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Abstract

Monitoring inland water areas is crucial for ecosystem health and water resources management, particularly under impacts of
global climate change. Recent advancements in cloud-based platforms like Google Earth Engine (GEE) enable efficient, scalable
remote sensing analyses and democratize access to a wide range of data sources. This study leverages the GEE Python API and
free and open-source Python libraries (e.g., geemap, scipy, pymannkendall, pingouin) to present a scalable workflow for assessing
hydrological and water quality dynamics in shallow lakes. The methodology is demonstrated through a 40-year (1985-2024) case
study of Ilgın Lake in Central Anatolia, Türkiye. Based on Landsat 5, 7 and 8 satellite imagery annual water areas, chlorophyll
content and turbidity extracted with spectral indices. The climate variables (mean temperature and total precipitation) were extracted
from ERA5 (ECMWF Reanalysis Fifth Generation) dataset. The non-parametric Mann-Kendall and Theil Sen’s method was used to
investigate trends. The relationship between climate factors and water area/water quality were assessed using Pearson correlation,
partial correlation analysis and multiple linear regression. Results revealed Ilgın Lake’s water area significantly declined, and
chlorophyll content significantly increased. All code and workflow are publicly available as Jupyter Notebook on GitHub under the
open-source MIT license (https://github.com/earth-obs/lake-gee-hydrology-water-quality).

1. Introduction

Inland water bodies are keystone components of ecosystems,
particularly in arid and semi-arid regions where agricultural
livelihoods largely depend on these water resources. Therefore,
precise monitoring of these water sources is indispensable to
mitigate the impacts of global climate change, ensure food se-
curity, preserve drinking water, and biodiversity (Bogardi et al.,
2012).

The European Union Water Framework Directive (WFD) ne-
cessitates member states to monitor all water bodies in terms
of both water quantity and quality to restore good ecological
status (EU, 2000). To comply with the EU Water Framework
Directive (WFD), Türkiye’s General Directorate of Water Man-
agement has initiated the preparation of River Basin Manage-
ment (RBM) plans for all 25 river basins (Yıldırımer and De-
mirci, 2024). In Turkey, the legal basis for preparing basin man-
agement plans was established in 2012 with the “Regulation
on the Preparation, Implementation, and Monitoring of Basin
Management Plans” (Ministry of Environment and Urban Plan-
ning, Republic of Turkey, 2012).

Continuous monitoring of water levels and water quality para-
meters requires regular in-situ measurements or IoT-based
tracking systems (Hong et al., 2021, Liu et al., 2017). Thus, tra-
ditional water management plans prioritize large water bodies
due to the labor-intensive nature of data collection and analysis.
Remote sensing addresses these challenges by linking spec-
tral reflectance characteristics of water areas to multi-spectral
satellite imagery. Initial studies have focused on the extract-
ing of water bodies from land by analyzing spectral differ-
ences between water and non-water pixels (McFeeters, 1996,
Xu, 2006). Then, remote sensing has been found to be a reli-
able tool for tracking water quality parameters such as turbid-
ity (Lacaux et al., 2007), chlorophyll concentrations (Mishra
and Mishra, 2012) or Secchi disk depth estimations (Lee et

al., 2016). Although the remote sensing method is a proof-of-
concept for monitoring water resources, it requires expertise in
the field to conduct such analyses. For long-term evaluations, a
large number of satellite imagery needs to be processed which
may also require high-performance hardware.

Recent advancements in cloud-based platforms like Google
Earth Engine (GEE) enable efficient, scalable remote sens-
ing analyses and democratize access to a wide range of data
sources (Gorelick et al., 2017). There are several studies on
the monitoring of water resources using GEE for both water
area (Atiz et al., 2023, Li et al., 2024, Lu and Sun, 2023, Owusu
et al., 2022, Yilmaz, 2023) and water quality (Das et al., 2024,
Dewantoro et al., 2024, Kislik et al., 2022, Tanner et al., 2022,
Yan et al., 2025).

While some studies have examined long-term water trends,
most primarily focus on either water quantity or water qual-
ity. Even in studies that analyze both parameters, the tem-
poral scope is often limited to recent years, neglecting long-
term trends essential for understanding climate change impacts.
Therefore, this study aims to present a scalable workflow for
assessing long-term hydrological dynamics and water quality
(1985-2024), leveraging the power of cloud-based GEE and
open-source Python libraries, examining this through a case
study conducted in Ilgın lake, located in Republic of Türkiye.

2. Data and Methods

2.1 Study Area

Ilgın Lake, also known as Çavuşcu Lake, is a tectonic freshwa-
ter lake in Central Anatolia, Türkiye. It has an area of about
2700 hectares, and mean depth is 2-10 m. The lake consists of
a small part and a main body, with a dam constructed between
them to manage water use for irrigation in the Ilgın district of
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Konya. According to Köppen-Geiger climate classification sys-
tem, the climate of Ilgın is Csa (warm-temperate), character-
ized by mild winters, and very hot, dry summers (Kottek et al.,
2006). Agricultural activities around the lake exert significant
anthropogenic pressure on water quality, leading to its classific-
ation as a nitrate vulnerable zone under the WFD (T.C. Ministry
of Agriculture and Forestry, General Directorate of Water Man-
agement, 2023). The lake also serves as a critical habitat for
migratory birds and has been designated as a Grade 1 Natural
Protected Area in 1992.

2.2 Data

The annual lake area and water quality from 1985 to 2024 were
analyzed using satellite images of Landsat-5 TM (Thematic
Mapper), Landsat-7 ETM+ (Enhanced Thematic Mapper Plus),
and Landsat-8 OLI (Operational Land Imager). However, to
ensure temporal continuity, Landsat-5 TM was used until 2011,
Landsat-7 ETM+ was employed for 2012, and Landsat-8 OLI
was utilized from 2013 to 2024. A summary of the related spe-
cifications of Landsat 5, 7 and 8 bands employed in this study,
are presented in the Table 1:

Satellite Bands Wavelength (µm)
Landsat-5 TM B1 – Blue 0.45-0.52
(1985-2011) B2 – Green 0.52-0.60

B3 – Red 0.63-0.69
Landsat-7 ETM+ B4 – NIR 0.76-0.90∗

(2012) B5 – SWIR1 1.55-1.75
B2 – Blue 0.45-0.51

Landsat-8 OLI B3 – Green 0.53-0.59
(2013-2024) B4 – Red 0.64-0.67

B5 – NIR 0.85-0.88
B6 – SWIR1 1.57-1.65

∗For Landsat-7 ETM+ B4: 0.77-90 µm
NIR: Near Infrared

SWIR1: Shortwave Infrared

Table 1. The specifications of the Landsat 5, 7 and 8 bands.

The Landsat images were retrieved using GEE Python API
from Collection 2, Tier 1 TOA (top-of-atmosphere) collections,
which are recognized as consistent quality and inter-calibrated
across sensors (Crawford et al., 2023). First, separate Land-
sat TOA collections were created by filtering Worldwide Ref-
erence System (WRS) path/row coordinates of study area, and
maximum of 20% cloudy pixels. After, cloud, cloud shadow
and snowy pixels were masked using quality assurance (QA)
bands. The data gaps due to the scan line corrector (SLC)
failure of Landsat-7 ETM+ were filled using focal mean() and
blend() image functions within GEE. Following, three collec-
tions merged into a single image collection, resulting in a total
of 347 satellite images from 1984 to 2024, and the annual me-
dian composites were derived.

The climate data spanning 1985-2024 were acquired from
ERA5 (ECMWF Reanalysis Fifth Generation) using GEE. The
ERA5-Land monthly aggregated dataset was selected due to its
enhanced spatial resolution, approximately 11 km. The climate
parameters included total precipitation sum (Prec) and mean air
temperature above 2 m (Temp) across the study area. Monthly
precipitation data were aggregated into annual totals in mm, and
mean air temperature data were averaged to annual periods in
◦C.

2.3 Methods

2.3.1 Spectral Indices: The spectral indices were calcu-
lated for annual composite images to evaluate water area and

water quality variations. The surface waters are sensitive to
green band; hence the Modified Normalized Difference Water
Index (MNDWI) was utilized to derive lake water area (Xu,
2006). The MNDWI is calculated as follows:

MNDWI =
ρGreen − ρSWIR1

ρGreen + ρSWIR1
(1)

To distinguish between water and non-water pixels, a suit-
able threshold value must be selected. The dynamic Otsu
thresholds were applied to annual MNWDI images (Otsu et
al., 1975), thereby ensuring maximum between-class variance.
Subsequently, the MNDWI pixels were classified as water and
non-water. The accuracy of water surface extraction was tested
using high-quality Google Earth images.

Remote sensing offers several methods to retrieve water quality
parameters such as total suspended matter (TSM), chlorophyll-
a concentration (Chl-a) and colored dissolved organic mat-
ter (CDOM) using remote sensing imagery. These meth-
ods mainly rely on empirical or semi-empirical relationships
between in-situ observations and spectral reflectance of water
pixels (Niroumand-Jadidi et al., 2019).

The Normalized Difference Chlorophyll Index (NDCI) (Mishra
and Mishra, 2012) and Normalized Difference Turbidity Index
(NDTI) (Lacaux et al., 2007) have been extensively validated
for water quality monitoring (Das et al., 2024, Kislik et al.,
2022, Mazhar et al., 2023, Singh et al., 2024). Although the
NDCI was originally developed for MERIS (Medium Resolu-
tion Imaging Spectrometer) using 708 nm and 665 nm spectral
bands, it has been successfully adapted to Landsat-8 OLI by
substituting closest available NIR and Red bands (Buma and
Lee, 2020). In this study, we similarly utilized NIR and Red
bands for Landsat-5 TM, Landsat-7 ETM+ to ensure consist-
ency across the Landsat series. Water quality within water-
masked areas was assessed using NDCI for chlorophyll concen-
tration and the NDTI for turbidity leveraging Landsat-5 TM,
Landsat-7 ETM+ and Landsat-8 OLI imagery. These indices
are formulated as follows:

NDCI =
ρNIR − ρRed

ρNIR + ρRed
(2)

NDTI =
ρRed − ρGreen

ρRed + ρGreen
(3)

While this approach provides a scalable solution for water area
extraction and water quality assessment without requiring in-
situ calibration, its performance may vary across water bodies
due to site-specific variations in hydrological, biological and
optical properties (Das et al., 2024, Lopez, 2023).

2.3.2 Trend Analysis: Long-term trends in water area, wa-
ter quality and climate variables were analyzed using the non-
parametric Mann-Kendall test (Mann, 1945) and Theil-Sen
slope methods (Sen, 1968, Theil, 1992). The Mann-Kendall
test evaluates the statistical significance of monotonic trends,
while the Theil-Sen slope quantifies the magnitude of trends,
providing robustness against outliers and non-normal data dis-
tributions. This approach ensures reliable detection of trends in
environmental time series.
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2.3.3 Correlation and Multiple Linear Regression Ana-
lysis: Relationships between variables (water area, Prec,
Temp, NDCI, NDTI) were assessed using Pearson’s correlation
coefficients. In addition, partial correlations were computed to
isolate the effects of precipitation and temperature on water area
while controlling for confounding variables. A multiple linear
regression (MLR) model was developed to quantify the com-
bined influence of temperature and precipitation on annual wa-
ter area variations. The MLR equation is expressed as:

Water Area = β0 + β1 × Temp+ β2 × Prec+ ϵ (4)

where β0 is the intercept, β1 and β2 are regression coefficients,
and ϵ represents the error term. In addition, 1-year lagged effect
of Prec is also examined by substituting Prec with Preclag−1.

3. Results and Discussions

The accuracy of annual water area extraction was assessed
using high-resolution Google Earth image at 05.10.2010 and
Landsat-5 TM image at 26.09.2010 using 250 random sample
points. A confusion matrix was generated based on random
sample points, and overall accuracy of 96.0% and Kappa coef-
ficient of 0.887 were computed. Therefore, the accuracy of wa-
ter area extraction method was found reliable. Furthermore,
the inter-annual variations of the Otsu threshold are presented
in Figure 1. The dynamic Otsu threshold values were ranged
between 0.14 and 0.29, which indicates the spectral reflectance
of water pixels are not stable over time. The reason for this may
be related to differing water quality conditions.

Figure 1. The inter-annual Otsu threshold.

The water surface area, NDCI, and NDTI at 10 year interval are
shown in Figure 2. A broad overview of the lake’s transforma-
tion over decadal intervals (1985, 1995, 2005, 2015, and 2024)
shows a clear trend of diminishing surface area alongside stead-
ily rising chlorophyll concentrations. These patterns are reflec-
ted in the Normalized Difference Chlorophyll Index (NDCI)
and the Normalized Difference Turbidity Index (NDTI), both
of which were evaluated at annual time period to capture the
lake’s ecological status.

The interpretation of NDCI and NDTI values is as fol-
lows (Rawat et al., 2023):

• NDCI < 0.0 indicates very low,

• 0.0 − 0.2 indicates low,

Figure 2. Lake water area, NDCI, and NDTI at 10 year intervals.

• 0.2 − 0.5 indicates moderate,

• NDCI > 0.5 indicates high chlorophyll content.

For turbidity (NDTI):

• NDTI < 0.05 indicates low turbidity,

• 0.05 − 0.2 indicates moderate turbidity,

• NDTI > 0.2 indicates high turbidity.

In the following analyses, NDCI and NDTI values below zero
are excluded. The annual variations of water surface area,
NDCI, and NDTI between 1985 and 2024 are illustrated in Fig-
ure 3.

The water area patterns between 1985 and 2015 exhibit year-
to-year variations, with a notable decline in the last decade.
The overall average water area of Ilgın Lake is 1997.8 ha, with
a maximum of 2627.8 ha recorded in 1996 and a minimum
of 1434.2 ha in 2018. While turbidity in Ilgın Lake appears
relatively stable, chlorophyll concentrations increased remark-
ably in certain years (1998, 2000, 2019, 2021, 2024). In re-
cent years, NDCI values increased above 0.2, indicating mod-
erate chlorophyll concentrations. The maximum NDCI value in
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Figure 3. Annual variations of water surface area, NDCI, and
NDTI between 1985 and 2024.

2024 suggests that Ilgın Lake’s annual eutrophication level is at
its highest over the past 40 years. During the relatively stable
years from 2010 to 2014, Ilgın Lake exhibited low turbidity and
low chlorophyll content. These findings align with a field study
conducted in 2010–2011, which classified Ilgın Lake as high-
quality based on its physicochemical status and eutrophication
level (Aşıkkutlu et al., 2014).

Before further analyzing the results, Figure 4 displays the his-
tograms of key climate and water quality parameters. As seen
in Figure 3, the annual total precipitation ranged from 261 to
480 mm, temperatures fluctuated between 8 and 13 ◦C, NDCI
values ranged 0.03 to 0.29, and NDTI values remained consist-
ently low as below 0.04. These ranges indicate the relatively
stable turbidity conditions compared to moderate variability in
chlorophyll and climate factors.

Figure 4. The histograms of climate and water quality
parameters.

The Mann-Kendall and Sen Slope’s trend results are given in
Table 2. The results show a statistically significant reduction
in water surface area, estimated at -9.54 hectares per year (p <
0.05). This decline corresponds to approximately 31% loss of
the lake’s extent, suggesting that Ilgın Lake is sensitive to both
climatic fluctuations and anthropogenic pressures.

The mean temperature shows a statistically significant positive
trend (p < 0.01) of 0.05 ◦C per year, aligning with broader
regional warming trends. Total annual precipitation did not

Trend Slope P-Value Z-Score Conf.
Area − -9.5392 0.0463 -1.9923 95.4%
Prec n/a -0.2121 0.8067 -0.2447 19.3%
Temp + 0.0528 0.0000 4.3924 100.0%
Turb n/a 0.000 0.5840 0.5476 41.6%
Chl-a + 0.0028 0.0000 4.7886 100.0%

Note: Bold indicates significant trends
+,− :Increasing and decreasing trends

Table 2. Mann-Kendall and Sen Slope’s trend results.

exhibit a statistically significant monotonic trend (p > 0.05).
The water quality parameters underscore important ecological
shifts. NDCI shows a significant upward trend (p < 0.01),
implying increased eutrophication processes, likely tied to nu-
trient inputs from the surrounding watershed and the influence
of warmer temperatures that can accelerate algal growth. This
result is in line with local management interventions, such as
the recent reed-clearing efforts in Lake Ilgın, aimed at mitig-
ating excessive vegetation growth and controlling the negative
impacts of eutrophication (Konhaber, 2020). Recent local news
reported severe drought conditions at Ilgın Lake, supporting
our findings of ecological stress though reduced water levels
and biodiversity losses (Konhaber, 2024). The turbidity did
not show a clear monotonic increase or decrease over the study
period.

Furthermore, Figure 5 illustrates the relationships of key cli-
mate variables and water quality parameters on the water area
change using scatter plots. A distinct association between tem-
perature and water area was found.

Figure 5. Scatter plots of water area against key climate
variables and water quality parameters.

Pearson’s correlation analysis was used to see how these vari-
ables relate. Table 3 shows the correlation matrix for hydro-
logical and water quality parameters. A moderate negative
correlation (r = −0.4466) was found between water area
and temperature. Temperature was also positively correlated
(r = 0.3958) with NDCI, indicating that warming increases
eutrophication. NDTI also shows a low positive correlation
(r = 0.2671) with NDCI, suggesting that higher chlorophyll
content may associated with turbidity.
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Area Prec Temp Turb Chl-a
Area 1.0000 0.1309 -0.4466 0.0460 -0.1170
Prec 0.1309 1.0000 -0.0402 0.1208 0.0818
Temp -0.4466 -0.0402 1.0000 0.1021 0.3958
Turb 0.0460 0.1208 0.1021 1.0000 0.2671
Chl-a -0.1170 0.0818 0.3958 0.2671 1.0000

Note: Bold indicates significant correlations (p < 0.05)

Table 3. Pearson’s correlation matrix.

On the other hand, annual precipitation shows only a weak cor-
relation with the lake’s surface area (r = 13.09) when analyzed
within the same year. This weak correlation may be due to the
complex hydrological dynamics of shallow lakes, where water
inputs can vary over different timescales or be influenced by hu-
man activities such as irrigation. Additionally, the annual ana-
lysis in this study may not fully capture delayed hydrological
responses to precipitation, possibly due to seasonal variations.
Therefore, the 1-year delayed response of annual total precip-
itation was included in the correlation and subsequent analysis.
This improved the correlation between water area and precipit-
ation to 0.3428 (p < 0.05), suggesting a delayed response of
precipitation.

Moreover, the partial correlation coefficients (PCCs) between
water area, water quality and climate parameters were calcu-
lated to isolate individual effects of Prec and Temp. The PCC
results are given in Table 4. The PCCs between NDTI and cli-
mate variables are not included as they do not show statistically
significant correlations. As provided in Table 4, the significant
correlation coefficients did not change substantially. However,
including 1-year lagged precipitation strengthened the relation-
ship between water area to moderate level (r = 0.4351)

Correlation PCC P-Value
Area-Temp -0.4455 0.0045
Area-Prec 0.1263 0.4436
Area-Preclag−1 0.4351 0.0063
Chl-Temp 0.4007 0.0115
Chl-Prec 0.1065 0.5187
Chl-Preclag−1 0.1696 0.3086
Note: Bold indicates significant PCCs (p < 0.05)

Table 4. Partial correlation results.

According to the MLR results using same year precipitation
data, climate variables explained 21% of annual water area fluc-
tuations (R2 = 0.21, p < 0.05). However, substituting same
year precipitation with 1-year lagged precipitation (Preclag−1)
improved the model’s explanatory power to R2 = 0.34 (p <
0.05). The final MLR equation with 1-year lagged precipita-
tion is given in Equation 5:

Water Area = 2823.17−170.12×Temp+2.56×Preclag−1

(5)

This suggests that a 1 ◦C increase in temperature corresponds to
a 170.12 ha decline water area, while 1 mm increase in 1-year
lagged precipitation increases water area by 2.56 ha (p < 0.05).
Despite these statistically significant relationships, the relat-
ively low R2 value suggests that unaccounted factors such as
other climatic or anthropogenic activities likely drive additional
variability. For instance, agricultural practices around Ilgın
Lake, particularly irrigation and fertilizer use, may play a crit-
ical role, as evidenced by its designation as nitrate vulnerable
zone. This highlights the Ilgın Lake’s sensitivity to nutrient

pollution, further supporting the hypothesis that human activ-
ities significantly influence water area dynamics.

Although, this study demonstrates the role of long term Landsat
imagery for monitoring water resources, the accuracy of used
spectral indices such as NDCI and NDTI may vary significantly
across water bodies due to differences in biological and optical
properties (Das et al., 2024, Lopez, 2023). However, shallow
eutrophic lakes like Ilgın Lake are particularly more suitable
to the proposed workflow. In addition, different climatic vari-
ables from ERA5 dataset may be included for more in-depth
analysis on the effect of climate or human activities over water
resources.

4. Conclusions

The findings of this study underscore the vulnerability of shal-
low lakes like Ilgın Lake to ecological degradation, driven by
both climatic variations and human activities. Their limited
water depth increases risks to sustainable agriculture, biod-
iversity, and local socio-economic conditions. To address the
challenges, we proposed a workflow leveraging cloud-based
GEE platform and Python tools, enabling scalable and cost-
effective monitoring of water area and water quality dynam-
ics. This approach provides valuable insights into sustain-
able water resource management plans, especially for regions
where in-situ data is unavailable. This study aligns with the
EU WFD goals for monitoring water bodies listed under An-
nex V. The water resource monitoring studies should focus
not only on the hydrological context but also on water qual-
ity status, as both are essential for holistic water manage-
ment. Additionally, shallow lakes like Ilgın play a critical
role in preserving natural habitats and sustaining local ag-
ricultural livelihoods. Future work will extend this frame-
work to higher resolution satellite data (e.g., Sentinel-2) and
additional spectral indices to refine estimates of water qual-
ity parameters. All code and workflow are publicly avail-
able as Jupyter Notebook on GitHub (https://github.com/
earth-obs/lake-gee-hydrology-water-quality) under
the open source MIT license.
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