
The challenges of reproducibility for research based on geodata web services

Massimiliano Cannata1, Maxime Collombin2, Olivier Ertz2, Gregory Giuliani3, Jens Ingensand2, Claudio Primerano1, Daniele

Strigaro1

1 University of Applied Sciences Southern Switzerland (SUPSI), Switzerland, (massimiliano.cannata, claudio.primerano,

daniele.strigaro)@supsi.ch
2 School of Engineering and Management Vaud, HES-SO, University of Applied Sciences and Arts Western Switzerland,

(maxime.collombin, olivier.ertz, jens.ingensand)@heig-vd.ch
3 University of Geneva, Geneva, Switzerland, gregory.giuliani@unepgrid.ch

Keywords: FAIR; geospatial web services; interoperability; open science; reproducibility; transparency.

Abstract

Modern research applies the Open Science approach that fosters the production and sharing of Open Data according to the FAIR

(Findable, Accessible, Interoperable, Reusable) principles. In the geospatial context this is generally achieved through the setup of

OGC Web services that implements open standards that satisfies the FAIR requirements. Nevertheless, the requirement of Findability

is not fully satisfied by those services since there’s no use of persistent identifiers and no guarantee that the same dataset used for a

study can be immutably accessed in a later period: a fact that hinders the replicability of research. This is particularly true in recent

years where data-driven research and technological advances have boosted frequent updates of datasets. Here, we review needs and

practices, supported by some real case examples, on frequent data or metadata updates in geo-datasets of different data types.

Additionally, we assess the currently available tools that support data versioning for databases, files and log-structured tables.

Finally, we discuss challenges and opportunities to enable geospatial web services that are fully FAIR: a fact that would provide, due

to the massive use and increasing availability of geospatial data, a great push toward open science compliance with ultimately

impacts on the science transparency and credibility.

1. Introduction

This article discusses the reproducibility of research that have

been based on datasets offered by interoperable open geospatial

Web services and that are subject of frequent modifications. We

explore the current context and a few cases of frequent data

changes of different geospatial data types and discuss some

available technological solutions to support data versioning. The

emphasis of this paper is on challenges and needs of practical

solutions.

1.1 Open Science, Research Data, and Geospatial Services

Open Science represents a transformative approach to research,

enabled by digital technologies and a collaborative ethos. It

promotes the open sharing of data, information, and knowledge

across the scientific community and society at large to

accelerate discovery and understanding (Ramachandran, 2021).

The core objectives of Open Science are to improve access to

knowledge, enhance the efficiency of sharing research outputs,

and evolve impact evaluation through new metrics.

At the heart of this paradigm is Open Research Data (ORD),

which refers to data underlying scientific results that are freely

accessible and reusable. ORD reduces duplication, supports

interdisciplinary collaboration, and fosters innovation. To be

effectively reused, data must comply with the FAIR principles

(Findable, Accessible, Interoperable, Reusable), which has

driven the creation of repositories like Zenodo, PANGAEA,

ARCHE, and the UK Data Archive, indexed by platforms such

as re3data. These services typically support persistent identifiers

(DOIs), open licensing, standard metadata, and open file

formats (e.g., CSV, JSON).

However, most repositories handle static datasets. To support

advanced applications such as machine learning or big data

analytics, there's a growing need for Analysis Ready Data

(ARD) and platforms capable of regular data delivery and

preprocessing. This demand aligns with the European Data

Spaces initiative, which envisions secure and interoperable

environments for data sharing across domains; integrating legal,

ethical, and technical safeguards to drive innovation and digital

transformation.

In the geospatial domain, data sharing has been facilitated

through Spatial Data Infrastructures (SDIs) at multiple

governance levels. These infrastructures are built on

interoperable standards promoted by the Open Geospatial

Consortium (OGC), which enables thousands of applications to

access and integrate geospatial content globally. Traditionally,

this was done through OGC Web Services (e.g., WMS, WFS,

WCS), using XML and SOAP protocols.

In recent years, a new generation of standards, OGC APIs, has

emerged, reflecting modern web development practices.

Developed in collaboration with the World Wide Web

Consortium (W3C), OGC APIs are RESTful, use JSON (or

JSON-LD for linked data), support OpenAPI documentation,

and are designed as modular "Building Blocks" to be flexibly

combined. These standards simplify integration with non-

geospatial systems, enhance search engine indexing, and better

support Web-native data sharing—making geospatial data more

accessible and actionable within broader open science and data

space ecosystems.

Together, the evolution of ORD and interoperable geospatial

services illustrates a shift toward open, machine-actionable, and

integrated digital research environments—enabling new forms

of collaboration, insight, and impact.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-87-2025 | © Author(s) 2025. CC BY 4.0 License.

87

1.2 Time Varying Data

The technological growth in the last decades led to the

explosive increment of time-varying data which dynamically

change to represent phenomena that grows, persists and decline

(Wang et al., 2008), or that constantly vary due to data curation

processes that periodically insert, update, or delete information

related to data and metadata. As discussed by Saracco (2010),

dealing with dynamic data has consistently played a pivotal role

in facilitating a wide range of analyses, such as examining

changes in client accounts for financial institution audits,

assessing the clinical progression of patients for legal

proceedings, evaluating insurance policy terms at the time of

accidents, identifying disparities in travel itineraries involving

car and hotel reservations, and adjusting interest rates for banks

upon detecting errors. In addressing such cases Saracco

identifies two different concepts of time: system-time and

business-time. While business-time can be defined as the

instant/period for which the data is meant to be used (often

referred to as “valid-time” or “application-time”), system-time

relates to the data state as stored in a specific instant/period

(often also referred to as "transaction-time"). So, for example, in

the case of an application tracking the position of a delivery

track and the corresponding air temperature the system would

record the coordinates and the air degrees Celsius. After a

month, if the track undergoes a revision in which the

temperature sensor was found to have a bias of 0.002 degrees

and the raw GPS data were manually collected and reprocessed

for improved position accuracy, data would be updated

accordingly. Answering the questions “where was the track on

August 30 at 11:30? What is the average temperature in May on

London Street? What is the distance covered by the track in

2023?” requires the usage of the business-time. Answering

questions “Which data did we use to compile the delivery report

on August 25 at 17:15? How did the position of the track

change after GPS data processing?” requires the usage of

system-time. From a logical perspective business-time is

characterized to be maintained by the user, future dates and

times may make complete sense, its resolution (day, month,

microseconds, etc.) is decided by the application. On the

contrary, system-time is managed automatically, future dates

are not permitted, and its resolution must be the finest possible.

2. Reproducibility in the Geospatial Sector

Based on the current trends and data availability, the ability to

link Open Science concepts with interoperability and time-

varying data management is paramount. In particular, the

capability of obtaining results consistent with a prior study

using the same materials, procedures, and conditions of analyses

is very important since it increases scientific transparency,

fosters a better understanding of the study, produces an

increased impact of the research and ultimately reinforces the

credibility of science (Konkol and Kray, 2019, Kedron et al.,

2021). In the Open Science paradigm this is indicated as

Reproducible Research, and it can be guaranteed only if the

same source code, dataset, and configuration used in the study is

available. For geospatial data, while the presented OGC

standards enable an almost FAIR (Giuliani et al., 2021) and

modern data sharing, they do not adequately support the

reproducibility concept as pursued in Open Science. In other

words, they do not offer any guarantee that the geodata accessed

in a given instant can be persistently accessed, immutably, in

the future. In fact, while business-time is considered in several

aspects and standards like Part 3 from OGC API - Features

including temporal filtering, Sensor Observation Service or

OGC API Moving Features, at the best knowledge of the

authors, none of them support the system-time. Releasing

different dataset versions (e.g. storing exported datasets in FAIR

repositories or offering a layer referencing a fixed time instant)

can be a solution. Nevertheless, in many cases, where data (and

metadata) are frequently updated and datasets have large size,

this is not efficient nor applicable. Additionally, this approach

may hinder the seamless capacity of analyses of data variations.

This is confirmed by Nüst and Pebesma (2021) that produced a

comprehensive summary of the state of the art in reproducible

research within the geospatial domain. In the manuscript they

recognize that only a small body of work on reproducibility in

the geospatial domain was available. They underlined that

reproducibility might be achieved only when physical, logical

and cultural components are available and identified that the

main challenge is the general poor knowledge of reproducibility

practices by researchers. Other barriers that they highlighted

were related to: (1) the utilization of proprietary software which

is often subject to licensing restrictions prevents reproduction;

(2) the multitude of tools frequently employed in a single

geospatial research project poses a challenge to replicability; (3)

the reliance on geospatial infrastructure that depends on online

services can lead to obstacles in accessing the original dataset

due to potential changes; (4) analysing extensive datasets is

often executed in proximity to the data source using online

services, which would necessitate open accessibility to the

server implementations; (5) while free platforms provide

scripting capabilities for data processing, the environment may

change and not ensure reproducibility.

Cerutti et al. (2021) in their study, which replicated and

compared three studies conducted on disaster response using

different geospatial algorithms, proposed the use of an analytics

platform (KNIME, no date) which includes geospatial functions

to create scientific workflows and enhance reproducibility.

Similarly, registering the analysis workflow in computational

notebooks enables the ordered re-execution of processing steps:

this approach has been adopted for example by the GRASS GIS

community (GRASS GIS Jupyter notebooks) and ESRI

(ArcGIS notebooks). Nevertheless, the reproducibility of

workflows does not guarantee that the code is executed using

the same data and environment used during the study. For this

reason, Yin et al. (2019) presented a cloud-based solution,

named CyberGIS-Jupyter, that combines Jupyter notebook with

docker technology to support computational reproducibility and

scalability of geospatial analyses. While Jupyter notebook

guarantees the reproducibility of the workflow, the docker

technology permits to reproduce the environment, with exactly

the same software and libraries versions, where the geospatial

processes were executed. Kedron et al. (2021) highlighted in his

review that even if the computational reproducibility is

guaranteed, it does not include itself two essential components

for the full reproducibility of research: the record of task

coordination and of conceptual decision-making. For this

reason, research notebooks and software like the Open Science

Framework have been used to capture research provenance

(steps and decision criteria) in addition to processing workflow

including approaches and pre-analysis plans. The reported

approaches present solutions that contribute to solving several

reproducibility challenges, nevertheless they do not address the

issue of accessing the original dataset when online services

from a geospatial infrastructure are at the base of a study.

With the aim of understanding how system-time, and

reproducibility as a consequence, could be addressed and

managed in geospatial data services, this work aims at

identifying the requirements, challenges and opportunities by

reviewing:

1. how the geospatial domain is addressing

reproducibility,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-87-2025 | © Author(s) 2025. CC BY 4.0 License.

88

2. how updates of time varying spatial data happens in

real case applications, and

3. which technological solutions exists to manage

system-time for big-data spatio-temporal datasets.

It may be worth mentioning that the OGC issued a Call for

participation for the Open Science Persistent Demonstrator

(OSPD) Initiative. Although important for the replicability of

science, this initiative focuses on platforms and workflows to

demonstrate how a federation of OGC based services can offer

FAIR Open Data in support of Open Research making use of

the PROV-O (Groth and Moreau, 2013) provenance data model.

In fact, while PROV-O provides an effective ontology to

register and replicate processing chains to the best knowledge of

the writers, there is currently no interoperable standard

application that supports persistent retrieval of time-varying

data from dynamic web services. In practice, PROV-O serves as

a descriptive framework for provenance metadata, but it does

not provide queryable interfaces or retrieval mechanisms for

historical data states. The remainder of the paper presents the

results of the literature review for each of these three aspects

and finally presents a discussion highlighting possible solutions

and approaches to be investigated in the future.

3. Updates And Changes of Time Varying Geospatial Data

In this section we evaluated the needs and practices supported

by some real case examples related to common operations that

update data or metadata of the different geospatial data types,

specifically sensor observations, vector datasets and raster

series.

3.1 Updates and Changes of Sensor Observations

In the geospatial domain, sensor observations are mainly

addressed by two standard web services specifications from the

OGC: the Sensor Observation Service (SOS) and the Sensor

Things API (STA). While SOS is based on the SOAP and data

are encoded in XML the STA is based on the use of RESTful

services following the OData's specification (Kirchhoff and

Geihs, 2013) and data are encoded in JSON format. Both

specifications offer access to sensor data and metadata along

with transactional capabilities. Apart from some specific

differences in the data model (Blanc et al., 2022) and requests

the two standards can be considered conceptually comparable.

Based on the previously reported challenges of reproducibility

in the geospatial sector these standards are exposed to potential

changes of datasets in time, in fact an authorized user can

change data using the offered transactional features. Best

practices followed to serve ARD from sensor networks very

often include post-processing (after the original acquisition

from the sensor) to reduce uncertainties in further analyses

which produce knowledge and wisdom. As discussed by

Krishnamurthi et al. (2020) these processing include: (i)

denoising to eliminate most of the noise signals in data, (ii)

missing data imputation to deal with incomplete data that are

not supported by several analyses techniques (e.g. ML models),

(iii) data outlier detection to identify data which has been

incorrectly sensed due to external unpredictable factors, (iv)

data aggregation of heterogeneous observations (difference in

time and property) to reduce data transmission size and

complexity. Additionally, after the processing phase data may

require (v) data fusion which integrates multiple data sources to

improve accuracy. At this point data are available for analyses.

Strigaro et al. (2022) described a system collecting high

frequency data of ecological and physical parameters from

buoys that are located in lakes with the scope of monitoring and

assessing lake ecosystem quality using WMO guidelines on

quality control procedures (Zahumenskỳ, 2004). Reported cases

of time series data management shows that data preprocessing

and quality assurance procedures modify data and metadata

values as a consequence of real-time analyses or post-

processing elaborations or lately manual correction. It is

particularly interesting that the WMO in its climate data

management system specification includes as a required policy

the “ability to reproduce specific data that were held in the

climate database at a particular point in time”. To better

understand the entity of these changes in a real case study we

have analyzed the transactional operations that have been

executed on the hydro-met monitoring system in the Canton

Ticino (2020) managed using the istSOS software (Cannata et

al., 2019). The datasets, at the time of writing, include

observations ranging from the 1978 to the 2023 and related to

298 sensors observing different properties related to rivers and

meteorology. From 2015, year of the activation of a

transactional log features offered by istSOS and that permits to

register transactional operations executed on the service, we can

note that out of 117Mio observations there have been 15Mio

updates of single observation data or metadata, value, which,

not considering multiple updates for the same values,

correspond to about the 13% of the data. Percentage that

reaches 23%, if we consider only the measures related to river

height and precipitation, which are the measures that actually

undergo a systematic quality control process (6Mio out of

26Mio observations). These percentages highlight how

important it could be to access specific dataset status in time.

Additionally, since every year an annual hydrobook is produced

in the following year, data undergo a specific process of re-

analyses where, for example, stage-discharge relationship

curves are updated or data gap filled, and the entire previous

year aggregated data is re-calculated. As an example, in October

2023 hydrologists requested to re-calculates the daily

aggregated data for all the discharge stations for the entire 2022,

for a specific station for the entire 2021 and for another station

for one week due to configuration changes.

3.2 Updates and Changes of Features

Vector layers which vary in time due to continuous data

additions and updates are generally managed with database or

file sources and are very often offered by means of standard

OGC WMS or WFS and more recently via the OGC API

Feature. As an example of geospatial datasets undergoing a

continuous update, we can cite the cadastral data and the water

protection zones. They are continuously updated to reflect

changes that occur on land ownership or water policies. In

particular, the groundwater protection zones identify different

areas centered around groundwater collections or recharge

plants. When new wells are established and/or new

hydrogeological studies are conducted new protection zones are

inserted or existing ones are edited and published as WMS on

the official portal on the cadastre of public-law restrictions on

land ownership of Canton Ticino (https://crdpp.geo.ti.ch/). Here

the current situation is duly represented but there is no option to

navigate and check how restrictions were represented in the

past, which may be very relevant in case of disputes. Similarly,

the cadastre of Canton Ticino is publicly available as WFS

service (https://wfs.geo.ti.ch). This is the current version and

while we can find in the attributes the date a feature entered in

law, it does not offer any option to navigate in time the

evolution of properties map.

A very popular geospatial vector dataset that is continuously

updated is the OpenStreetMap (OSM). It is a crowdsourced

geographic dataset with more than 10 million registered users.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-87-2025 | © Author(s) 2025. CC BY 4.0 License.

89

OSM maintains timestamped historic changesets that are a

group of modifications set by a single user in a short period. It

is possible to access weekly snapshots and changesets of the full

dataset or the full history by downloading them in XML or

Planet PBF files (https://planet.openstreetmap.org/). To analyze

the creation process of OSM data, some software were

implemented by the are limited to examine and view a small

portion of the database (Mocnik et al., 2018). Martini et al.

(2019) presented a methodology for analysis of changes in

OSM. In this paper the authors analyzed the changed objects in

the city area of Karlsruhe, Germany. The produced maps show

areas with up to 2 thousand new objects per year and up to 13

thousand objects updates per year. These numbers and the full

history file with its size of more than 200 Gb provide an order

of magnitude of the high variability of the data in time due to

new features, deletion or modification of either geometric or

semantic information.

3.3 Updates and Changes of Rasters

Concerning raster data, the principal source of data is

represented by satellite Earth Observations (EO) data. Indeed

planet Earth is under continuous observation from many

different types of satellites produce a continuous and increasing

stream of observations from space. Among the different benefits

of using satellite imagery for environmental monitoring,

Merodio Gómez et al. (2019) listed (1) Temporal resolution:

capacity to capture data at different frequency of revisit; and (2)

Time-series: capacity to provide continuous data starting as

early as 1972 (e.g., Landsat) as two important aspects.

To tackle the big data challenges related to EO data handling,

the emergence of EO Data Cubes allowed to efficiently and

effectively manage and analyze large amounts of EO data

(Giuliani et al., 2017, Lewis et al., 2017), enabling spatio-

temporal analysis of Analysis Ready Data (ARD) (Dwyer et al.,

2018). However, interoperability of Data Cubes is still a

challenge, different existing and emerging standards can help

deliver and leverage the power of EO data building, efficient

discovery, access and processing services (Giuliani et al., 2019).

OGC WMS and WCS are common standards that already have

demonstrated their ability to handle satellites for visualization

and download purposes. While both standards have a time

parameter that can be used to extract a specific time-slice, it

remains limited to that single operation. It cannot do operations

on a time interval or nearest values. Another restriction, related

to the semantic of the time parameter, is ambiguous that could

refer to acquisition - processing or publication time. The OGC

WMS Earth Observation profile recommends using the time

parameter only for the acquisition time (Lankester, 2009).

Giuliani et al. (2019) discuss and demonstrate potential ways to

properly handle the time dimension on existing OGC standards.

Among the new standards that have emerged in recent years, the

Spatio-Temporal Assets Catalog (STAC) (STAC Contributors,

2024) provides a common structure for describing and

cataloguing spatio-temporal assets (Ferreira et al., 2020). It

tackles most of the issues previously mentioned and facilitates

the creation of flexible spatio-temporal analysis workflows,

removing the burden of creating specific pipelines for each

different data collection one consumes. Nevertheless, existing

and emerging standards are not properly handling backward

compatibility of raster-based products (e.g., guarantee that I can

access the data as they were yesterday... not like they are today).

Indeed, for example in data cubes, if one reprocessed a given

product (e.g snow cover) or ARD satellite imagery, with an

improved version of an algorithm, then the only solution for

versioning them is to create a new data collection with a

different version number that can then be queried/accessed

through an OGC-compliant API or Web service.

4. Tools for Data Versioning

Traditional data management systems typically store only the

current state of data, making changes irreversible as datasets

evolve through acquisition (new features) or processing.

However, reproducible research requires the ability to recreate

the exact environment and dataset state used in a study. This

makes data versioning essential, enabling access to historical

versions of datasets. Many big data applications, particularly in

Machine Learning (ML), benefit from tracking historical data

changes, as models are continuously retrained and require

traceability of both parameters and inputs over time. As data

production grows, the shift from traditional databases to object

storage and Data Lakes (Mathis, 2017) is accelerating.

Consequently, most modern versioning tools focus on object

storage (dataset-level) rather than database-level version

control. Several open and collaborative solutions—often

inspired by Git—now support dataset versioning by tracking

file changes over time and enabling rollback. These tools

facilitate transparency, collaboration, and reproducibility,

aligning with Open Science values. The following sections

briefly describe key open-source tools supporting different

versioning approaches. Due to limited formal literature,

references often include software documentation, websites,

blogs, and community forums.

4.1 Data Versioning of Databases

Tracking the historical evolution of records or database version

control mechanisms are generally based on the definition of a

Slowly Changing Dimension (SCD) (Kimball, 2008) which is a

dimension that registers, and permits to manage, the evolution

in time of values in a database table. Three types of SDCs exist:

(i) type 1 stores the latest valid values of a record and that is the

standard database rule, (ii) type 2 stores all the versions of the

record registering the period for which that value was active,

and (iii) type 3 stores the current and previous values only of a

record. In December 2011, ISO/IEC published an updated

version of the SQL standard, SQL:2011 (Kulkarni and Michels,

2012) which introduced the capability of managing temporal

tables. This includes the support of time period data type which

can be declared as primary or foreign key and support a number

of filtering operations (i.e. overlaps, equals, contains, precedes,

succeeds, immediately precedes, immediately succeeds). A

period column can have any name except SYS-TEM_TIME,

which is a reserved name to enable system-time features as SDC

type 2. Several databases implemented the SQL:2011

specification as described by Jungwirth (2019). In addition to

relational databases, Soroush and Balazinska (2013) presented a

methodology for extending column stores (array databases) with

versioning.

MariaDB - In MariaDB you can enable the system-time

versioning of a table using the syntax “WITH SYSTEM

VERSIONING” which adds the “ROW_START” and

“ROW_TO” pseudo-columns that do not appear in SELECT

statements and are populated automatically. The ROW_START

is populated with the insertion timestamp while ROW_END

with an instant far in the future if the record is valid or the

instant the row has been updated/deleted. Filtering using the

system-time can be performed using the “AS OF” to extract a

specific version of the data in a specific instant or the “FROM

… TO” or “BETWEEN” statements to extract the record as they

were valid in a provided period. Versioned tables with system-

time can be partitioned so that historical rows and current valid

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-87-2025 | © Author(s) 2025. CC BY 4.0 License.

90

rows are separated, optionally users can set the historical

partition to be partitioned every n records (MariaDB

community, no date).

IBM DB2 - System-time is implemented similarly to MariaDB

with a few syntax differences, like naming “ROW

BEGIN/END” instead of START/TO. System-time pseudo-

columns columns are not accessible in SELECT statements and

filtering does not support BETWEEN statements [59].

Oracle - Oracle has its own implementation of historical values

that do not comply with SQL:2011. It allows you to declare a

PERIOD but not as a primary key and periods can have null

values. Oracle Database supports Flashback Time Travel feature

implementing SDC type 2 that can be configured with a

retention time on a tablespace or identified tables making it easy

to undo or query historical stored values (Deshpande, 2004,

Gregg, 2023).

MS SQL Server - System-time tables are supported but with non

fully standard syntax “WITH (SYSTEM_VERSIONING =

ON (HISTORY_TABLE = dbo.this))” where historical records

are saved in an invisible table that can be named and queried as

any normal table. Filtering supports options like MariaDB

(rwestMSFT, 2023).

PostgreSQL - Postgresql does not support system-time. There

are a few projects implementing such a feature but they are not

official extensions and are under development. A few GitHub

repositories implement a solution in Pl/PgSQL (Chiodi, 2023,

Fearing, 2023). An ex-tension dated 2018 is proposed on the

PostgreSQL Extension Network website. None are officially

supported by postgreSQL.

OrpheusDB - It is a layer installed on top of relational databases

and expose git-like command (Huang et al., 2020). It stores data

in tables following the SDC type 2. In OrpheusDB records are

immutable and are archived in Collaborative Versioned Dataset

(CVD) recording record id (rid) and version id (vid) with other

associated metadata like creation time, commit time, committer

and a commit message. OrpheusDB implements a CLI

(Command Line Interface) with, among other, checkout and

commit commands. SQL can be performed on a version with

the run command that takes the SQL as an input, translates and

executes it against the database for a specific version. In his

paper Huang et al. (2020) demonstrated the solution on

postgreSQL and presented a graphical interface to navigate

through the version tree.

Dolt - While not found in scientific literature, Dolt is a MySQL

git-like database versioning system. According to its

documentation Dolt treats tables as files and registers

modifications in a stage area (so called “working set”) which is

the current database version used when queries are executed.

When a Dolt commit is performed a new version is persisted so

that differences between versions, and metadata can be

explored. It is possible to configure Dolt so that at each SQL

commit a dolt commit is executed but according to Sehn (2022)

in this case you lose the capability of annotating commits with

messages and the complexity of the commit graph get hard to be

used. Dolt supports branches, diffs and merges.

4.2 Data Versioning of Files

When data are not structured in relational databases but

managed in files, changes can be recorded using Git.

Unfortunately, Git has not been designed to manage large

datasets, in fact it extracts the list of changes (diffs) from stored

file snapshots, a fact that limits its performance (Low et al.,

2023). For this reason, some solutions have been implemented

to overcome this issue and extend Git to support large files.

Git Large File Storage (Git LFS) - Kandpal (2023) proposed a

tool for collaborative development of machine learning models,

based on the Git LFS and described functioning and limitations.

Its main feature is that it has been designed as a Git extension

that permits tracking large binary files seamlessly in Git. It

works similarly to ordinary Git solutions allowing users to add,

commit, push, fetch and checkout file modifications, but instead

of storing binary files in Git it replaces them with a text pointer

to an external resource that hosts the actual file. When a file is

tracked it is managed as a single object thus any modification of

the file creates a new copy of the entire object in the storage.

For this reason, its drawback is that storage size is proportional

to the commits regardless of the size of the modification. Also,

it is not possible to get meaningful diffs between versions but

only get acknowledged that files are, or not, bitwise identical.

Data Version Control (DVC) - As discussed by Peuster et al.

(2019) Data Version Control (DVC) is a software specifically

implemented to facilitate management of Machine Learning

models and data in Git fashion, using external storages to store

binary files and Git as a reference. According to the DVC online

documentation (https://dvc.org/doc/user-guide) DVC differs

from Git-LFS mainly because it doesn’t require specific servers

but can use any cloud storage solution. Not much can be found

on the mechanism for data versioning on the project

documentation, but thanks to an answer from the co-founder of

DVC on stack overflow (Shcheklein, 2020) we know that files

are tracked as single objects and replicated in case of any part

modification.

Lake FS - It is yet another version control system based on the

Git approach that allows managing files stored in cloud

storages. Like DVC its primary objective is to record Machine

Learning models with its associated training dataset. Lake FS

permits to branch, commit and merge data which could scale to

petabytes allowing to manage data across different cloud

storages. It can also revert changes in data. According to Park et

al. (2008) it has been created specifically to improve

performance on scalable systems.

Pachyderm - It is an open-source platform for managing data

pipelines and the associated input/output data. It manages data

versioning and lineage by using a combination of technologies:

it leverages Git to manage version control using distributed file

systems like Hadoop or S3 to store large datasets in addition to

databases or key-value stores to record information on how data

is generated, transformed, and consumed within the system.

When data are committed file hash is produced and file

recorded in data storage. When changes are committed it

records the variations between the previous version and the new

version so that any particular state of data can be then identified

by commits (Novella et al., 2019). The usage of docker allows

to encapsulate processing and create portable, re-producible

data pipelines.

Kart (https://docs.kartproject.org) - Kart is a distributed version-

control built on Git specifically implemented for handling

geospatial and tabular data. No scientific papers could be found

on the software, but according to its documentation it supports

different geospatial data types including raster, point cloud and

vector datasets. In case of rasters or point-could due to the size

of the data Kart uses Git LFS. Specific datasets are stored using

defined data formats and folder structures in git, so for example

rasters are stored as GeoTIFF in the folder .raster-dataset.v1 and

point clouds are stored as LAZ files in the folder .point-cloud-

dataset.v1 (using Git LFS), both have a nested structure with

two folders: meta for the metadata and title with the actual data

(stored in Git). Similarly, for vector and table data type Kart

uses a .table-dataset folder with meta and feature subfolders

storing all the information in Git. Vectors/tables data are stored

as a single file per feature/row therefore modifications are

versioned at row levels which permit, by using the metadata, to

reconstruct a dataset at a specific commit.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-87-2025 | © Author(s) 2025. CC BY 4.0 License.

91

4.3 Data versioning of Log-Structured Tables

Modern columnar data formats like Apache Parquet (Vohra and

Vohra, 2016) and ORC (Liu et al., 2023) due to their

characteristics of being optimized for storage and retrieval, they

became very popular (Cloud Native formats). Nevertheless,

their characteristics of being immutable pose a limitation in

their adoption in all the cases where frequent updates are

required. To overcome this issue, while keeping the benefit of

those formats, the Log-Structured Tables (LSTs) solution has

been implemented. It adds on top of the immutable columnar

data formats a metadata layer that records the versioning of

tables and parameters to enable the interaction through the

processing engine (Camacho-Rodríguez et al., 2023). This

solution is shifting the paradigm of data storage due to its

capability of offering ACID transactions and supporting

frequent table modification by creating a new immutable

columnar file containing the changes. Additionally, it makes use

of distributed cloud storage systems, and therefore with respect

to traditional data warehouses, is simple and fast to scale.

Nevertheless, if modifications are frequent, the metadata overly

may slow down the process of data querying and retrieval. To

overcome this issue several approaches have been adopted by

different solutions. Popular LST solutions are herein reported.

Delta Lake - Delta Lake makes use of a transaction log along

with Apache Parquet files to offer ACID properties over cloud

object storages so that consistency and reliability are offered. It

has been used to store Online Transaction Processing (OLTP)

data, time series and logs. For querying data a fast query engine

for lakehouse systems like Photon (Behm and Palkar, 2022) can

be used for the integration of SQL operation.

Apache iceberg - Apache Iceberg is a LSTs format that has been

designed for high performance and that connects with engines

like Spark, Trino, Flink, Presto and object storages. This

combined solution supports full SQL, schema evolution, time

travel and optimization. It adds metadata layers to the existing

files and exposes them as iceberg tables to the engines while

maintaining traditional database features like ACID transaction

and time travel. Every table change requires that the associated

metadata file is replaced by a new one. The format requires that

the data are immutable (not changed or moved after they are

written), the files support seek and can be deleted or, if

maintained, marked as deleted so that the capability of time

travel is exposed. A specification for adding geometric data type

in Apache Iceberg following the ISO-19107 standard and the

OGC-Simple Feature Access specification has been presented

(Badard, no date). The latest software release of 28th April 2025

(v1.9.0) added the geometry and geography type support with

optional spatial statistics like bounding box calculation.

Apache Hudi - Apache Hudi (Hadoop Upserts Deleted

Incrementals), like Apache Iceberg was created to support large

data storage in distributed systems. It stores tables in folders and

subfolders which comprise file groups sliced in partitions which

ultimately contain data in parquet format. Depending on the

configuration, changes on tables can be managed with the copy-

on-write or merge-on-read: the first creates a copy of the

parquet file on any changes and is optimized for read-intensive

cases, the second store the updates in delta files that are then

merged when the data are requested and is indicated for write-

intensive situations (Hellman, 2023).

5. Discussion on Research Challenges and Opportunities

OGC open standards have been widely adopted in the geospatial

domain to build Spatial Data Infrastructures (SDIs) that provide

access to vast quantities of interoperable geospatial data. These

infrastructures have enabled researchers across diverse scientific

disciplines to consume and integrate geospatial datasets in their

studies, supporting the principles of FAIR data (i.e. making data

Findable, Accessible, Interoperable, and Reusable). However,

while these standards and services offer robust capabilities for

data discovery and access, they lack in supporting a

fundamental requirement of Open Science: reproducibility.

To ensure reproducibility, researchers often need to rely on

external archive services that duplicate the datasets used during

experimentation. When combined with the computational

environment, code, and metadata, these immutable snapshots

guarantee that a study can be replicated. However, this

duplication introduces significant challenges. Research face

increased costs associated with storing data in managed FAIR

repositories that provide long-term preservation, backups, and

service availability. Limitations arise when attempting to

archive large datasets, and burdens are introduced by the pre-

processing and efforts to prepare datasets for reproducibility.

These challenges are exacerbated by the increasing volume and

velocity of geospatial data. Advances in sensing technologies

and the widespread deployment of IoT and remote sensing

platforms have led to high-frequency, transactional data

streams. In such dynamic contexts, duplicating datasets for each

experiment becomes inefficient, costly, and often impractical.

Moreover, static snapshots quickly become outdated, diverging

from their live, continuously updated counterparts, which may

compromise the relevance or accuracy of derived scientific

results. Persistent identifiers like DOIs, while effective for static

resources, are ill-suited for referencing evolving datasets.

Although version numbers are common in software

development to track changes, they are often unintuitive and

difficult to use for meaningful data exploration or temporal

analysis. To address this, SQL have introduced support for

system-time queries, which enable users to access datasets as

they existed at a specific point in time, or to explore how values

have changed over defined intervals. Unlike version numbers,

system-time attributes provide a more user-friendly and

semantically meaningful approach to tracking data evolution.

Despite the potential of this model, current OGC web services

only support business-time properties (i.e., user-defined

timestamps related to data content) and lack system-time

capabilities, which capture the actual time of data storage and

modification. This gap significantly hinders the reproducibility

of research that depends on interoperable web services.

From a technological standpoint, various data versioning

solutions exist, but they vary in approach and supported data

formats. Traditional data warehouses offer limited support for

temporal SQL. PostgreSQL, for instance, which is a widely

used in geospatial contexts due to the PostGIS extension, does

not natively support system-time tables. For file-based datasets,

Git and Git-like systems allow version control and embed

valuable metadata (e.g., commit messages, authorship), but they

lack transactional guarantees and can introduce consistency

issues in collaborative environments with concurrent access.

Emerging solutions such as Lakehouse Storage Technologies

(LSTs) address these limitations by combining ACID-compliant

transactions with high-performance, column-oriented storage

formats tailored for large-scale tabular data. These platforms

offer "travel-time" queries that enable users to retrieve previous

versions of data efficiently. However, they currently offer

limited support for geospatial formats and indexing, which

limits their applicability in the geospatial domain. The current

state of the art indicates a clear and growing need for system-

time support within the OGC standards ecosystem to

accommodate reproducible research workflows based on

dynamic datasets. While it has been formalized in SQL standard

and implemented in modern data architectures, they are not yet

widely integrated into mainstream open-source geospatial tools,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-87-2025 | © Author(s) 2025. CC BY 4.0 License.

92

such as those supported by the OSGeo community.

Furthermore, integrating Git-like metadata such as author,

timestamp, and change motivation into interoperable

transactional operations and data versioning systems would

enhance not only reproducibility but also data lineage analysis.

This would enable researchers to understand the provenance,

ownership, and evolution of datasets, fostering transparency and

strengthening the credibility of scientific results. In summary,

addressing the reproducibility challenges in geospatial research

requires a concerted effort to:

1. Integrate system-time capabilities into OGC web

service standards, enabling users to reference and

retrieve datasets as they existed at specific points in

time (Persistent URL).

2. Extend emerging versioned data platforms (e.g.,

LSTs) to support geospatial data formats and

indexing.

3. Promote metadata-rich versioning approaches that

capture both technical and human elements of data

changes, supporting Open Science principles.

4. Facilitate adoption within existing open-source

ecosystems, minimizing the barrier to entry for

research institutions and public bodies.

These efforts present a significant opportunity to align

geospatial data infrastructures with the evolving needs of Open

Science and reproducible research, ensuring that future

geospatial analyses are not only FAIR but also credible,

transparent, and verifiable.

Acknowledgements

This work was supported by swissuniversities, Programme

Open Science: Measure A1, project "OSIReS".

References

Badard, T., no date. GeoIceberg specification. (online:

https://geoiceberg.org/).

Behm, A., Palkar, S., 2022. Photon: A High-Performance Query

Engine for the Lakehouse, CIDR. (online: http://cidrdb.

org/cidr2022/papers/a100-behm.pdf).

Blanc, N., Cannata, M., Collombin, M., Ertz, O., Giuliani, G.,

Ingensand, J., 2022. OGC API state of play – a practical testbed

for the national spatial data infrastructure in switzerland, ISPRS-

archives, doi: 10.5194/isprs-archives-XLVIII-4-W1-2022-59-

2022.

Camacho-Rodríguez, J. et al., 2023. LST-Bench: Benchmarking

Log-Structured Tables in the Cloud, arXiv. (online:

http://arxiv.org/abs/2305.01120).

Cannata, M., et al.,2019. Performance Testing of istSOS under

High Load Scenarios, ISPRS International Journal of Geo-

Information, Multidisciplinary Digital Publishing Institute, 8,

11, 467. doi: 10.3390/ijgi8110467.

Cerutti, V et al., 2021. Improving the reproducibility of

geospatial scientific workflows: the use of geosocial media in

facilitating disaster response, Journal of Spatial Science, Taylor

& Francis, 66, 3, 383–400. doi:

10.1080/14498596.2019.1654944.

Chiodi, P., 2023. Temporal Tables, NearForm. (online:

https://github.com/nearform/temporal_tables).

Deshpande, K., 2004. Oracle9i: Understanding Automatic Undo

Management and Flashback Query, SELECT Journal,

Independent Oracle Users Group, 11, 4, 22–30.

Dwyer, J. L et al., 2018. Analysis Ready Data: Enabling

Analysis of the Landsat Archive, Remote Sensing, 10, 9, 1363.

doi: 10.3390/rs10091363.

European Commission, no date. Facts and Figures for open

research data, Researhc and Innovation. (online).

Fearing, V., 2023. Periods and system versioning for

PostgreSQL. (https://github.com/xocolatl/periods).

Ferreira, K. R., Queiroz et al., 2020. Earth Observation Data

Cubes for Brazil: Requirements, Methodology and Products,

Remote Sensing, 12, 24, 4033. doi: 10.3390/rs12244033.

Giuliani, G. et al., 2021. SwissEnvEO: A FAIR National

Environmental Data Repository for Earth Observation Open

Science, Data Science Journal, 20, 22–22. doi: 10.5334/dsj-

2021-022.

Giuliani, G et al., 2017. Building an Earth Observations Data

Cube, Big Earth Data, 1, 1–2, 100–117. doi:

10.1080/20964471.2017.1398903.

Giuliani, G et al., 2019. Paving the Way to Increased

Interoperability of Earth Observations Data Cubes, Data, 4, 3,

113. doi: 10.3390/data4030113.

Gregg, C., 2023. Familiar with Oracle Flashback Time Travel?

(online: https://blogs.oracle.com/dbstorage/post/familiar-with-

oracle-flashback-time-travel-if-not-keep-reading).

Groth, P., Moreau, L., 2013. PROV-overview, W3C Working

Group Note, 1135, 881–906.

Hellman, F., 2023. Study and Comparsion of Data Lakehouse

Systems. (https://www.doria.fi).

Huang, S et al., 2020. Orpheus db: bolt-on versioning for

relational databases, VLDB Journal, Springer, 29, 1, 509–538.

Jungwirth, P. A., 2019. Temporal Databases: Theory And

Postgres, PGCon2019, (https://github.com/pjungwir/postgres-

temporal-talk/blob/master/slides.pdf).

Kandpal, N et al., 2023. Git-Theta: A Git Extension for

Collaborative Development of Machine Learning Models,

(online: http://arxiv.org/abs/2306.04529).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-87-2025 | © Author(s) 2025. CC BY 4.0 License.

93

Kedron, P et al., 2021. Reproducibility and replicability:

opportunities and challenges for geospatial research, IJGIS,

Taylor & Francis, 35, 3, 427–445.

Kimball, R., 2008. Slowly changing dimensions, Information

Management, SourceMedia, 18, 9, 29.

Kirchhoff, M., Geihs, K., 2013. Semantic description of OData

services, in, Proceedings of the 5th Workshop on SWIM, NY,

USA, ACM, pp. 1–8. doi: 10.1145/2484712.2484714.

KNIME, no date. KNIME Analytics Platform, KNIME. (online:

https://www.knime.com/knime-analytics-platform).

Konkol, M., Kray, C., 2019. In-depth examination of

spatiotemporal figures in open reproducible research,

Cartography and GI Science, Taylor & Francis, 46, 5, 412–427

Krishnamurthi, R et al., 2020. An Overview of IoT Sensor Data

Processing, Fusion, and Analysis Techniques, Sensors, MDPI,

20, 21, 6076. doi: 10.3390/s20216076.

Kulkarni, K., Michels, J.-E., 2012. Temporal features in

SQL:2011, ACM SIGMOD Record, 41, 3, 34–43.

Lankester, T. H., 2009. OpenGIS Web Map Services-Profile for

EO Products, Version: 0.3. 3., OGC.

Lewis, A. et al., 2017. The Australian Geoscience Data Cube —

Foundations and lessons learned, Remote Sensing of

Environment, 202, 276–292. doi: 10.1016/j.rse.2017.03.015.

Liu, C. et al., 2023. A Deep Dive into Common Open Formats

for AnalyticalDBMSs, VLDB, doi: 10.14778/3611479.3611507.

Low, Y. et al., 2023. Git is for data, in, Conference on

Innovative Data Systems Research.

MariaDB, System-Versioned Tables, MariaDB KnowledgeBase.

(https://mariadb.com/kb/en/system-versioned-tables/).

Martini, A. et al., 2019. Database-Supported Change Analysis

And Quality Evaluation Of Openstreetmap Data, ISPRS Annals,

Volume IV-2/W5, Copernicus GmbH, IV-2-W5, 535–541.

Mathis, C., 2017. Data Lakes, Datenbank-Spektrum, 17, 3, 289–

293. doi: 10.1007/s13222-017-0272-7.

Merodio Gómez, P. et al., 2019. The Americas’ Spatial Data

Infrastructure, ISPRS Int. Journal of Geo-Information, MDPI, 8,

10, 432. doi: 10.3390/ijgi8100432.

Mocnik, F.-B. et al., 2018. Open source data mining

infrastructure for exploring and analysing OpenStreetMap,

Open Geospatial Data, Software and Standards, 3. doi:

10.1186/s40965-018-0047-6.

Novella, J. A. et al.,, 2019. Container-based bioinformatics with

Pachyderm, Bioinformatics, 35, 5, 839–846. doi:

10.1093/bioinformatics/bty699.

Nüst, D., Pebesma, E., 2021. Practical Reproducibility in

Geography and Geosciences, Annals of the AAG, Taylor &

Francis, 111, 5, 1300–1310

Park, K.-T. et al., 2008. Lake: Towards Highly Manageable

Cluster Storage for Extremely Scalable Services, in, ICCSA, pp.

122–131. doi: 10.1109/ICCSA.2008.37.

Peuster, M. et al., 2019. The Softwarised Network Data Zoo,

arXiv. (online: http://arxiv.org/abs/1905.04962).

Pozzoni, M. et al., 2020. Retrospective and prospective of

hydro-met monitoring system in the Canton Ticino,

Switzerland, HSJ, Taylor & Francis, 0, 0, 1–15. doi:

10.1080/02626667.2020.1760280.

Ramachandran, R., Bugbee, K., Murphy, K., 2021. From Open

Data to Open Science, Earth and Space Science, 8, 5,

e2020EA001562. doi: 10.1029/2020EA001562.

rwestMSFT, 2023. Create a system-versioned temporal table -

SQL Server. (https://learn.microsoft.com).

Saracco, C. M. et al, 2010. A matter of time: Temporal data

management in DB2 for z, IBM Corporation, New York, 7.

Sehn, T., 2022. When to make a Dolt Commit | DoltHub Blog.

(https://dolthub.com/blog/2022-09-28-when-to-dolt-commit/).

Shcheklein, 2020. Answer to ‘By how much can i approx.

reduce disk volume by using dvc?’, Stack Overflow. (online:

https://stackoverflow.com/a/60366262).

Soroush, E., Balazinska, M., 2013. Time travel in a scientific

array database, in, 2013 IEEE 29th ICDE pp. 98–109. doi:

10.1109/ICDE.2013.6544817.

STAC Contributors, 2024. SpatioTemporal Asset Catalog

(STAC) specification. (online: https://stacspec.org).

Strigaro, D. et al, 2022. Open and Cost-Effective Digital

Ecosystem for Lake Water Quality Monitoring, Sensors, 22, 17,

6684. doi: 10.3390/s22176684.

Vohra, D., Vohra, D., 2016. Apache parquet, Practical Hadoop

Ecosystem: A Definitive Guide to Hadoop-Related Frameworks

and Tools, Springer, 325–335.

Wang, C. et al, 2008. Importance-Driven Time-Varying Data

Visualization, IEEE Transactions on VCG, 14, 6, 1547–1554.

doi: 10.1109/TVCG.2008.140.

Yin, D. et al, 2019. CyberGIS-Jupyter for reproducible and

scalable geospatial analytics, Concurrency and Computation:

Practice and Experience, 31, 11, e5040. doi: 10.1002/cpe.5040.

Zahumenskỳ, I., 2004. Guidelines on quality control procedures

for data from automatic weather stations, World Meteorological

Organization, Switzerland, 955, 2–6.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-87-2025 | © Author(s) 2025. CC BY 4.0 License.

94

