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Abstract

This study evaluates the effectiveness of Sentinel-2 MSI imagery, corrected using the Case-2 Regional Coast Colour (C2RCC)
algorithm in SNAP software (Sentinel Application Platform), for estimating chlorophyll-a (Chl-a) and total suspended solids (TSS)
in Deran Lake, a karstic lake with minimal anthropogenic pressure within Hutovo Blato Nature Park, Bosnia and Herzegovina. In
situ measurements were collected in March 2025 using a YSI EXO2s multiparameter probe at ten monitoring stations under the
SMART-Water project. TSS was used as a proxy for total suspended matter (TSM). A regression analysis between satellite-derived
and measured values showed a strong correlation for TSS/TSM (R² = 0.76) and a moderate correlation for Chl-a (R² = 0.61). Spatial
averaging over 5×5-pixel windows improved estimation accuracy, yielding R² values of 0.85 for TSS/TSM and 0.69 for Chl-a.
Thematics maps of SNAP-derived Chl-a and TSS/TSM distribution was performed using QGIS 3.40. Chl-a concentrations con-
firmed oligotrophic conditions, while TSS patterns aligned with known hydrodynamic features such as inflow zones and sediment
resuspension areas. These findings align with other regional studies demonstrating Sentinel-2’s potential for monitoring small and
optically complex waterbodies when paired with appropriate atmospheric correction, statistical estimators (e.g., mean), and spatial
windowing strategies. This work reinforces the value of remote sensing for cost-effective, high-resolution monitoring of inland
waters, improving water resource management across diverse ecosystems.

1. Introduction

Water is one of Earth’s most essential natural resources, sup-
porting biodiversity, human health, agriculture, and recreation
(Hounslow, 2018). Lakes, in particular, are vital freshwater
ecosystems, but their water quality is increasingly threatened
by urbanization, agricultural runoff, wastewater discharge, and
land use changes (Vinçon-Leite and Casenave, 2019). These
pressures contribute to nutrient enrichment, leading to eutroph-
ication and harmful algal blooms, which degrade water quality
and aquatic habitats (Binding et al., 2023; Feng et al., 2024; Ma
et al., 2025; Wang et al., 2025).
Monitoring water quality is essential for managing and protect-
ing these ecosystems. However, conventional methods, such
as manual sampling and laboratory analysis, are often labour-
intensive, spatially limited, and unable to provide real-time data
(Jan et al., 2021), and in Deran Lake, are often hindered by
vegetation cover and water inaccessibility, particularly during
summer. In this context, satellite-based remote sensing has
emerged as a practical and non-intrusive alternative for large-
scale and long-term water quality assessment (Cáceres-Merino
et al., 2024; Sent et al., 2021). Among available platforms,
Sentinel-2 imagery is particularly valuable due to its high spa-
tial and temporal resolution, making it well-suited for capturing
short-term variability in small, optically complex inland water-
bodies. Three Sentinel-2 satellites (2A, 2B, and 2C) provide
imagery with spatial resolution of 10 to 60 m and temporal res-
olution of max 5 days (Sent et al., 2021). Combined, in situ
multiparameter probes and remote sensing technologies offer
scalable, efficient alternatives. Probes like the YSI EXO2s al-
low for high-resolution, real-time measurement of key indicat-

ors such as turbidity and chlorophyll-a (Chl-a), while satellite
platforms such as Sentinel-2 provide broad spatial coverage for
monitoring water quality trends over time (Fu et al., 2024; Gob-
lirsch et al., 2023; Yang et al., 2022).
Because water surfaces reflect very little light, applying atmo-
spheric correction is a critical step in remote sensing studies
focused on water quality (Kyryliuk and Kratzer, 2019; Radin et
al., 2020). One commonly used method is the Case-2 Regional
Coast Colour (C2RCC) algorithm, which is particularly effect-
ive for monitoring low-turbidity environments, such as marine
and clear inland waters (Radin et al., 2020; Šiljeg et al., 2024).
Previous research has indicated that C2RCC is the atmospheric
correction method that produces the lowest errors and shows
the strongest correlation with in situ data (Cáceres-Merino et
al., 2024). This atmospheric correction algorithm is integrated
into the open-source SNAP software (Sentinel Application Plat-
form), developed by European Space Agency. When applied
within SNAP, this method generates various outputs, includ-
ing absorption coefficients for different water constituents, re-
flectance values by spectral band, and associated uncertainties
(Radin et al., 2020). For this study, the key products of interest
include Chl-a concentration (conc chl, milligrams per cubic
meter (mg/m3) which equals to micrograms per litre (µg/L))
and total suspended matter (TSM) concentration (conc tsm,
grams per cubic meter (g/m3) which equals to milligrams per
litre (mg/L)) (Kyryliuk and Kratzer, 2019).
Deran Lake in Bosnia and Herzegovina, part of the Hutovo
Blato Nature Park, was selected as the study area due to its
unique hydrodynamic behaviour, ecological integrity, and suit-
ability for remote sensing validation. Influenced by the Krupa
River’s occasional reverse flow during high-water periods, the
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lake experiences significant shifts in hydrodynamics and nutri-
ent cycling (Public Company Nature Park Hutovo Blato, n.d.).
With no prior monitoring and minimal anthropogenic pressure,
it offers a pristine environment for studying natural processes.
The study area’s low density of water lilies in early spring al-
lows easier access for fieldwork, while its proximity to infra-
structure and the use of amphibious vehicles support practical
research deployment.
This study aims to assess the effectiveness of Sentinel-2 MSI
imagery combined with the C2RCC atmospheric correction for
monitoring Chl-a and total suspended solids (TSS) in Deran
Lake. TSS has increasingly been used interchangeably with
TSM in optical modelling due to their strong correlation in non-
coastal freshwater systems (Alvado et al., 2021; Saberioon et
al., 2020). The aim is to validate the automatic product, in-
cluding Chl-a and TSM, generated by SNAP using the C2RCC
atmospheric correction tool by comparing them with in situ
field measurements using the EXO2s probe from March 2025.
RMSE is a widely used metric for assessing model accuracy,
particularly in regression and remote sensing (Chai and Draxler,
2014). It captures both variance and bias by penalizing larger
errors more heavily. However, in small sample studies as this
one, RMSE can be skewed by outliers. In such cases, the stand-
ard deviation of residuals may provide a more reliable measure
of model precision, as it reflects error spread without emphas-
izing magnitude (Glavačević et al., 2025; Meyer, 2012). The
measured and remotely sensed data were compared to obtain
the coefficient of determination (R2), root mean square error
(RMSE), standard deviation, and mean absolute percentage er-
ror (MAPE) for both Chl-a and TSS/TSM. Such error metrics
have been commonly employed in similar studies to validate
remote sensing-based retrieval models (Cáceres-Merino et al.,
2024; Kyryliuk and Kratzer, 2019; Radin et al., 2020; Sent et
al., 2021).
Special emphasis is placed on evaluating how different spatial
averaging window sizes, using the mean estimator, affect the
accuracy of these estimates. The methodology builds on recent
advances in inland water monitoring using satellite data and re-
gionally adapted atmospheric correction algorithms (Jang et al.,
2024; Llodrà-Llabrés et al., 2023).

2. Materials and Methods

2.1 Study Area

Deran Lake is located in southern Bosnia and Herzegovina and
forms part of the Hutovo Blato Nature Park (Figure 1), a pro-
tected wetland system of international ecological importance.
The park spans across the municipalities of Čapljina and Stolac,
bordering Croatia and forming a significant component of the
Neretva River delta ecosystem (Ecoplan, 2014). Deran Lake
is one of six interconnected lakes within the park and plays a
crucial role in regional biodiversity and water regulation. Its
outlet, the Krupa River, exhibits reverse flow behaviour during
high-water periods, temporarily bringing water back from the
Neretva River and significantly influencing lake hydrodynam-
ics and nutrient cycling (Public Company Nature Park Hutovo
Blato, n.d.). Covering an area of approximately 1.4 km² during
high water periods and shrinking to 0.3 km² during the dry sea-
son, Deran Lake has an average depth of 2 meters and displays
strong seasonal variability in both water level and vegetation
cover (Public Company Nature Park Hutovo Blato, n.d.). This
variability is amplified by the regional karst hydrogeology and
influenced by infrastructure such as the Čapljina hydropower

Figure 1. Location of (A) Deran Lake in southeastern Europe
and (B) Deran Lake and surrounding waterbodies.

plant, which alters the natural inflow patterns depending on
precipitation and losses along the Trebišnjica River (Ecoplan,
2014). Numerous springs, both permanent and intermittent, fur-
ther support the hydrological complexity of the lake.
The study area was selected due to minimal anthropogenic dis-
turbance and unique hydrodynamic features. In summer, the
lake becomes heavily covered by water lilies, hindering con-
ventional sampling and satellite-based observations. Therefore,
research efforts focused on an accessible time of year when wa-
ter lily density is relatively low, enabling better conditions for
sensor deployment, in situ sampling, and remote sensing val-
idation. The proximity to the Krupa River also allows for the
examination of flow reversals and their impact on water quality.

2.2 Study Area Boundary

To accurately delineate the boundary of Deran Lake, the Nor-
malized Difference Water Index (NDWI) was applied using
Sentinel-2 satellite imagery. Given the lake’s shallow depth
and seasonal fluctuations, imagery from August 2024 (low wa-
ter) and December 2024 (high water) was selected. Cloud-free
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Level-2A images were used to ensure reliable data. The NDWI
was calculated using Band 3 (green) and Band 8 (near infra-red)
in QGIS 3.40 with the formula (McFeeters, 1996):

NDWI = (Band3–Band8)/(Band3 +Band8), (1)

The resulting raster outputs were converted into polygon layers.
To refine the boundaries, polygons were buffered 15 meters out-
ward and then inward to eliminate edge artifacts. These were
further simplified to include only valid water pixels. The final
study area was defined based on the December (high water) ex-
tent to ensure that the maximum surface area was captured for
analysis. Figure 2 illustrates the change in water extent between
the two time periods.

Figure 2. Map of (A) NDWI water levels and (B) monitoring
grid.

2.3 In Situ Sampling

As part of this study, a new monitoring grid was developed spe-
cifically for Deran Lake to support remote sensing-based ana-
lysis. The grid was designed to optimize spatial coverage while
accounting for lake’s hydrological features.
The final monitoring grid for Deran Lake includes ten stations,

strategically distributed across the lake using a 350 m × 350
m fishnet grid (Figure 2B). All stations were used for multi-
parameter probe measurements, collecting data on water qual-
ity parameters such as turbidity and Chl-a. At three of these
stations, additional manual water sampling was conducted to
measure TSS and evaluate its relationship with turbidity.
The EPA Method 160.2 procedure for determining TSS in
freshwater samples involving a gravimetric analysis was fol-
lowed. Samples were collected via a hand-grab technique,
ensuring minimal disturbance of the water column. At each
sampling station, a clean, pre-rinsed 1 L polyethylene bottle
was submerged to a depth of approximately 0.2 m to collect
the sample. Samples were wrapped in aluminium foil to pre-
vent any microbiological activity that could alter the concentra-
tion of suspended solids until the analysis. Samples were im-
mediately stored at 4°C in a portable fridge and transported to
the laboratory within 3 hours. In the laboratory, samples were
thoroughly mixed in order to evenly distribute particles in the
bottle and ensure homogeneity. Furthermore, they were filtered
through pre-weighed Glass microfiber filters (LGG Labware;
pore size 1.6 µm; filter diameter Ø 47 mm) using a filtration
system (MF31, Rocker Scientific) connected to a vacuum pump
(Büchi® V-500). The funnel walls were thoroughly rinsed with
Milli-Q® water to transfer all remaining particles to the filters.
Filtered volume was marked down for each sample. The filters
were then dried at 105°C until constant weight (weight change
<0.5 mg), cooled in a clean environment, and reweighed to de-
termine the TSS concentration, expressed as grams per cubic
meter (g/m3) which equals to milligrams per litre (mg/L). The
TSS concentration was calculated using the following equation:

TSS(g/m3) = ((W2−W1) ∗ 1000)/V, (2)

where W2 = final weight of filter + solids (mg)
W1 = initial filter weight (mg)
V = sample volume (mL)

To support satellite-based modelling and validate empirical re-
lationships, in situ measurement and sample collection was con-
ducted on March 21, 2025, during high water levels to minimize
interference from aquatic vegetation.

2.4 Regression Modelling of TSS and Turbidity

To assess the predictive relationship between turbidity and TSS,
a simple linear regression model was developed using measured
values from three water samples collected during the March
2025 field campaign. Turbidity values, expressed in Formazin
Nephelometric Units (FNU), were used as the independent vari-
able, while laboratory-derived TSS values (g/m3) served as the
dependent variable. The regression equation was derived from
the least squares method and took the form:

TSS = 6.8407 ∗ Turbidity–4.6453, (3)

where TSS = measured TSS (from lab)
turbidity = measured turbidity (from EXO2s)

The coefficient of determination (R²) was calculated to evalu-
ate the goodness-of-fit. All calculations were performed in Mi-
crosoft Excel. To evaluate model performance, predicted TSS
values were compared against measured values, and the per-
centage prediction error was calculated for each sample. Des-
pite the small sample size, results suggest a strong linear rela-
tionship and the practical potential for using turbidity measure-
ments as a real-time indicator of TSS in shallow karstic lake
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environments. TSS was treated as a proxy for TSM, due to its
close correlation in inland freshwater systems (Saberioon et al.,
2020).

2.5 Satellite Data and Atmospheric Correction

Sentinel-2 Level-1C imagery from March 19, 2025, was used
for remote sensing analysis. The image was atmospherically
corrected using the C2RCC algorithm within the Sentinel Ap-
plication Platform (SNAP), developed by the European Space
Agency. This algorithm applies neural network inversion tech-
niques to convert top-of-atmosphere (TOA) reflectance into
water-leaving reflectance (NASA, 2010), which is critical for
analysing optically complex inland waters such as Deran Lake.
The C2RCC algorithm has been widely validated in various
European inland water systems (Gurlin et al., 2011; Odermatt
et al., 2012). All bands were resampled to a uniform spatial
resolution of 10 meters to ensure consistency across calcula-
tions. Key environmental parameters used in C2RCC are listed
in Table 1.
To calculate the coefficients chl fac, chl exp (for Chl-a) and
tsm fac, tsm exp (for TSM) from measured field data and
C2RCC-derived inherent optical properties, a regression ana-
lysis was performed, specifically log-log linearization of the
power-law relationship (C2RCC, n.d.). The C2RCC-derived
empirical model for Chl-a is (C2RCC, n.d.):

CHL = chl fac ∗ (iop apig)chl exp, (4)

where CHL = measured Chl-a (from EXO2s)
iop apig = phytoplankton pigment absorption at

443 nm
chl fac, chl exp = model coefficients

TSS = tss fac ∗ (iop btot)tss exp, (5)

where TSS = predicted TSS (from lab)
iop btot = total particulate backscattering
tss fac, tss exp = model coefficients

Parameter Value Unit Source
Salinity 0.21 PSU in situ
Temperature 8.94 °C C3S (2024)
Ozone 347.37 DU Sentinel 5P imagery
Air Pressure 1031.77 hPa C3S (2024)
Elevation 1.48 m Ecoplan (2014)
TSM factor 5.26 - C2RCC (n.d.)
TSM exponent -1.31 - C2RCC (n.d.)
Chl-a factor 0.15 - C2RCC (n.d.)
Chl-a exponent -0.74 - C2RCC (n.d.)

Table 1. Key parameters used in C2RCC.

2.6 Spatial Averaging and Estimation Approach

To investigate the influence of spatial resolution and averaging
strategies on Chl-a and TSS/TSM estimation, three spatial win-
dow sizes were analysed: 1×1 (no averaging), 3×3, and 5×5
pixels. For each window, the mean estimator was applied,
calculating the mean reflectance value of pixels that met spe-
cific quality criteria, excluding no-data values. Mean estimator
was chosen due to its relevance in practical monitoring applic-
ations and its frequent use in aquatic remote sensing studies
(Dörnhöfer and Oppelt, 2016; Mishra and Mishra, 2012). Des-
pite its tendency to slightly underestimate peak values, mean es-
timator provides a realistic representation of average lake con-
ditions in small waterbodies across Europe, and recent studies

also support its effectiveness for both Chl-a and TSS/TSM es-
timation (Cáceres-Merino et al., 2024; Radin et al., 2020). In
order to select the pixel window that provides variables closest
to in situ data, the measured and remotely sensed data were
compared to obtain the R2, RMSE, standard deviation, and
MAPE for both Chl-a and TSS/TSM. The RMSE was calcu-
lated as follows (Sent et al., 2021):

RMSE =

√∑N

i=1
(sati − in situi)

2

N
, (6)

and the MAPE was calculated as follows (Sent et al., 2021):

MAPE =
1

N

N∑
i=1

∣∣∣sati − in situi

in situi

∣∣∣ , (7)

where sat = satellite-derived value
in situ = measured value
N = number of measurements
i = measurement index.

3. Results

3.1 Regression Results of Turbidity-TSS Relationship

The linear regression model showed a strong correlation
between turbidity and measured TSS, with an R² value of 0.85
(Figure 3), indicating a high degree of explanatory power given
the limited sample size (n = 3). Predicted TSS concentrations
closely aligned with observed values, yielding absolute percent-
age errors of 15.88%, 13.97%, and 4.19% for samples 37, 42,
and 34, respectively (Table 2). The average error across all
samples was 11.34%. Notably, the lowest prediction error oc-
curred in the sample with the lowest turbidity and TSS, sug-
gesting improved model performance under clearer water con-
ditions. These findings support the use of turbidity as a proxy
indicator for TSS in optically stable, shallow freshwater sys-
tems such as Deran Lake.

ID 37 42 34
W1 (mg) 94.6 92.5 91.8
W2 (mg) 95.5 93.7 92.2
V (mL) 950 1000 990
Turbidity (FNU) 0.84 0.83 0.74
TSS (mg/L) 0.95 1.20 0.40
Predicted TSS (mg/L) 1.10 1.03 0.42
Error (%) 15.88 13.97 4.19

Table 2. Measured vs. predicted TSS with error.

3.2 Validation of SNAP-Derived Chl-a and TSS Using In
Situ Data

The field campaign was conducted on March 21, with in situ
measurements taken at ten sampling stations. Atmospheric-
ally corrected Sentinel-2A imagery from March 19 was used
for comparison. For each in situ station, actual values were ex-
tracted from a single 1x1 pixel corresponding to the location.
Based on the observed Chl-a concentrations (Table 3), the lake
can be classified as an oligotrophic, clear-water system, with
values ranging from 0.15 to 0.81 mg/m³ (Carlson, 1977).

Figure 4A shows the spatial distribution of Chl-a concentra-
tions, an indicator of phytoplankton biomass and primary pro-
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Figure 3. Regression model - TSS (g/m3) and turbidity (FNU).

In situ C2RCC
ID Chl-a TSS Chl-a TSM

(mg/m3) (g/m3) (mg/m3) (g/m3)
40 0.30 0.83 0.29 0.96
42 0.25 1.03 0.27 1.12
31 0.39 0.76 0.42 0.79
32 0.31 1.03 0.29 0.80
33 0.27 0.96 0.30 1.13
34 0.28 0.42 0.30 0.50
35 0.29 0.76 0.36 0.67
36 0.25 1.24 0.24 1.40
37 0.37 1.10 0.32 1.21
38 0.28 0.90 0.28 0.78

Table 3. In situ values and estimates derived from Sentinel-2A
imagery.

ductivity. Values range from 0.15 to 0.81 mg/m3, suggest-
ing generally low Chl-a levels, which is consistent with oligo-
trophic conditions. Higher concentrations appear in the western
and eastern parts of the lake, as well as along some shoreline
areas. These localized peaks may be influenced by nutrient
inflows, shallow water zones, or aquatic vegetation presence.
The spatial pattern indicates moderate heterogeneity, highlight-
ing regions where phytoplankton activity is more pronounced.
Figure 4B presents TSM or TSS concentrations, representing
all particulate matter suspended in the water column. Values
vary from 0.18 to 3.97 g/m3, with the highest concentrations
observed in the northern and southern parts of the lake. These
areas likely receive input from inflowing streams or exhibit
more turbulent hydrodynamics, leading to sediment resuspen-
sion. Elevated TSM levels can reduce water clarity and influ-
ence light penetration, which has implications for aquatic plant
and phytoplankton growth.

3.3 Influence of Window Size on Estimation Accuracy

The results presented in the Figure 5 and Table 4 highlight
the influence of spatial averaging on the accuracy of remote
sensing-derived estimates for Chl-a and TSM. For Chl-a, the R²
improved slightly from 0.61 using the 1×1 pixel values (no av-
eraging) to 0.69 with a 5×5 averaging window, indicating that
moderate spatial smoothing reduces pixel-level noise and im-
proves correlation with in situ data. A similar trend was ob-
served for TSM, where R² increased from 0.76 (1×1) to 0.85
(5×5), with the 3×3 configuration already providing a high cor-
relation of 0.82. These improvements in R² were accompanied
by a consistent decrease in RMSE, from 0.0330 to 0.0288 for

Figure 4. Thematic maps of (A) Chl-a (mg/m3) and (B)
TSS/TSM (g/m3) for March 19th, 2025 in the Deran Lake.

Chl-a, and from 0.1337 to 0.0962 for TSM. Standard deviation
values followed the same trend, decreasing with larger window
sizes, and thus suggesting improved stability in the estimates.
In this context, it’s noteworthy that in the small test sample (n
= 10), the standard deviation of residuals was nearly twice the
RMSE for both parameters. This suggests high variability in
model errors despite relatively consistent bias, an effect that
is more pronounced with limited data. The reduction in both
RMSE and standard deviation with spatial smoothing further
supports the reliability of moderate averaging (3×3 or 5×5) in
improving model accuracy under small-sample conditions.
Additionally, MAPE was lowest with the 5×5 window for Chl-
a (7.93%) and TSM (9.53%), further confirming the benefit of
spatial averaging. These results indicate that small averaging
windows, such as 5×5, effectively balance spatial resolution and
noise reduction. For Deran Lake’s conditions, the 5×5 config-
uration appears to be the most effective, likely due to its ability
to mitigate edge effects and mixed-pixel contamination without
excessively smoothing important local variability.
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Figure 5. Correlation between in situ Chl-a and TSM
measurements and remote sensing pixel values using 1×1, 3×3,

and 5×5 spatial windows.

Para- Pixel RMSE St.Dev. R2 MAPE
meter window

1x1 0.0330 0.0476 0.61 8.86
Chl-a 3x3 0.0326 0.0477 0.65 8.52

5x5 0.0288 0.0459 0.69 7.93
1x1 0.1337 0.2417 0.76 13.79

TSS 3x3 0.1174 0.2413 0.82 11.87
5x5 0.0962 0.2317 0.85 9.53

Table 4. Performance metrics comparing in situ and
C2RCC-derived estimates for Chl-a and TSS using different

Sentinel-2 pixel window sizes.

4. Discussion

The applicability of remote sensing imagery for water qual-
ity monitoring has been extensively supported in the literature.
For instance, Batina and Krtalić (2024) provide a comprehens-
ive overview of remote sensing techniques used for monitoring
various water quality parameters, emphasizing the significance
of atmospheric correction algorithms and validation with in situ
measurements. The use of Sentinel-2 MSI imagery, in com-
bination with the C2RCC atmospheric correction algorithms,
demonstrated considerable potential for monitoring water qual-
ity parameters such as Chl-a and TSS/TSM concentrations in
Deran Lake. This aligns with previous research highlighting
the suitability of Sentinel-2 data for monitoring inland water-
bodies due to its high spatial and spectral resolution (Alvado et
al., 2021; Kyryliuk and Kratzer, 2019; Sent et al., 2021).
The findings confirm that spatial context plays a crucial role in
reducing noise and improving estimation accuracy. While lar-
ger windows reduce noise, they may also smooth out significant
features. A 5×5 window size appears to offer the best comprom-
ise for Deran Lake, balancing noise reduction with ecological
detail retention. This approach has been validated by Cáceres-
Merino et al. (2024), who emphasized the need to optimize
spatial window sizes when dealing with small or heterogeneous

waterbodies. While RMSE remains useful for assessing overall
model performance, standard deviation may better reflect the
internal consistency or precision of the model with limited in
situ data.
The Krupa River exerts a significant localized influence on
the water quality of Deran Lake, particularly near its inflow
in the northwestern region. Elevated concentrations of Chl-
a in this area suggest increased phytoplankton activity, likely
driven by nutrient inputs from the river. Similarly, high levels of
TSS/TSM near the river mouth indicate sediment loading from
the river. These effects are spatially constrained, with both Chl-
a and TSS/TSM levels decreasing toward the central and south-
eastern parts of the lake. This pattern suggests limited disper-
sion of riverine inputs, highlighting the Krupa River’s role as a
localized but potent driver of biogeochemical variability in De-
ran Lake.
The increasing reliance on satellite-derived data for monitor-
ing algal blooms and eutrophication trends is further supported
by large-scale studies such as Binding et al. (2023) and Ma et
al. (2025), who employed long-term remote sensing datasets to
monitor bloom dynamics and predict future water quality scen-
arios. These applications underscore the broader significance
of refining satellite algorithms for local-scale studies. Given the
close relationship between TSS and TSM in freshwater envir-
onments, these results support the integration of TSS retrievals
into broader ecosystem assessments (Alvado et al., 2021).

5. Conclusions

This study demonstrates the effectiveness of Sentinel-2 satel-
lite imagery, combined with C2RCC atmospheric correction,
for monitoring Chl-a and TSS in Deran Lake. The use of condi-
tional mean estimators and intermediate spatial averaging (e.g.,
5×5 pixel windows) was found to enhance predictive accuracy
by balancing spatial resolution and noise reduction. Seasonal
adaptation of remote sensing methodologies is important, as hy-
drological conditions significantly influenced model perform-
ance. This highlights the need for longer studies to cover all
seasons for monitoring strategies in dynamic aquatic environ-
ments.
Despite the promising results, remote sensing methods still re-
quire rigorous validation against in situ data. This is partic-
ularly crucial for periods of low water levels, when in situ
sampling becomes challenging. Deran Lake, as a shallow karst-
influenced wetland with minimal anthropogenic disturbance,
offers a unique and controlled environment for such validation
efforts. Furthermore, future work should prioritize increasing
the sample size, as a larger dataset improves statistical power,
reduces the impact of outliers, and allows both RMSE and
standard deviation to provide more stable and meaningful es-
timates of model performance. This study lays the groundwork
for future research and technological deployment under initiat-
ives like the SMART-Water project, highlighting the potential
of integrating satellite imagery, remote water quality monitor-
ing, and broader ecological conservation in the Hutovo Blato
wetland.

Acknowledgements

We would like to thank Josip Vekić from the Public Com-
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Šiljeg, A., Cukrov, N., Batina, A., Marić, I., 2024. Spatial-
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