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Abstract 

 

Modern research applies the Open Science approach that fosters the production and sharing of Open Data according to the FAIR 

(Findable, Accessible, Interoperable, Reusable) principles. In the geospatial context this is generally achieved through the setup of 

OGC Web services that implements open standards that satisfies the FAIR requirements. Nevertheless, the requirement of Findability 

is not fully satisfied by those services since there’s no use of persistent identifiers and no guarantee that the same dataset used for a 

study can be immutably accessed in a later period: a fact that hinders the replicability of research. This is particularly true in recent 

years where data-driven research and technological advances have boosted frequent updates of datasets. Here, we review needs and 

practices, supported by some real case examples, on frequent data or metadata updates in geo-datasets of different data types. 

Additionally, we assess the currently available tools that support data versioning for databases, files and log-structured tables. 

Finally, we discuss challenges and opportunities to enable geospatial web services that are fully FAIR: a fact that would provide, due 

to the massive use and increasing availability of geospatial data, a great push toward open science compliance with ultimately 

impacts on the science transparency and credibility. 

 

 

1. Introduction 

This article discusses the reproducibility of research that have 

been based on datasets offered by interoperable open geospatial 

Web services and that are subject of frequent modifications. We 

explore the current context and a few cases of frequent data 

changes of different geospatial data types and discuss some 

available technological solutions to support data versioning. The 

emphasis of this paper is on challenges and needs of practical 

solutions. 

 

1.1 Open Science, Research Data, and Geospatial Services 

Open Science represents a transformative approach to research, 

enabled by digital technologies and a collaborative ethos. It 

promotes the open sharing of data, information, and knowledge 

across the scientific community and society at large to 

accelerate discovery and understanding (Ramachandran, 2021). 

The core objectives of Open Science are to improve access to 

knowledge, enhance the efficiency of sharing research outputs, 

and evolve impact evaluation through new metrics. 

At the heart of this paradigm is Open Research Data (ORD), 

which refers to data underlying scientific results that are freely 

accessible and reusable. ORD reduces duplication, supports 

interdisciplinary collaboration, and fosters innovation. To be 

effectively reused, data must comply with the FAIR principles 

(Findable, Accessible, Interoperable, Reusable), which has 

driven the creation of repositories like Zenodo, PANGAEA, 

ARCHE, and the UK Data Archive, indexed by platforms such 

as re3data. These services typically support persistent identifiers 

(DOIs), open licensing, standard metadata, and open file 

formats (e.g., CSV, JSON). 

However, most repositories handle static datasets. To support 

advanced applications such as machine learning or big data 

analytics, there's a growing need for Analysis Ready Data 

(ARD) and platforms capable of regular data delivery and 

preprocessing. This demand aligns with the European Data 

Spaces initiative, which envisions secure and interoperable 

environments for data sharing across domains; integrating legal, 

ethical, and technical safeguards to drive innovation and digital 

transformation. 

In the geospatial domain, data sharing has been facilitated 

through Spatial Data Infrastructures (SDIs) at multiple 

governance levels. These infrastructures are built on 

interoperable standards promoted by the Open Geospatial 

Consortium (OGC), which enables thousands of applications to 

access and integrate geospatial content globally. Traditionally, 

this was done through OGC Web Services (e.g., WMS, WFS, 

WCS), using XML and SOAP protocols. 

In recent years, a new generation of standards, OGC APIs, has 

emerged, reflecting modern web development practices. 

Developed in collaboration with the World Wide Web 

Consortium (W3C), OGC APIs are RESTful, use JSON (or 

JSON-LD for linked data), support OpenAPI documentation, 

and are designed as modular "Building Blocks" to be flexibly 

combined. These standards simplify integration with non-

geospatial systems, enhance search engine indexing, and better 

support Web-native data sharing—making geospatial data more 

accessible and actionable within broader open science and data 

space ecosystems. 

Together, the evolution of ORD and interoperable geospatial 

services illustrates a shift toward open, machine-actionable, and 

integrated digital research environments—enabling new forms 

of collaboration, insight, and impact. 
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1.2 Time Varying Data 

The technological growth in the last decades led to the 

explosive increment of time-varying data which dynamically 

change to represent phenomena that grows, persists and decline 

(Wang et al., 2008), or that constantly vary due to data curation 

processes that periodically insert, update, or delete information 

related to data and metadata. As discussed by Saracco (2010), 

dealing with dynamic data has consistently played a pivotal role 

in facilitating a wide range of analyses, such as examining 

changes in client accounts for financial institution audits, 

assessing the clinical progression of patients for legal 

proceedings, evaluating insurance policy terms at the time of 

accidents, identifying disparities in travel itineraries involving 

car and hotel reservations, and adjusting interest rates for banks 

upon detecting errors. In addressing such cases Saracco 

identifies two different concepts of time: system-time and 

business-time. While business-time can be defined as the 

instant/period for which the data is meant to be used (often 

referred to as “valid-time” or “application-time”), system-time 

relates to the data state as stored in a specific instant/period 

(often also referred to as "transaction-time"). So, for example, in 

the case of an application tracking the position of a delivery 

track and the corresponding air temperature the system would 

record the coordinates and the air degrees Celsius. After a 

month, if the track undergoes a revision in which the 

temperature sensor was found to have a bias of 0.002 degrees 

and the raw GPS data were manually collected and reprocessed 

for improved position accuracy, data would be updated 

accordingly. Answering the questions “where was the track on 

August 30 at 11:30? What is the average temperature in May on 

London Street? What is the distance covered by the track in 

2023?” requires the usage of the business-time. Answering 

questions “Which data did we use to compile the delivery report 

on August 25 at 17:15?  How did the position of the track 

change after GPS data processing?” requires the usage of 

system-time. From a logical perspective business-time is 

characterized to be maintained by the user, future dates and 

times may make complete sense, its resolution (day, month, 

microseconds, etc.) is decided by the application. On the 

contrary, system-time is managed automatically, future dates 

are not permitted, and its resolution must be the finest possible. 

 

2. Reproducibility in the Geospatial Sector 

Based on the current trends and data availability, the ability to 

link Open Science concepts with interoperability and time-

varying data management is paramount. In particular, the 

capability of obtaining results consistent with a prior study 

using the same materials, procedures, and conditions of analyses 

is very important since it increases scientific transparency, 

fosters a better understanding of the study, produces an 

increased impact of the research and ultimately reinforces the 

credibility of science (Konkol and Kray, 2019, Kedron et al., 

2021). In the Open Science paradigm this is indicated as 

Reproducible Research, and it can be guaranteed only if the 

same source code, dataset, and configuration used in the study is 

available. For geospatial data, while the presented OGC 

standards enable an almost FAIR (Giuliani et al., 2021) and 

modern data sharing, they do not adequately support the 

reproducibility concept as pursued in Open Science. In other 

words, they do not offer any guarantee that the geodata accessed 

in a given instant can be persistently accessed, immutably, in 

the future. In fact, while business-time is considered in several 

aspects and standards like Part 3 from OGC API - Features 

including temporal filtering, Sensor Observation Service or 

OGC API Moving Features, at the best knowledge of the 

authors, none of them support the system-time. Releasing 

different dataset versions (e.g. storing exported datasets in FAIR 

repositories or offering a layer referencing a fixed time instant) 

can be a solution. Nevertheless, in many cases, where data (and 

metadata) are frequently updated and datasets have large size, 

this is not efficient nor applicable. Additionally, this approach 

may hinder the seamless capacity of analyses of data variations.  

This is confirmed by Nüst and Pebesma (2021) that produced a 

comprehensive summary of the state of the art in reproducible 

research within the geospatial domain. In the manuscript they 

recognize that only a small body of work on reproducibility in 

the geospatial domain was available. They underlined that 

reproducibility might be achieved only when physical, logical 

and cultural components are available and identified that the 

main challenge is the general poor knowledge of reproducibility 

practices by researchers. Other barriers that they highlighted 

were related to: (1) the utilization of proprietary software which 

is often subject to licensing restrictions prevents reproduction; 

(2) the multitude of tools frequently employed in a single 

geospatial research project poses a challenge to replicability; (3) 

the reliance on geospatial infrastructure that depends on online 

services can lead to obstacles in accessing the original dataset 

due to potential changes; (4) analysing extensive datasets is 

often executed in proximity to the data source using online 

services, which would necessitate open accessibility to the 

server implementations; (5) while free platforms provide 

scripting capabilities for data processing, the environment may 

change and not ensure reproducibility. 

Cerutti et al. (2021) in their study, which replicated and 

compared three studies conducted on disaster response using 

different geospatial algorithms, proposed the use of an analytics 

platform (KNIME, no date) which includes geospatial functions 

to create scientific workflows and enhance reproducibility. 

Similarly, registering the analysis workflow in computational 

notebooks enables the ordered re-execution of processing steps: 

this approach has been adopted for example by the GRASS GIS 

community (GRASS GIS Jupyter notebooks) and ESRI 

(ArcGIS notebooks). Nevertheless, the reproducibility of 

workflows does not guarantee that the code is executed using 

the same data and environment used during the study. For this 

reason, Yin et al. (2019) presented a cloud-based solution, 

named CyberGIS-Jupyter, that combines Jupyter notebook with 

docker technology to support computational reproducibility and 

scalability of geospatial analyses. While Jupyter notebook 

guarantees the reproducibility of the workflow, the docker 

technology permits to reproduce the environment, with exactly 

the same software and libraries versions, where the geospatial 

processes were executed. Kedron et al. (2021) highlighted in his 

review that even if the computational reproducibility is 

guaranteed, it does not include itself two essential components 

for the full reproducibility of research: the record of task 

coordination and of conceptual decision-making. For this 

reason, research notebooks and software like the Open Science 

Framework have been used to capture research provenance 

(steps and decision criteria) in addition to processing workflow 

including approaches and pre-analysis plans. The reported 

approaches present solutions that contribute to solving several 

reproducibility challenges, nevertheless they do not address the 

issue of accessing the original dataset when online services 

from a geospatial infrastructure are at the base of a study.  

With the aim of understanding how system-time, and 

reproducibility as a consequence, could be addressed and 

managed in geospatial data services, this work aims at 

identifying the requirements, challenges and opportunities by 

reviewing:  

1. how the geospatial domain is addressing 

reproducibility,  
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2. how updates of time varying spatial data happens in 

real case applications, and  

3. which technological solutions exists to manage 

system-time for big-data spatio-temporal datasets.  

 

It may be worth mentioning that the OGC issued a Call for 

participation for the Open Science Persistent Demonstrator 

(OSPD) Initiative. Although important for the replicability of 

science, this initiative focuses on platforms and workflows to 

demonstrate how a federation of OGC based services can offer 

FAIR Open Data in support of Open Research making use of 

the PROV-O (Groth and Moreau, 2013) provenance data model. 

In fact, while PROV-O provides an effective ontology to 

register and replicate processing chains to the best knowledge of 

the writers, there is currently no interoperable standard 

application that supports persistent retrieval of time-varying 

data from dynamic web services. In practice, PROV-O serves as 

a descriptive framework for provenance metadata, but it does 

not provide queryable interfaces or retrieval mechanisms for 

historical data states. The remainder of the paper presents the 

results of the literature review for each of these three aspects 

and finally presents a discussion highlighting possible solutions 

and approaches to be investigated in the future. 

 

3. Updates And Changes of Time Varying Geospatial Data  

In this section we evaluated the needs and practices supported 

by some real case examples related to common operations that 

update data or metadata of the different geospatial data types, 

specifically sensor observations, vector datasets and raster 

series. 

 

3.1 Updates and Changes of Sensor Observations 

In the geospatial domain, sensor observations are mainly 

addressed by two standard web services specifications from the 

OGC: the Sensor Observation Service (SOS) and the Sensor 

Things API (STA). While SOS is based on the SOAP and data 

are encoded in XML the STA is based on the use of RESTful 

services following the OData's specification (Kirchhoff and 

Geihs, 2013) and data are encoded in JSON format. Both 

specifications offer access to sensor data and metadata along 

with transactional capabilities. Apart from some specific 

differences in the data model (Blanc et al., 2022) and requests 

the two standards can be considered conceptually comparable.  

Based on the previously reported challenges of reproducibility 

in the geospatial sector these standards are exposed to potential 

changes of datasets in time, in fact an authorized user can 

change data using the offered transactional features. Best 

practices followed to serve ARD from sensor networks very 

often include post-processing (after the original acquisition 

from the sensor) to reduce uncertainties in further analyses 

which produce knowledge and wisdom. As discussed by 

Krishnamurthi et al. (2020) these processing include: (i) 

denoising to eliminate most of the noise signals in data, (ii) 

missing data imputation to deal with incomplete data that are 

not supported by several analyses techniques (e.g. ML models), 

(iii) data outlier detection to identify data which has been 

incorrectly sensed due to external unpredictable factors, (iv) 

data aggregation of heterogeneous observations (difference in 

time and property) to reduce data transmission size and 

complexity. Additionally, after the processing phase data may 

require (v) data fusion which integrates multiple data sources to 

improve accuracy. At this point data are available for analyses.  

Strigaro et al. (2022) described a system collecting high 

frequency data of ecological and physical parameters from 

buoys that are located in lakes with the scope of monitoring and 

assessing lake ecosystem quality using WMO guidelines on 

quality control procedures (Zahumenskỳ, 2004). Reported cases 

of time series data management shows that data preprocessing 

and quality assurance procedures modify data and metadata 

values as a consequence of real-time analyses or post-

processing elaborations or lately manual correction. It is 

particularly interesting that the WMO in its climate data 

management system specification includes as a required policy 

the “ability to reproduce specific data that were held in the 

climate database at a particular point in time”. To better 

understand the entity of these changes in a real case study we 

have analyzed the transactional operations that have been 

executed on the hydro-met monitoring system in the Canton 

Ticino (2020) managed using the istSOS software (Cannata et 

al., 2019). The datasets, at the time of writing, include 

observations ranging from the 1978 to the 2023 and related to 

298 sensors observing different properties related to rivers and 

meteorology. From 2015, year of the activation of a 

transactional log features offered by istSOS and that permits to 

register transactional operations executed on the service, we can 

note that out of 117Mio observations there have been 15Mio 

updates of single observation data or metadata, value, which, 

not considering multiple updates for the same values, 

correspond to about the 13% of the data. Percentage that 

reaches 23%, if we consider only the measures related to river 

height and precipitation, which are the measures that actually 

undergo a systematic quality control process (6Mio out of 

26Mio observations). These percentages highlight how 

important it could be to access specific dataset status in time. 

Additionally, since every year an annual hydrobook is produced 

in the following year, data undergo a specific process of re-

analyses where, for example, stage-discharge relationship 

curves are updated or data gap filled, and the entire previous 

year aggregated data is re-calculated. As an example, in October 

2023 hydrologists requested to re-calculates the daily 

aggregated data for all the discharge stations for the entire 2022, 

for a specific station for the entire 2021 and for another station 

for one week due to configuration changes. 

 

3.2 Updates and Changes of Features 

Vector layers which vary in time due to continuous data 

additions and updates are generally managed with database or 

file sources and are very often offered by means of standard 

OGC WMS or WFS and more recently via the OGC API 

Feature. As an example of geospatial datasets undergoing a 

continuous update, we can cite the cadastral data and the water 

protection zones. They are continuously updated to reflect 

changes that occur on land ownership or water policies. In 

particular, the groundwater protection zones identify different 

areas centered around groundwater collections or recharge 

plants. When new wells are established and/or new 

hydrogeological studies are conducted new protection zones are 

inserted or existing ones are edited and published as WMS on 

the official portal on the cadastre of public-law restrictions on 

land ownership of Canton Ticino (https://crdpp.geo.ti.ch/). Here 

the current situation is duly represented but there is no option to 

navigate and check how restrictions were represented in the 

past, which may be very relevant in case of disputes. Similarly, 

the cadastre of Canton Ticino is publicly available as WFS 

service (https://wfs.geo.ti.ch). This is the current version and 

while we can find in the attributes the date a feature entered in 

law, it does not offer any option to navigate in time the 

evolution of properties map.  

A very popular geospatial vector dataset that is continuously 

updated is the OpenStreetMap (OSM). It is a crowdsourced 

geographic dataset with more than 10 million registered users. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W13-2025 
FOSS4G (Free and Open Source Software for Geospatial) Europe 2025 – Academic Track, 14–20 July 2025, Mostar, Bosnia-Herzegovina

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W13-2025-87-2025 | © Author(s) 2025. CC BY 4.0 License.

 
89



OSM maintains timestamped historic changesets that are a 

group of modifications set by a single user in a short period. It 

is possible to access weekly snapshots and changesets of the full 

dataset or the full history by downloading them in XML or 

Planet PBF files (https://planet.openstreetmap.org/). To analyze 

the creation process of OSM data, some software were 

implemented by the are limited to examine and view a small 

portion of the database (Mocnik et al., 2018). Martini et al. 

(2019) presented a methodology for analysis of changes in 

OSM. In this paper the authors analyzed the changed objects in 

the city area of Karlsruhe, Germany. The produced maps show 

areas with up to 2 thousand new objects per year and up to 13 

thousand objects updates per year. These numbers and the full 

history file with its size of more than 200 Gb provide an order 

of magnitude of the high variability of the data in time due to 

new features, deletion or modification of either geometric or 

semantic information. 

 

3.3 Updates and Changes of Rasters 

Concerning raster data, the principal source of data is 

represented by satellite Earth Observations (EO) data. Indeed 

planet Earth is under continuous observation from many 

different types of satellites produce a continuous and increasing 

stream of observations from space. Among the different benefits 

of using satellite imagery for environmental monitoring, 

Merodio Gómez et al. (2019) listed (1) Temporal resolution: 

capacity to capture data at different frequency of revisit; and (2) 

Time-series: capacity to provide continuous data starting as 

early as 1972 (e.g., Landsat) as two important aspects. 

To tackle the big data challenges related to EO data handling, 

the emergence of EO Data Cubes allowed to efficiently and 

effectively manage and analyze large amounts of EO data 

(Giuliani et al., 2017, Lewis et al., 2017), enabling spatio-

temporal analysis of Analysis Ready Data (ARD) (Dwyer et al., 

2018). However, interoperability of Data Cubes is still a 

challenge, different existing and emerging standards can help 

deliver and leverage the power of EO data building, efficient 

discovery, access and processing services (Giuliani et al., 2019). 

OGC WMS and WCS are common standards that already have 

demonstrated their ability to handle satellites for visualization 

and download purposes. While both standards have a time 

parameter that can be used to extract a specific time-slice, it 

remains limited to that single operation. It cannot do operations 

on a time interval or nearest values. Another restriction, related 

to the semantic of the time parameter, is ambiguous that could 

refer to acquisition - processing or publication time. The OGC 

WMS Earth Observation profile recommends using the time 

parameter only for the acquisition time (Lankester, 2009). 

Giuliani et al. (2019) discuss and demonstrate potential ways to 

properly handle the time dimension on existing OGC standards. 

Among the new standards that have emerged in recent years, the 

Spatio-Temporal Assets Catalog (STAC) (STAC Contributors, 

2024) provides a common structure for describing and 

cataloguing spatio-temporal assets (Ferreira et al., 2020). It 

tackles most of the issues previously mentioned and facilitates 

the creation of flexible spatio-temporal analysis workflows, 

removing the burden of creating specific pipelines for each 

different data collection one consumes. Nevertheless, existing 

and emerging standards are not properly handling backward 

compatibility of raster-based products (e.g., guarantee that I can 

access the data as they were yesterday... not like they are today). 

Indeed, for example in data cubes, if one reprocessed a given 

product (e.g snow cover) or ARD satellite imagery, with an 

improved version of an algorithm, then the only solution for 

versioning them is to create a new data collection with a 

different version number that can then be queried/accessed 

through an OGC-compliant API or Web service. 

 

4. Tools for Data Versioning 

Traditional data management systems typically store only the 

current state of data, making changes irreversible as datasets 

evolve through acquisition (new features) or processing. 

However, reproducible research requires the ability to recreate 

the exact environment and dataset state used in a study. This 

makes data versioning essential, enabling access to historical 

versions of datasets. Many big data applications, particularly in 

Machine Learning (ML), benefit from tracking historical data 

changes, as models are continuously retrained and require 

traceability of both parameters and inputs over time. As data 

production grows, the shift from traditional databases to object 

storage and Data Lakes (Mathis, 2017) is accelerating. 

Consequently, most modern versioning tools focus on object 

storage (dataset-level) rather than database-level version 

control. Several open and collaborative solutions—often 

inspired by Git—now support dataset versioning by tracking 

file changes over time and enabling rollback. These tools 

facilitate transparency, collaboration, and reproducibility, 

aligning with Open Science values. The following sections 

briefly describe key open-source tools supporting different 

versioning approaches. Due to limited formal literature, 

references often include software documentation, websites, 

blogs, and community forums. 

 

4.1 Data Versioning of Databases 

Tracking the historical evolution of records or database version 

control mechanisms are generally based on the definition of a 

Slowly Changing Dimension (SCD) (Kimball, 2008) which is a 

dimension that registers, and permits to manage, the evolution 

in time of values in a database table.  Three types of SDCs exist: 

(i) type 1 stores the latest valid values of a record and that is the 

standard database rule, (ii) type 2 stores all the versions of the 

record registering the period for which that value was active, 

and (iii) type 3 stores the current and previous values only of a 

record. In December 2011, ISO/IEC published an updated 

version of the SQL standard, SQL:2011 (Kulkarni and Michels, 

2012) which introduced the capability of managing temporal 

tables. This includes the support of time period data type which 

can be declared as primary or foreign key and support a number 

of filtering operations (i.e. overlaps, equals, contains, precedes, 

succeeds, immediately precedes, immediately succeeds). A 

period column can have any name except SYS-TEM_TIME, 

which is a reserved name to enable system-time features as SDC 

type 2. Several databases implemented the SQL:2011 

specification as described by Jungwirth (2019). In addition to 

relational databases, Soroush and Balazinska (2013) presented a 

methodology for extending column stores (array databases) with 

versioning. 

MariaDB - In MariaDB you can enable the system-time 

versioning of a table using the syntax “WITH SYSTEM 

VERSIONING” which adds the “ROW_START” and 

“ROW_TO” pseudo-columns that do not appear in SELECT 

statements and are populated automatically. The ROW_START 

is populated with the insertion timestamp while ROW_END 

with an instant far in the future if the record is valid or the 

instant the row has been updated/deleted. Filtering using the 

system-time can be performed using the “AS OF” to extract a 

specific version of the data in a specific instant or the “FROM 

… TO” or “BETWEEN” statements to extract the record as they 

were valid in a provided period. Versioned tables with system-

time can be partitioned so that historical rows and current valid 
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rows are separated, optionally users can set the historical 

partition to be partitioned every n records (MariaDB 

community, no date). 

IBM DB2 - System-time is implemented similarly to MariaDB 

with a few syntax differences, like naming “ROW 

BEGIN/END” instead of START/TO. System-time pseudo-

columns columns are not accessible in SELECT statements and 

filtering does not support BETWEEN statements [59]. 

Oracle - Oracle has its own implementation of historical values 

that do not comply with SQL:2011. It allows you to declare a 

PERIOD but not as a primary key and periods can have null 

values. Oracle Database supports Flashback Time Travel feature 

implementing SDC type 2 that can be configured with a 

retention time on a tablespace or identified tables making it easy 

to undo or query historical stored values (Deshpande, 2004, 

Gregg, 2023). 

MS SQL Server - System-time tables are supported but with non 

fully standard syntax “WITH (  SYSTEM_VERSIONING = 

ON (HISTORY_TABLE = dbo.this))” where historical records 

are saved in an invisible table that can be named and queried as 

any normal table. Filtering supports options like MariaDB 

(rwestMSFT, 2023). 

PostgreSQL - Postgresql does not support system-time. There 

are a few projects implementing such a feature but they are not 

official extensions and are under development. A few GitHub 

repositories implement a solution in Pl/PgSQL (Chiodi, 2023, 

Fearing, 2023). An ex-tension dated 2018 is proposed on the 

PostgreSQL Extension Network website. None are officially 

supported by postgreSQL.  

OrpheusDB - It is a layer installed on top of relational databases 

and expose git-like command (Huang et al., 2020). It stores data 

in tables following the SDC type 2. In OrpheusDB records are 

immutable and are archived in Collaborative Versioned Dataset 

(CVD) recording record id (rid) and version id (vid) with other 

associated metadata like creation time, commit time, committer 

and a commit message. OrpheusDB implements a CLI 

(Command Line Interface) with, among other, checkout and 

commit commands. SQL can be performed on a version with 

the run command that takes the SQL as an input, translates and 

executes it against the database for a specific version. In his 

paper Huang et al. (2020) demonstrated the solution on 

postgreSQL and presented a graphical interface to navigate 

through the version tree. 

Dolt - While not found in scientific literature, Dolt is a MySQL 

git-like database versioning system. According to its 

documentation Dolt treats tables as files and registers 

modifications in a stage area (so called “working set”) which is 

the current database version used when queries are executed. 

When a Dolt commit is performed a new version is persisted so 

that differences between versions, and metadata can be 

explored. It is possible to configure Dolt so that at each SQL 

commit a dolt commit is executed but according to Sehn (2022) 

in this case you lose the capability of annotating commits with 

messages and the complexity of the commit graph get hard to be 

used. Dolt supports branches, diffs and merges. 

 

4.2 Data Versioning of Files 

When data are not structured in relational databases but 

managed in files, changes can be recorded using Git. 

Unfortunately, Git has not been designed to manage large 

datasets, in fact it extracts the list of changes (diffs) from stored 

file snapshots, a fact that limits its performance (Low et al., 

2023). For this reason, some solutions have been implemented 

to overcome this issue and extend Git to support large files. 

Git Large File Storage (Git LFS) - Kandpal (2023) proposed a 

tool for collaborative development of machine learning models, 

based on the Git LFS and described functioning and limitations. 

Its main feature is that it has been designed as a Git extension 

that permits tracking large binary files seamlessly in Git. It 

works similarly to ordinary Git solutions allowing users to add, 

commit, push, fetch and checkout file modifications, but instead 

of storing binary files in Git it replaces them with a text pointer 

to an external resource that hosts the actual file. When a file is 

tracked it is managed as a single object thus any modification of 

the file creates a new copy of the entire object in the storage. 

For this reason, its drawback is that storage size is proportional 

to the commits regardless of the size of the modification. Also, 

it is not possible to get meaningful diffs between versions but 

only get acknowledged that files are, or not, bitwise identical.  

Data Version Control (DVC) - As discussed by Peuster et al. 

(2019) Data Version Control (DVC) is a software specifically 

implemented to facilitate management of Machine Learning 

models and data in Git fashion, using external storages to store 

binary files and Git as a reference. According to the DVC online 

documentation (https://dvc.org/doc/user-guide) DVC differs 

from Git-LFS mainly because it doesn’t require specific servers 

but can use any cloud storage solution. Not much can be found 

on the mechanism for data versioning on the project 

documentation, but thanks to an answer from the co-founder of 

DVC on stack overflow (Shcheklein, 2020) we know that files 

are tracked as single objects and replicated in case of any part 

modification. 

Lake FS - It is yet another version control system based on the 

Git approach that allows managing files stored in cloud 

storages. Like DVC its primary objective is to record Machine 

Learning models with its associated training dataset. Lake FS 

permits to branch, commit and merge data which could scale to 

petabytes allowing to manage data across different cloud 

storages. It can also revert changes in data. According to Park et 

al. (2008) it has been created specifically to improve 

performance on scalable systems. 

Pachyderm - It is an open-source platform for managing data 

pipelines and the associated input/output data. It manages data 

versioning and lineage by using a combination of technologies: 

it leverages Git to manage version control using distributed file 

systems like Hadoop or S3 to store large datasets in addition to 

databases or key-value stores to record information on how data 

is generated, transformed, and consumed within the system. 

When data are committed file hash is produced and file 

recorded in data storage. When changes are committed it 

records the variations between the previous version and the new 

version so that any particular state of data can be then identified 

by commits (Novella et al., 2019). The usage of docker allows 

to encapsulate processing and create portable, re-producible 

data pipelines. 

Kart (https://docs.kartproject.org) - Kart is a distributed version-

control built on Git specifically implemented for handling 

geospatial and tabular data. No scientific papers could be found 

on the software, but according to its documentation it supports 

different geospatial data types including raster, point cloud and 

vector datasets. In case of rasters or point-could due to the size 

of the data Kart uses Git LFS. Specific datasets are stored using 

defined data formats and folder structures in git, so for example 

rasters are stored as GeoTIFF in the folder .raster-dataset.v1 and 

point clouds are stored as LAZ files in the folder  .point-cloud-

dataset.v1 (using Git LFS), both have a nested structure with 

two folders: meta for the metadata and title with the actual data 

(stored in Git). Similarly, for vector and table data type Kart 

uses a .table-dataset folder with meta and feature subfolders 

storing all the information in Git. Vectors/tables data are stored 

as a single file per feature/row therefore modifications are 

versioned at row levels which permit, by using the metadata, to 

reconstruct a dataset at a specific commit. 
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4.3 Data versioning of Log-Structured Tables  

Modern columnar data formats like Apache Parquet (Vohra and 

Vohra, 2016) and ORC (Liu et al., 2023) due to their 

characteristics of being optimized for storage and retrieval, they 

became very popular (Cloud Native formats). Nevertheless, 

their characteristics of being immutable pose a limitation in 

their adoption in all the cases where frequent updates are 

required. To overcome this issue, while keeping the benefit of 

those formats, the Log-Structured Tables (LSTs) solution has 

been implemented. It adds on top of the immutable columnar 

data formats a metadata layer that records the versioning of 

tables and parameters to enable the interaction through the 

processing engine (Camacho-Rodríguez et al., 2023). This 

solution is shifting the paradigm of data storage due to its 

capability of offering ACID transactions and supporting 

frequent table modification by creating a new immutable 

columnar file containing the changes. Additionally, it makes use 

of distributed cloud storage systems, and therefore with respect 

to traditional data warehouses, is simple and fast to scale. 

Nevertheless, if modifications are frequent, the metadata overly 

may slow down the process of data querying and retrieval. To 

overcome this issue several approaches have been adopted by 

different solutions. Popular LST solutions are herein reported. 

Delta Lake - Delta Lake makes use of a transaction log along 

with Apache Parquet files to offer ACID properties over cloud 

object storages so that consistency and reliability are offered. It 

has been used to store Online Transaction Processing (OLTP) 

data, time series and logs. For querying data a fast query engine 

for lakehouse systems like Photon (Behm and Palkar, 2022) can 

be used for the integration of SQL operation. 

Apache iceberg - Apache Iceberg is a LSTs format that has been 

designed for high performance and that connects with engines 

like Spark, Trino, Flink, Presto and object storages. This 

combined solution supports full SQL, schema evolution, time 

travel and optimization. It adds metadata layers to the existing 

files and exposes them as iceberg tables to the engines while 

maintaining traditional database features like ACID transaction 

and time travel. Every table change requires that the associated 

metadata file is replaced by a new one. The format requires that 

the data are immutable (not changed or moved after they are 

written), the files support seek and can be deleted or, if 

maintained, marked as deleted so that the capability of time 

travel is exposed. A specification for adding geometric data type 

in Apache Iceberg following the ISO-19107 standard and the 

OGC-Simple Feature Access specification has been presented 

(Badard, no date). The latest software release of 28th April 2025 

(v1.9.0) added the geometry and geography type support with 

optional spatial statistics like bounding box calculation.  

Apache Hudi - Apache Hudi (Hadoop Upserts Deleted 

Incrementals), like Apache Iceberg was created to support large 

data storage in distributed systems. It stores tables in folders and 

subfolders which comprise file groups sliced in partitions which 

ultimately contain data in parquet format. Depending on the 

configuration, changes on tables can be managed with the copy-

on-write or merge-on-read: the first creates a copy of the 

parquet file on any changes and is optimized for read-intensive 

cases, the second store the updates in delta files that are then 

merged when the data are requested and is indicated for write-

intensive situations (Hellman, 2023). 

 

5. Discussion on Research Challenges and Opportunities 

OGC open standards have been widely adopted in the geospatial 

domain to build Spatial Data Infrastructures (SDIs) that provide 

access to vast quantities of interoperable geospatial data. These 

infrastructures have enabled researchers across diverse scientific 

disciplines to consume and integrate geospatial datasets in their 

studies, supporting the principles of FAIR data (i.e. making data 

Findable, Accessible, Interoperable, and Reusable). However, 

while these standards and services offer robust capabilities for 

data discovery and access, they lack in supporting a 

fundamental requirement of Open Science: reproducibility. 

To ensure reproducibility, researchers often need to rely on 

external archive services that duplicate the datasets used during 

experimentation. When combined with the computational 

environment, code, and metadata, these immutable snapshots  

guarantee that a study can be replicated. However, this 

duplication introduces significant challenges. Research face 

increased costs associated with storing data in managed FAIR 

repositories that provide long-term preservation, backups, and 

service availability. Limitations arise when attempting to 

archive large datasets, and burdens are introduced by the pre-

processing and efforts to prepare datasets for reproducibility. 

These challenges are exacerbated by the increasing volume and 

velocity of geospatial data. Advances in sensing technologies 

and the widespread deployment of IoT and remote sensing 

platforms have led to high-frequency, transactional data 

streams. In such dynamic contexts, duplicating datasets for each 

experiment becomes inefficient, costly, and often impractical. 

Moreover, static snapshots quickly become outdated, diverging 

from their live, continuously updated counterparts, which may 

compromise the relevance or accuracy of derived scientific 

results. Persistent identifiers like DOIs, while effective for static 

resources, are ill-suited for referencing evolving datasets. 

Although version numbers are common in software 

development to track changes, they are often unintuitive and 

difficult to use for meaningful data exploration or temporal 

analysis. To address this, SQL have introduced support for 

system-time queries, which enable users to access datasets as 

they existed at a specific point in time, or to explore how values 

have changed over defined intervals. Unlike version numbers, 

system-time attributes provide a more user-friendly and 

semantically meaningful approach to tracking data evolution. 

Despite the potential of this model, current OGC web services 

only support business-time properties (i.e., user-defined 

timestamps related to data content) and lack system-time 

capabilities, which capture the actual time of data storage and 

modification. This gap significantly hinders the reproducibility 

of research that depends on interoperable web services. 

From a technological standpoint, various data versioning 

solutions exist, but they vary in approach and supported data 

formats. Traditional data warehouses offer limited support for 

temporal SQL. PostgreSQL, for instance, which is a widely 

used in geospatial contexts due to the PostGIS extension, does 

not natively support system-time tables. For file-based datasets, 

Git and Git-like systems allow version control and embed 

valuable metadata (e.g., commit messages, authorship), but they 

lack transactional guarantees and can introduce consistency 

issues in collaborative environments with concurrent access. 

Emerging solutions such as Lakehouse Storage Technologies 

(LSTs) address these limitations by combining ACID-compliant 

transactions with high-performance, column-oriented storage 

formats tailored for large-scale tabular data. These platforms 

offer "travel-time" queries that enable users to retrieve previous 

versions of data efficiently. However, they currently offer 

limited support for geospatial formats and indexing, which 

limits their applicability in the geospatial domain. The current 

state of the art indicates a clear and growing need for system-

time support within the OGC standards ecosystem to 

accommodate reproducible research workflows based on 

dynamic datasets. While it has been formalized in SQL standard 

and implemented in modern data architectures, they are not yet 

widely integrated into mainstream open-source geospatial tools, 
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such as those supported by the OSGeo community. 

Furthermore, integrating Git-like metadata such as author, 

timestamp, and change motivation into interoperable 

transactional operations and data versioning systems would 

enhance not only reproducibility but also data lineage analysis. 

This would enable researchers to understand the provenance, 

ownership, and evolution of datasets, fostering transparency and 

strengthening the credibility of scientific results. In summary, 

addressing the reproducibility challenges in geospatial research 

requires a concerted effort to:  

1. Integrate system-time capabilities into OGC web 

service standards, enabling users to reference and 

retrieve datasets as they existed at specific points in 

time (Persistent URL).  

2. Extend emerging versioned data platforms (e.g., 

LSTs) to support geospatial data formats and 

indexing.  

3. Promote metadata-rich versioning approaches that 

capture both technical and human elements of data 

changes, supporting Open Science principles.  

4. Facilitate adoption within existing open-source 

ecosystems, minimizing the barrier to entry for 

research institutions and public bodies. 

 

These efforts present a significant opportunity to align 

geospatial data infrastructures with the evolving needs of Open 

Science and reproducible research, ensuring that future 

geospatial analyses are not only FAIR but also credible, 

transparent, and verifiable. 
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