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Gülşen Bardak1, Matteo Sodano2, Michael Scholz1

1 Institute of Transportation Systems, German Aerospace Center (DLR), 38108 Braunschweig, Germany –
(guelsen.bardak, michael.scholz)@dlr.de

2 Institute of Geodesy and Geoinformation, University of Bonn, 53115 Bonn, Germany –
matteo.sodano@uni-bonn.de

Keywords: High-definition Maps, OpenDRIVE, GDAL, Point Clouds, 3D Reconstruction, Iterative Closest Point.

Abstract

Autonomous driving approaches require simulation environments that accurately converge real-world conditions. These environ-
ments must incorporate various factors, including weather conditions, traffic patterns, and unexpected obstacles, to ensure that
autonomous systems can effectively learn and adapt. But, most of the frameworks and simulators are using synthetic simulation
environments to realize these conditions because of the complexity of representing real-world details and data storage capacity.
In these days when autonomous vehicles are close to being included in daily life, this lack of representation could be eliminated
by making use of the currently popular 3D reconstruction methodologies that simulate city and road spaces. Their level of detail
enhances the training of autonomous systems and helps identifying potential weaknesses in their decision-making processes,
ultimately contributing to the advancement of safer autonomous driving technologies. Currently, mapping technologies and
geospatial information play a critical role in accurately constituting 3D environments. High-definition maps (HD) are often
sufficiently reliable for such tasks because of lane-level representation capability. In this paper, we propose a lightweight 3D
synthetic point cloud reconstruction methodology from existing real-world HD maps in the ASAM OpenDRIVE data format by
using the Geospatial Data Abstraction Library (GDAL). By leveraging such road network datasets, we aim to improve the efficiency
and accessibility of 3D scene reconstruction for autonomous driving applications. Additionally, we aim to provide a low-cost
solution to address the annotation bottleneck in point-wise labeling for the computer vision domain with the constructed 3D models.

1. Introduction

In recent years, the demand for simulation environments has
increased alongside the growing interest in autonomy across
various industries. Realistic, high-fidelity simulation environ-
ments capable of replicating all possible scenarios are essen-
tial for the development and production of autonomous sys-
tems, particularly regarding security and safety. These environ-
ments not only facilitate rigorous testing and validation but also
enable developers to identify and mitigate potential risks be-
fore deploying autonomous systems in real-world applications.
One of the most significant focus areas within such systems is
autonomous driving, due to its considerable potential benefits,
including safety improvements, reduced environmental impact,
and cost savings. It is also beginning to influence urban plan-
ning. Consequently, there is a high demand for secure simula-
tion environments for autonomous driving systems, as ensuring
a safe driving experience is recognized as essential in traffic set-
tings. In response to this demand, researchers and developers
are increasingly concentrating on creating advanced simulation
tools that can accurately replicate real-world scenarios. As a
result, the integration of sophisticated simulations is becoming
a cornerstone in the advancement of autonomous driving sys-
tems. Given the scale and complexity of urban and road envir-
onments, many simulators attempt to replicate the conditions
encountered in autonomous driving using synthetic simulation
environments. However, this approach has proven insufficient,
which has led to a growing emphasis on the production of di-
gital twins of real urban environments. Nonetheless, challenges
related to scale and data storage remain. Limitations in data

storage can hinder the creation of highly detailed and accurate
digital twins, which are crucial for effective testing and valid-
ation of autonomous systems. As technology advances, innov-
ative solutions for managing and processing vast amounts of
data will be vital in overcoming these challenges and enhan-
cing the overall system reliability. In the meantime, lightweight
solutions may serve as a key approach to address the ongoing
lack of improvement caused by the large storage capacity re-
quired by existing solutions, such as point clouds. Vector-based
geospatial information has recently gained significant import-
ance for scenario-based automated driving because, in addition
to road details, understanding the conditional and relational se-
mantics of surroundings is crucial for managing sensor capab-
ility outages, such as GNSS outages in city canyons. In this pa-
per, we will explore the integration of high-definition maps that
provide lane-level information about road networks into simu-
lation environments. This integration will utilize 3D shape re-
construction through the XODR driver which we contributed to
the Geospatial Data Abstraction Library (GDAL Development
Team, 2025, Scholz et al., 2024). The source code of the work-
flow presented in this paper is available on GitHub, see (Bardak,
2025).

2. Related Work

2.1 3D City and Road Models

Three-dimensional semantic city models are important for cre-
ating digital versions of cities, self-driving cars, and digital land-
scape models because they can provide accurate data, are easy
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to access and thus are useful for planning infrastructure, nav-
igation, environmental simulations, and managing traffic (Beil
and Kolbe, 2024, Schwab and Kolbe, 2019). Because of the
representability of various dynamic and static agents (e.g., ped-
estrians), 3D city and road models are of high value for driv-
ing and sensor simulations. Automated driving depends on
three main components: localization with map data, environ-
ment and self-perception using sensors, and planning and con-
trol of vehicle actions (Schwab and Kolbe, 2019). Vehicles use
various sensors — such as cameras, LiDAR, RADAR, and ul-
trasonic — to detect and classify objects; in other words, to
perform perception tasks. Those sensors have some advantages
and disadvantages, which depend on environmental conditions.
Additionally, semantic city and road models should align with
real-world conditions to effectively predict and avoid potential
issues. Testing is an accepted way to guarantee the safety of
autonomous driving. Due to the high costs of real-world testing,
evaluations are primarily conducted through simulation, partic-
ularly to verify performance in essential scenarios that are both
risky and challenging to replicate in reality (Wang et al., 2024).

2.2 High Definition Maps

2.2.1 High-definition Map Construction The high-defini-
tion map construction process primarily consists of two stages:
raw data collection and data processing. The data processing
stage can be further divided into two categories — offline and
online —, based on the approach used, a distinction that ori-
ginates from Simultaneous Localization and Mapping (SLAM)
methodologies. The choice between these approaches is de-
pendent upon the processing of sensor data: either in real-time
(online) or via post-processing (offline) (Tang et al., 2023b).
Contemporary studies in HD map construction mostly depend
on online methodologies (Liu et al., 2023, Li et al., 2022, Yang
et al., 2018, Ding et al., 2023, Shin et al., 2025). These research
generally utilize learning-based methodologies to generate vec-
torized HD maps by framing the issue as semantic segmentation
from a bird’s-eye view (BEV). Most online HD map generation
techniques begin with BEV feature extraction from onboard
sensor data, followed by the generation of vectorized map ele-
ments such as road boundaries, pedestrian crossings, and lane
dividers. These extracted features are then used to construct
vectorized maps, eliminating the need for localization and post-
processing in many cases. Although this approach reduces the
workload associated with post-processing and allows for local
high-precision map creation, it tends to be limited in scope.
Despite being referred to as ”high-definition maps”, such out-
puts offer only partial information. A truly high-definition map
should include a broader set of elements. In addition to ba-
sic road features such as road markings and lanes, traffic ele-
ments like lights and signs, as well as supportive infrastructure
like street lamps, trees, and static objects, are also crucial for
autonomous driving systems (Luo et al., 2023).

Depending on the designated application use case, semantic in-
formation is also highly relevant to be included in HD map
data. This can be realized through topological links between
elements, such as linking of neighboring lanes or linking of pre-
decessors and successors of a lane. Additional valuable inform-
ation can be the knowledge about the validity of a traffic signal
for a specific set of lanes or about the association of a signal to
a stop line road marking, for example.

Unlike online methods for local map construction, global HD
map construction is still commonly conducted through offline

Figure 1. Modeling of road elements in OpenDRIVE; © ASAM

methodologies. These offline approaches typically offer higher
accuracy and completeness by incorporating a greater variety
of sensors and more complex algorithms, albeit with increased
processing times (Tang et al., 2023b). Nevertheless, manual
annotation remains the most reliable method due to the pre-
cision required — especially regarding semantic information
—, making the overall process of HD map production both
labor-intensive and costly. To alleviate this, many efforts rely
on image-based techniques for tasks such as road marking ex-
traction and lane detection. Although several public datasets
already exist with annotated images, the required precision for
HD maps is often unattainable due to intrinsic limitations of im-
age data. Environmental factors such as lighting conditions and
shadows can degrade both the annotation quality and the accur-
acy of map element extraction. Moreover, projecting from 2D
images to 3D space presents significant challenges, frequently
leading to diminished accuracy relative to the stringent require-
ments for HD mapping. Conversely, LiDAR point clouds in-
trinsically encompass 3D spatial data at each feature point, fa-
cilitating more precise detection outcomes that may be directly
applied in HD map development (Chen et al., 2022). Annot-
ating point-cloud data is, however, more intricate than image
annotation. This complexity stems from hardware limitations
such as data transport and memory usage, together with data-
specific issues like sensitivity and recognizability.

To address challenges on annotation and creation of high-pre-
cision maps, several approaches have been proposed. VMA:
The Divide-and-Conquer Vectorized Map Annotation System
for Large-Scale Driving Scenes (Chen et al., 2023) introduces
automatic annotation for online HD map construction through a
scene-splitting strategy. CAMA: A vision-centric approach for
consistent and accurate map annotation (Zhang et al., 2024),
provides automatic annotations using image-based methods en-
riched with elevation information. It seeks to produce dense 3D
road surfaces augmented with semantic and photometric fea-
tures, utilizing the nuScene dataset for evaluation. THMA: The
Tencent HD Map AI System (Tang et al., 2023a) introduces an
annotation technique grounded in self-supervised segmentation
learning, with the objective of enhancing the automation of the
HD map annotation process.

Despite the existence of multiple methods for representing road
networks as high-definition maps, data standardization remains
a work in progress. This study will utilize data supplied for
a specific region in the OpenDRIVE data format along with a
reference point cloud to evaluate algorithm performance.

2.2.2 Characteristics of OpenDRIVE The ASAM Open-
DRIVE format is an open industry standard maintained by the
Association for Standardization of Automation and Measuring
Systems. It represents road networks in a file format with the
extension .xodr, organized in a hierarchical structure commonly
encoded using XML. This format captures the geometric rela-
tionships of road features and can be generated using real data
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Figure 2. A parametric cubic polynomial in OpenDRIVE;
© ASAM

or synthetically in various software environments (mostly pro-
prietary ones). Besides the main road components (lanes, road
marks, road signs, etc.), an OpenDRIVE dataset can contain
traffic-regulating infrastructure elements (traffic lights, traffic
signs, etc.) and supporter elements (street lamps, trees, objects,
etc.). The complexity of OpenDRIVE makes data acquisition
a sophisticated task, often financed by the automotive industry
and conducted by third-party mobile mapping providers. As a
main characteristic, all road elements are commonly construc-
ted in relation to and linearly referenced along a road reference
line as shown in Figure 1. Because of advanced geometry rep-
resentation through parametric cubic polynomials (Figure 2),
the modeling of complex road features can still remain light-
weight:

<geometry

s="0.000000000000e+00"

x="6.804539427645e+05"

y="5.422483642942e+06"

hdg="5.287405485081e+00"

length="6.565893957370e+01">

<paramPoly3

aU="0.000000000000e+00"

bU="1.000000000000e+00"

cU="-4.666602734948e-09"

dU="-2.629787927644e-08"

aV="0.000000000000e+00"

bV="1.665334536938e-16"

cV="-1.987729787588e-04"

dV="-1.317158625579e-09"

pRange="arcLength">

</paramPoly3>

</geometry>

3. Approach

Our approach depends on OpenDRIVE high-definition map data
which can be an effective source for generating lightweight 3D
shape reconstructions of roads and urban areas. Our goal is to
create 3D objects from such data and then to refine these objects
to accurately reflect real-world forms using suitable techniques.
To evaluate the accuracy of our results, we assess the perform-
ance of our algorithm against a reference LiDAR point cloud

dataset obtained from the same data provider’s mobile mapping
system which was used to derive the OpenDRIVE source data
from.

3.1 GDAL with OpenDRIVE Driver (XODR)

The new XODR vector driver for the Geospatial Data Abstrac-
tion Library (GDAL) allows the conversion of highly detailed
HD map data from the ASAM OpenDRIVE road description
format into common spatial data formats like GeoPackage, Geo-
JSON, Shapefile, KML, or spatial databases. This makes Open-
DRIVE easily usable in established GIS applications. The free
software contribution extends the common GDAL library, mak-
ing it possible to transform OpenDRIVE road elements into
OGC Simple Features, which can thus be loaded and processed
ad hoc by most proprietary and free and open GIS tools. This
aims to stimulate interdisciplinary knowledge transfer and to
create an interconnected research community between automot-
ive engineering and GIS (Scholz et al., 2024).

The XODR driver depends on the libOpenDRIVE library, which
is a lightweight, dependency-free, fast C++ library providing
OpenDRIVE file parsing and simplified 3D model generation
(libOpenDRIVE Development Team, 2023). Through GDAL,
mainly 6 different vector data layers in different geometry types
are exposed, depending on the characteristics of the original
OpenDRIVE geometries. Those six layers are:

• ReferenceLine: Road Reference line as OGRLineString

• LaneBorder: Outer road lane border as OGRLineString

• Lane: Polygonal surface (TIN) of the lane mesh as OGR-

TriangulatedSurface

• RoadMark: Polygonal surface (TIN) of the road mark mesh
as OGRTriangulatedSurface

• RoadObject: Polygonal surface (TIN) of the road object
mesh as OGRTriangulatedSurface

• RoadSignal: Polygonal surface (TIN) of the road signal
mesh as OGRTriangulatedSurface

We mainly use the three layers RoadObject, Lane and Road-
Mark, which are modeled as a Triangulated Irregular Network
(TIN), in order to create a 3D model of the city and roads. In
our case the layer RoadObject contains basic information about
building structures which in other OpenDRIVE datasets is not
always included. This representation will allow volumetric rep-
resentation for 3-dimensional use cases. Internally, libOpen-
DRIVE takes care of the linear approximation (sampling) of
OpenDRIVE’s continuous parametric geometries (which are il-
lustrated in Figure 2). To facilitate this, specific hyperparamet-
ers are defined in libOpenDRIVE, which we also specify in our
algorithm.

For our test case we use the openly available OpenDRIVE data-
set ”Schwarzer Berg” in Brunswick (Scholz et al., 2025a), which
we convert to OGC Simple Feature geometries via GDAL, see
Figure 3 and 4.
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Figure 3. GDAL geometries of lane borders converted from
OpenDRIVE; basemap © GeoBasis-DE/BKG 2025, CC BY 4.0

.

Figure 4. GDAL geometry details of lanes (gray), signals/signs
(red), buildings (blue) and vegetation (green).

Parameter Value
Epsilon ϵ 0.2
Number of points per m3 100
Downsampling ratio 2
Max NN for KDTree 30
Radius for KDTree (m) 0.2
Initial guess for ICP transformation I
Number of iterations for ICP 10

Table 1. Parameters to construct 3D shapes from OpenDRIVE.

4. Experiments and Evaluations

We utilized seven parameters to create a 3D synthetic point
cloud from OpenDRIVE, enabling improved and optimized con-
vergence with real-world data. Those parameters with values
can be seen in Table 1. The first parameter, epsilon, is sourced
from libOpenDRIVE and the GDAL driver; it represents the
interpolation step size used to fit a cubic polynomial. To en-
hance the performance of our algorithm, we set this parameter
to 0.2, a relatively small value that aids in generating a more
densely populated vector representation. The second parameter
is the number of points per m3 that expresses the point density
to be generated per volume. The model’s geometry becomes
more detailed in volumetric instances as this value increases.
The third parameter is the downsampling ratio, as the reference
point cloud (Scholz et al., 2025b) exhibits a higher point density
than our generated synthetic point cloud. To achieve improved
outcomes in the iterative identification of the nearest points cor-
responding to the reference points, the algorithm commences

Figure 5. Reference point cloud of a building.

with the downsampling of the reference point cloud. An initial
estimation transformation establishes a transformation matrix
to align the source and target point clouds. The modification
of this transformation may necessitate the maximum number of
iterations to ascertain the most suitable correspondences and at-
tain the optimal solution. The iterations parameter is relevant to
this process. By fine-tuning these parameters, we can achieve
a balance between computational efficiency and the fidelity of
the generated data. We will measure our algorithm quality with
Iterative Closest Point (ICP) registration with reference point
cloud in Section 4.1.

Sampling Gaussian Random Uniform

Gaussian 0.0 0.0518 / 0.066 0.0518 / 0.066

Random 0.0518 / 0.066 0.0 0.0524 / 0.042

Uniform 0.0518 / 0.066 0.0524 / 0.042 0.0

Table 2. Cloud-to-cloud mean distances and standard deviations
between raw point clouds in meters.

In this study, we explore the performance of three different
sampling types in generating 3D synthetic point clouds. Fig-
ure 5 displays a snippet that serves as the point cloud refer-
ence or ground truth, providing an initial overview of the results
used to construct a 3D representation. The subsequent figures
— Figure 6 for uniform sampling results, Figure 7 for random
sampling results, and Figure 8 for normal distribution results
— illustrate the outcomes of each sampling method. At the
first glance, uniform and random sampling appear to yield sim-
ilar results, while the results from the normal distribution seem
more distant from reality. Table 2 presents the calculated cloud-
to-cloud distances among the three synthetic point clouds, with
the standard deviation indicating that the Gaussian-distributed
synthetic point cloud differs slightly from both the uniform and
randomly sampled point clouds. This calculation and visual-
izations made on (CloudCompare Development Team, 2024)
which is an open-source 3D point cloud and mesh processing
software.

4.1 Iterative Closest Point Algorithm and Point Cloud An-
notation

The Iterative Closest Point Algorithm (ICP) algorithm was util-
ized to quantitatively measure the performance of three differ-
ent sampling methods. Synthetic point clouds were produced
utilizing uniform, random, and normal sampling methods as
source datasets, alongside the reference LiDAR-acquired and
georeferenced point cloud as the target dataset. The ICP re-
gistration algorithm subsequently processed these point clouds,
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Figure 6. Synthetic point cloud generated through uniform
sampling.

Figure 7. Synthetic point cloud generated through random
sampling.

utilizing the settings specified in Table 1. Considering that syn-
thetic point clouds generally exhibit a lower point density than
the reference point cloud, downsampling is applied to the ref-
erence point cloud to handle this issue. The maximum number
of nearest neighbor parameters indicates how many points will
be examined for each point to search the corresponding points
located within the radius specified by the KDTree parameter. In
our case, the radius is 0.2 meters and the nearest neighbor num-
ber is 30, as shown in Table 1. This configuration is selected
to enable a feasible downsampling approach, ensuring a bal-
ance between preserving geometric detail and reducing compu-
tational complexity. The initial guess transformation involves
initializing a 4x4 transformation matrix that aligns the source
and target point clouds. In our approach, we used an identity
matrix for this purpose. The term ”iteration number” refers to
the process of adjusting the transformation, which will undergo
a maximum number of iterations to identify the best corres-
pondences and achieve the optimal result. We set it as 10 to
reduce computational consumption; however, a larger number
of iterations could yield a better result when hardware provides
the required performance in a discrete time window. As can
be observed in Table 3, those three different datasets have dif-
ferent numbers of point densities in explained parameter set;
normal sampling has slightly denser points than the others be-
cause this type of sampling has the attitude to interpolate more
precisely on edges, corners, and curvy areas. The initial ap-
proach focuses on the prevalence of flat surfaces, leading us to
compare the root mean square error (RMSE) and fitness val-
ues of uniform versus random sampling. Fitness is defined as
the number of points that align with the reference point cloud,
while RMSE measures the extent of overlap between the pre-
dicted results and the ground truth. As seen in the table, they

Figure 8. Synthetic point cloud generated through normal
sampling.

have almost similar values, but uniform sampling has slightly
better results than random sampling. So we will proceed with
uniform sampling to make further analyses.

Sampling Type Number of Points RMSE Fitness
Normal 5,143,308 1.09767 0.99923
Random 5,123,088 1.05360 0.99921
Uniform 5,123,424 1.05346 0.99922

Table 3. Different sampling methods’ performance for ICP
registration with responsible parameters in Table 1; the reference

point cloud contains 54,350,752 points.

Figure 9 illustrates a scene with buildings, parking spaces, roads,
vegetation, and trees. In figure 10, the references point cloud
sample that was collected using mobile mapping shows the same
region as the orthophoto area. The data map, which is used for
transferring labels to the actual point cloud, contains 13 known
classes: road mark, parking, obstacle, vegetation, tree, street-
lamp, barrier, traffic sign, traffic light, pole, building, driving
area, and restricted-to-driving areas; and 1 unknown class that
contains points that cannot be defined exactly or are not relev-
ant to our approach. Besides 3D coordinates, those data maps
are derived from OpenDRIVE files.

Figure 9. Orthophoto of the scene of interest;
© GeoBasis-DE/LGLN 2025, CC BY 4.0

The subsequent phase involves completing the upsampling pro-
cess through a nearest neighbor search utilizing KDTree, fol-
lowed by the identification of corresponding points between
the point clouds aligned with the transformation matrix derived
from ICP. This step is critical for guaranteeing accurate align-
ment and maintaining the integrity of the data. Once the corres-
ponding points are identified, further refinement can be applied
to enhance the registration process and minimize any residual
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Figure 10. Reference point cloud for the same region of the
orthophoto in Figure 9.

Figure 11. Transferred labels’ result for reference point cloud by
using ICP on uniform sampled synthetic point cloud.

(Responsible region in Figure 9, Figure 10).

errors in the point cloud alignment. As shown in Table 3, align-
ment has reliable results with approximately 0.99 fitness value
and 1.053 m RMSE. As the downsampling and upsampling ra-
tios are identical, we acquire an accurately scaled, annotated
point cloud. The annotated point cloud is depicted as a seg-
mented representation of the scene illustrated in Figure 9, as
demonstrated in Figure 11. Structures, vegetation, driving and
non-driving areas are categorized under distinct classifications.
In details of specific objects, the KDTree-based label transfer
algorithm operates with high precision and provides accurate
annotations if a point on an object, such as a building, in sparse
regions lacks neighboring points at that elevation. Figure 13
shows an example of how well objects are identified in areas
with few points; this scene comes from the area shown in Fig-
ure 12, where both trees and buildings were correctly identified
without any over- or under-segmentation.

Upon analyzing ground points that encompass the road sur-
faces, the algorithm’s performance deteriorates qualitatively due
to the clustering of proximate objects within the same area. Fig-
ures 14 and 15 depict the same area, which includes parking and
driving spaces, with the former represented as an orthophoto
and the latter as a point cloud. Figure 16 shows the upsampled
point cloud is over-segmented for the same region. Because at-
tributes are closely located, aggregated, and overlapping at the
ground level, the algorithm should be improved with different
strategies. As shown in Figure 17, the investigated parking area
is framed by a road mark; for that reason, the borders have con-
fusion on the transferring label stage. Due to the modeling habit
of our OpenDRIVE test dataset, the feature ”parking space”
has two separate indexes, one in the Lane layer and one in the

Figure 12. Sample snipped for tree and building representation.

Figure 13. Labeled-sample snipped for tree and building
representation.

RoadObject layer. In order to solve this confusing data mod-
eling, mapping can be modified with the same label for both,
and a corrected version of labeling can be seen in Figure 18.
Aggregation of ground points has resulted in persistent over-
and under-segmentation that cannot be rectified through modi-
fications in data mapping during the labeling phase. A targeted
approach should be employed to resolve these issues. The fol-
lowing section will address the future implications of this study.

5. Conclusion and Discussion

Realistic and conditionally adapted simulation environments are
crucial for autonomous driving in such cases as extreme weather
situations, sensor outage possibilities, etc. Recent studies are
focusing on getting digital twins that can provide detail at dif-
ferent levels. We suggested using high-definition maps that
include 3D location data, examples, and connections between
places, claiming they can be a simpler way to create a digital
twin of city and road environments. Our approach depends on
the released GDAL XODR driver, which processes HD maps in
ASAM OpenDRIVE format to get OGC Simple Feature geo-
metries. We converted those geometries into volumetric objects
to obtain a 3D representation and then interpolated them us-
ing three different methods to determine the optimal sampling
methodology. We use a reference point cloud dataset collec-
ted through mobile mapping to compare our results. We cre-
ated fake point clouds for certain areas, and the ICP algorithm
is used to match them with the reference point clouds to find
their transformations and correspondences. Experiments and
results indicate that various perspectives could improve on the
approach. The first aspect is data modeling; high-definition map
standardization is still under development, and the community
is discussing optimal representation methodologies. These data
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Figure 14. Orthophoto of the road surface;
© GeoBasis-DE/LGLN 2025, CC BY 4.0

Figure 15. Reference point cloud for road surface.

models just declare how to model attributes; however, the con-
tent of attributes is still up to the data provider. This situation
necessitates custom modifications for each dependent applic-
ation, based on the data content. The selection of data types
should be contingent upon the application domain. When con-
centrating on 3D synthetic point cloud reconstruction of edi-
fices using map data, urban models in CityGML can also provide
an alternative data foundation. Currently, CityGML data is
widely and publicly available in Germany. In the other areas
mentioned, we should look into different ways of estimating
and predicting use cases, like ground-point aggregation, rather
than just focusing on flat and sparse surfaces.
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