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Abstract

Underground coal mining will cause serious ground subsidence and affect the life and property safety of surrounding residents. Deep
learning provides the possibility to process a large amount of data information, and can provide an effective model based on a large
number of training data to realize the automatic detection and recognition of a large number of data. In this paper, the YOLOV11
model is applied and a mining area in Shanxi Province was used for experimental research. The experiments show that an Al model
suitable for automatic identification of subsidence area in Shanxi mining area is obtained, by training YOIOv11 model with limited
SAR interferogram. The YOLOv11 model will also be applied to surface deformation caused by landslides and earthquakes in the
future, so as to improve the identification efficiency of geological disasters and reduce the possible human and property losses

caused by ground disasters.

1. Introduction

Underground coal mining will cause serious ground subsidence
and affect the life and property safety of surrounding residents
(Xue et al., 2012). It is very important to monitor the
subsidence area of coal mining quickly and effectively,
especially illegal coal mining activities (Hu et al., 2014).
Traditional deformation monitoring technologies, such as GPS,
GNSS, level, etc., can only obtain high-precision surface
deformation information at the point location, which cannot
meet the requirements of large-scale deformation monitoring,
and the required manpower and material costs are high (Fan et
al., 2018).

Interferometric synthetic aperture radar (InSAR) technology can
extract a large range of high-precision surface deformation
information, and is widely used in the monitoring of surface
deformation caused by earthquakes, volcanoes, landslides and
resource exploitation (Chen et al., 2016; Ma et al., 2022; Zhang
et al., 2015). In order to remove the influence of factors such as
spatiotemporal incoherence and atmospheric effect existing in
InSAR technology, some scholars put forward time-series
InSAR technology (such as SBAS, PS, etc.), which can
effectively improve the acquisition accuracy of long-time series
surface deformation information (Samsonov et al., 2013).

At present, the identification of coal mining subsidence area is
to extract suspected surface subsidence area based on a large
number of SAR image data and the surface deformation rate
obtained by time-series InSAR technology. The extraction
efficiency of the surface subsidence area is low, so it is difficult
to find the potential surface subsidence area in time. Therefore,
it is necessary to propose a new automatic detection and
identification method of coal mining subsidence area based on
InSAR data results.

Deep learning provides the possibility to process a large amount
of data information, and can provide an effective model based
on a large number of training data to realize the automatic
detection and recognition of a large number of data. Some

scholars have begun to try to apply deep learning methods to
the monitoring of ground deformation. Guo combined SBAS-
InSAR and Yolo model to detect landslides in a high
mountainous county (Guo et al., 2022). Yu proposed a
lightweight model for subsidence basin detection based on the
YOLOVS network, significantly reducing model parameters
while enhancing model accuracy (Yu et al., 2022). Guo
proposed a novel method combining YOLOv8 model with
InSAR methods to automatically high-precision detect
subsidence funnels in mining areas within large-scale regions
(Guo et al., 2024).

In this paper, the YOLOvV11 model is applied to the automatic
detection and identification of coal mining subsidence area, so
as to improve the detection efficiency and accuracy of surface
subsidence area. A mining area in Shanxi Province was used for
experimental research, SAR image data in the study area was
collected to extract differential interferogram, and model
training and testing were carried out based on YOLOv11 model.
Finally, the experimental results are discussed and analyzed.

2. Study Area

Shanxi Province is located in northern China, bordering the
Inner Mongolia Autonomous Region to the north by the Great
Wall, Shaanxi Province to the west by the Yellow River, Hebei
Province to the east by the Taihang Mountains, and Henan
Province to the south. Shanxi is distributed with rich mineral
resources and is a large province for resource development and
utilization, occupying an important position in China's mining
economy. Among them, there are 270,901 million tons of coal
reserves, accounting for 17.3 per cent of the country's reserves
and ranking third in the country (Wu et al., 2021).

Yangquan City is located in the east wing of central Shanxi
Province, with geographic coordinates 112° 5" ~114° 4’ E,
37° 40’ ~38° 31’ N. It is situated on the west side of the
central Taithang Mountains, and is connected to Dingxiang
County and Wutai County of Xinzhou City in the north, and
Pingshan County and Jingfu County of Shijiazhuang City and
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Jingfuzhe County of Hebei Province in the east, and connected
to Xiyang County of Jinzhong City in the south, and next to
Jinzhong City Shouyang County, Taiyuan City, Yangqu County;
north-south length of about 106 kilometers, east-west width of
about 42 kilometers.

Yangquan City is an important mineral concentration area in the
country, rich in mineral resources, a long history of
development, known as the ‘“hometown of coal and iron”
reputation. Proven deposits of up to 52 kinds of minerals,
especially anthracite, sulfurous iron ore, bauxite reserves, high
grade, easy to mine and known in the world, is one of China's
largest anthracite production base, one of the country's three
major bauxite production base and one of the five major
sulfurous iron ore production base (Xia et al., 2023).

Sentinel-1, an Earth observation satellite launched by the
Copernicus Programme of the European Space Agency (ESA),
carries a C-band synthetic aperture radar (SAR) that provides
all-weather, all-day surface observations. Sentinel 1 has a wide
range of applications, including polar environmental monitoring,
surface deformation monitoring, forest monitoring, water
resource  management, agricultural monitoring, urban
monitoring and sea ice monitoring.

In this paper, a Sentinel-1 image is selected for experimental
study, and the image is cropped according to the administrative
area of Yangquan City to obtain a SAR image coverage area of
about 10,000 square kilometers. The location of study area is
shown in Figure 1.
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Figure 1. Location of study area.

3. Methodology

The technology roadmap used in this article is shown in the
Figure 2. First, the SAR images in the study area are processed
and the differential interference fringe patterns of each image
pair are extracted. Based on the limited interferogram data, the
surface subsidence area is identified manually and marked with
samples. The marked difference interferogram is cropped to
make a uniform size sample data set. The limited sample data
set was used for model training and testing to obtain the optimal
model, which was used for automatic detection and
identification of coal mining subsidence area near the study area,
and the detection accuracy of the model was analyzed.
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Figure 2. The technology roadmap.
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3.1 SAR Data Processing

A total of 50 Sentinel-1 SAR image data covering a mining area
in Yangquan City were collected in this paper. Take an image as
the main image, and register the other slave images to the main
image. In this experiment, the time baseline was set to 60 days,
interference image pairs were established, and a total of about
120 image pairs were obtained. SRTM 30m DEM and Satellite
orbit data are used to remove the topographic phase of the
interference image pair to extract the differential interferograms.
Among them, 80% of the differential interferograms are
selected to make the training and verification sample set, and
the remaining 20% are used as the test data set.

The differential interferogram of the training and verification
samples was manually marked with the coal mining settling area.
The coal mining settlement area in the interferogram is marked
as “insar”, as shown in Figure 3. At the same time, the data set
is enhanced to increase the sample size. The sample set is
rotated at 8 different angles between 0 and 90 degrees, and the
sample set is scaled, flipped horizontally and vertically. Finally
the marked interferogram was cropped to make 512 size
samples for subsequent model training and testing. In the end,
the obtained model training samples are about 10,000, the
verification samples are about 2,000, and the test samples are
about 1,000, which are used for the model training and testing
in this paper.
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Figure 3. The labelled data set.

3.2 YOLOv11 Model Training and Testing

YOLOV11 is the latest generation of object detection algorithms
developed by Ultralytics, building upon significant architecture
and training method improvements from its predecessors. This
version aims to provide higher accuracy, faster speed, and
broader support for various visual Al tasks.

The YOLOvll model continues to balance accuracy and
efficiency while performing real-time object detection. Based
on previous versions of YOLO, YOLO 11 features significant
architectural and training improvements. The most significant
architectural changes to improve performance while
maintaining speed are the addition of the C3K2 block, the SPFF
module, and the C2PSA block. The model is shown in Figure 4.
The C3K2 block is an enhancement to the CSP (Cross Stage
Part) block introduced in previous versions. This block
optimizes the extraction of more complex features using
different kernel sizes (e.g. 3x3 or 5x5) and channel separation
strategies. The SPFF (Spatial Pyramid Pooling Fusion) module
is an optimized version of the SPP (Spatial Pyramid Pooling)
module used in the YOLO version. This block enables better
model execution by capturing object properties at different
scales. The C2PSA block provides more efficient feature
extraction by combining channel and spatial information. It also
works with the multiple attention mechanism to enable more
accurate perception of objects. It optimizes the feature maps of
the previous layers and enriches them using the attention
mechanism to improve the performance of the model. This
structure enables more accurate detection, especially in complex
scenes, and improves the accuracy of YOLOvI11.
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Figure 4. YOLOv11 Model.
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YOLOvVI11 supports a variety of visual Al tasks, including but
not limited to object detection, segmentation, pose estimation,
tracking, and classification. It continues to employ an efficient
Convolutional Neural Network (CNN) structure, which helps in
improving processing speed and reducing latency. Compared
with the previous YOLO model, the YOLOv11 model has the
following advantages: 1) Significantly improved accuracy
compared to previous versions. 2) Maintains the real-time
advantage of the YOLO series, enabling efficient detection even
in complex scenarios. 3) Capable of handling a large number of
bounding boxes, such as up to 8400, making it suitable for
complex multi-object detection tasks.

The input data of the model is 512X512 interferogram sample
set, and the output is the confidence value between the external
rectangular box and the target along the settlement region.
YOLOvI1 model was trained and tested on a computer
equipped with an Intel Xeon w7-3455 and an NVIDIA RTX
A6000 graphics card. PyTorch was used as the experimental
deep learning framework, with CUDA 11.8 for GPU parallel
computing and GPU acceleration. The initial learning rate for
training was set to le-4. The mini-batch size was set to 8 and
the training iteration number was set to 200.

According to the model training results, the optimal model
weight is selected to detect the coal mining subsidence area
automatically on the test data set, and the target detection
accuracy of the model in different regions is analyzed.

3.3 Accuracy Verification

In order to evaluate the accuracy of detection and identification
of coal mining subsidence area by this model, mAP and F1
index were used to verify the accuracy of the model prediction
results.

Mean Average Precision (mAP) is a widely used metric in
object detection and information retrieval tasks to evaluate the
performance of a model. It provides a single-figure summary
that combines both precision and recall across different classes
or categories. A higher mAP indicates better overall
performance, with a perfect score being 1.0. mAP balances the
trade-off between precision and recall, providing a
comprehensive measure of the model's ability to detect objects

accurately and comprehensively. The mAP is the mean of the
APs across all classes. If there are N classes, the mAP is
calculated as:

AP, (M

1 N
mAP =— g
NS

where AP, = the Average Precision for the i-th class.

F1 Score, also known as the F1 measure or F-score, is a
statistical measure that combines precision and recall into a
single metric. It is particularly useful in scenarios where there is
an uneven class distribution, and it provides a balance between
the two metrics. The F1 Score ranges from 0 to 1, with 1 being
the best possible score, indicating perfect precision and recall.
The F1 Score gives equal weight to both precision and recall,
making it a balanced measure. It is especially useful when you
need to balance the trade-off between false positives and false
negatives. The F1 Score is the harmonic mean of precision and
recall, which can be calculated using the following formula:

F1 Score=2x Precision x Recall 2

Precision+Recall

where Precision= , it measures the accuracy of

TP+FP
positive predictions, the ratio of true positive results (TP) to the

total number of positive predictions (TP + FP).
TP
Recall=—————, it measures the ability of the model to find
TP+FN

all the relevant cases, the ratio of true positive results (TP) to
the total number of actual positive instances (TP + FN).

4. Results and Discussion

In this paper, based on the sample data set made above,
YOLOVI11 model is adopted for model training, and the optimal
model obtained is the training model obtained by the 134th
epoch. The result curve of model training is shown in the Figure
5.
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Figure 5. Model training result curves.

As shown in Figure 5, this image consists of multiple subplots
that display various metrics over time. Train/Box Loss
(train/box_loss) shows thhe loss starts high and decreases over
time, indicating that the model is learning and improving. The
solid blue line represents the actual loss values, while the dotted
orange line represents a smoothed version of the loss.
Train/Class Loss (train/cls_loss) shows the training class loss
over time. Similar to the box loss, the class loss starts high and
decreases over time, indicating improvement in classification
accuracy. Metrics/Precision (metrics/precision(B)) shows the
recision starts low and increases over time, indicating that the
model is becoming more accurate in its predictions.
Metrics/mAP50-95 (metrics/mAP50-95(B)) shows the mean
Average Precision (mAP) over time, ranging from 50% to 95%
confidence levels and the mAP increases over time, indicating
that the model is improving in its ability to detect objects
accurately. Metrics/Recall (metrics/recall(B)) shows the recall
starts low and increases over time, indicating that the model is
becoming better at detecting all relevant instances.
Metrics/mAPS50 (metrics/mAP50(B)) shows the mean Average
Precision (mAP) over time at a 50% confidence level and the
mAP increases over time, indicating that the model is improving
in its ability to detect objects accurately at this confidence level.
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Figure 6. F1-score curve.

Figure 6 depicts the relationship between the F1 score and
confidence level, titled "F1-Confidence Curve." The plot
includes two curves: 1) Blue Curve (insar): This curve
represents the F1 score for the "insar" class across different
confidence thresholds. 2) Dark Blue Curve (all classes 0.83 at
0.703): This curve represents the overall F1 score across all
classes, with a peak F1 score of 0.83 at a confidence threshold
of 0.703. At low confidence levels (close to 0), the F1 score
rapidly increases. Between confidence levels of approximately
0.2 to 0.8, the F1 score remains relatively high and stable, close
to 0.8. As the confidence level approaches 1, the F1 score drops
sharply, approaching 0. This indicates that the model performs
best within a moderate range of confidence levels, with the
optimal performance occurring at a confidence threshold of
0.703, where the F1 score reaches its peak of 0.83. This
suggests that a confidence threshold of around 0.703 is an ideal
choice for balancing precision and recall.

Several groups of SAR interferogram were selected for model
testing, and part of the test results were shown in Figure 7. The
image contains several blue bounding boxes with labels
indicating "insar" followed by a numerical value. These values
likely represent the coherence or confidence level of the InSAR
measurements in those specific regions. The numerical values
range from 0.36 to 0.86, with higher values indicating higher
coherence and thus more reliable measurements. Areas with
high coherence (e.g., 0.86) are likely to be stable or have
minimal deformation, while areas with lower coherence (e.g.,
0.36) may have experienced significant changes or have
inherent noise. The distribution of coherence values can help
identify regions of interest for further analysis, such as areas
with potential ground deformation. Regions with high
coherence values (e.g., 0.86) are likely stable and have reliable
InSAR measurements. Regions with low coherence values (e.g.,
0.36) may have experienced significant changes or have high
noise levels.
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Figure 7. Model testing results.

5. Conclusion

In this paper, we applied YOLOv11 model for the first time to
the automatic identification of subsidence area in mining area,
and achieved good research results. By training YOIOvll
model with limited SAR interferogram, an Al model suitable for
automatic identification of subsidence area in Shanxi mining
area is obtained.

Although the recognition effect of this paper is good, there are
still some problems as follows. 1) The current model has only
been tested in Shanxi mining area and has not been tested in
more mining areas. The model will be applied to other mining
areas to test the accuracy of the model in the future. 2)
Currently, the sample data used only uses SAR interferogram.
In the future, more types of data will be applied, such as DEM,
terrain and other data, to improve the identification accuracy
and generalization of the model for mining areas. 3) The
YOLOv11 model will also be applied to surface deformation
caused by landslides and earthquakes in the future, so as to
improve the identification efficiency of geological disasters and
reduce the possible human and property losses caused by
ground disasters.
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