distribution of immutable data packages within data

product supply chains, OCI’s foundational principles—layered

storage, content addressing, and manifest-driven composition—

make it a compelling candidate for general-purpose data asset

management. As columnar and chunked formats gain traction

and high-performance analytical tools become mainstream, OCI

registries could evolve into intelligent, versioned storage

backends for next-generation data workflows.

In a general-purpose asset store, mutability is an inherent

requirement—essential for managing metadata that evolves over

time, reflects ingestion progress, or supports dynamic indexing.

A key enabler of this model is support for partial access,

particularly through HTTP range requests. These allow clients to

retrieve only the necessary byte ranges from large blobs—

especially important for formats such as COG, Zarr, or

GeoParquet. In such contexts, partial access is not merely a

performance optimization but a structural necessity. Storing

metadata in queryable formats like GeoParquet enables efficient

remote access without requiring full file downloads. Building on

this, open table formats and versioned indexing schemes offer

promising mechanisms for supporting scalable, dynamic

metadata layers atop OCI-based infrastructure.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-3-2025 | © Author(s) 2025. CC BY 4.0 License.

9

We gratefully acknowledge the vibrant open-source geospatial

community—particularly initiatives like Pangeo and Cloud-

Native Geospatial, and pioneering teams such as Development

Seed and Earthmover—for their continued contributions that

drive innovation and make cutting-edge solutions widely

accessible. We are also fortunate to collaborate with outstanding

partners and colleagues at Versioneer and EOX, whose support

fosters a creative environment and enables us to explore bold,

cloud-native approaches to Earth Observation data infrastructure.

Special thanks to OVHCloud for supporting this research through

their Starter Program by providing cloud credits.

References

Amazon Web Services, 2025: Amazon Elastic Container

Registry (ECR). https://docs.aws.amazon.com/ecr/ (15 May

2025).

Anghelea, A., Smith, G., Meissl, S., & Achtsnit, S., 2024:

EarthCODE – ESA’s Earth Science Collaborative Open

Development Environment. International Archives of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences, XLVIII-4-2024, 19–25. doi:10.5194/isprs-archives-

XLVIII-4-2024-19-2024.

Apptainer Project, 2023: Singularity and Docker Compatibility.

https://apptainer.org/user-

docs/master/singularity_and_docker.html (15 May 2025).

Docker Inc., 2022: Announcing Docker Hub OCI Artifacts

Support. https://www.docker.com/blog/announcing-docker-hub-

oci-artifacts-support/ (15 May 2025).

Docker Inc., 2024: Introducing Docker Model Runner – A

Simpler Way to Serve Models.

https://www.docker.com/blog/introducing-docker-model-

runner/ (15 May 2025).

Docker Inc., 2025: Docker Hub – Cloud-based OCI Registry.

https://hub.docker.com (15 May 2025).

EOTDL, n.d.: Earth Observation Training Data Library.

https://eotdl.com (15 May 2025).

Food and Agriculture Organization (FAO), n.d.: Use of Earth

Observation Data. https://www.fao.org/in-action/eostat (15 May

2025).

Harbor, n.d.: Open Source OCI Registry. CNCF project.

https://goharbor.io (15 May 2025).

Docker

Hugging Face, n.d.: Hugging Face Datasets.

https://huggingface.co/datasets (15 May 2025).

IPFS, n.d.: InterPlanetary File System. https://ipfs.tech (15 May

2025).

KServe Documentation, n.d.: Serving Models with OCI Images.

https://kserve.github.io/website/latest/modelserving/storage/oci/

(15 May 2025).

Lorenc, D., 2021: OCI Artifacts Explained. Are they real? Kind

of! https://dlorenc.medium.com/oci-artifacts-explained-

8f4a77945c13 (15 May 2025).

Lorenc, D., 2023: OCI as a Standard for ML Artifact Storage

and Retrieval.

https://www.youtube.com/watch?v=hGM5KQLzbYc (15 May

2025).

OCI Image Specification, n.d.: Media Types.

https://github.com/opencontainers/image-

spec/blob/main/media-types.md (15 May 2025).

Open Container Initiative (OCI), 2023: About the Open

Container Initiative – OCI project overview.

https://opencontainers.org (15 May 2025).

ORAS Project, 2024: OCI Registry As Storage (ORAS) CLI

Tool. https://oras.land (15 May 2025).

Red Hat, 2025: Quay.io – OCI-Compatible Registry Service.

https://quay.io (15 May 2025).

Rolla, A., 2025: Satellite‐Aided Disaster Response. AGU

Advances, 6, e2024AV001395. doi:10.1029/2024AV001395.

Sainte Fare Garnot, V., & Landrieu, L., 2021: Panoptic

Segmentation of Satellite Image Time Series with

Convolutional Temporal Attention Networks.

https://arxiv.org/abs/2107.07933 (15 May 2025).

STAC, 2023: SpatioTemporal Asset Catalog Specification.

https://stacspec.org (15 May 2025).

Turner, P., 2024: Orchestrating Bioinformatics Workflows

Across a Heterogeneous Toolset with Flyte. SciPy 2024

Proceedings.

https://proceedings.scipy.org/articles/DDJJ4932.pdf (15 May

2025).

Versioneer, 2025: Research area.

https://research.versioneer.at/paper-evaluation-benchmark (15

May 2025).

World Meteorological Organization (WMO), 2024: State of

Climate Services 2024. https://wmo.int/publication-series/2024-

state-of-climate-services (15 May 2025).

Zot Registry, n.d.: Open Source OCI-Compatible Registry.

https://github.com/project-zot/zot (15 May 2025).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-3-2025 | © Author(s) 2025. CC BY 4.0 License.

10

