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Abstract 
 
Underground coal mining will cause serious ground subsidence and affect the life and property safety of surrounding residents. Deep 
learning provides the possibility to process a large amount of data information, and can provide an effective model based on a large 
number of training data to realize the automatic detection and recognition of a large number of data. In this paper, the YOLOV11 
model is applied and a mining area in Shanxi Province was used for experimental research. The experiments show that an AI model 
suitable for automatic identification of subsidence area in Shanxi mining area is obtained, by training YOlOv11 model with limited 
SAR interferogram. The YOLOv11 model will also be applied to surface deformation caused by landslides and earthquakes in the 
future, so as to improve the identification efficiency of geological disasters and reduce the possible human and property losses 
caused by ground disasters. 
 
 

1. Introduction 

Underground coal mining will cause serious ground subsidence 
and affect the life and property safety of surrounding residents 
(Xue et al., 2012). It is very important to monitor the 
subsidence area of coal mining quickly and effectively, 
especially illegal coal mining activities (Hu et al., 2014). 
Traditional deformation monitoring technologies, such as GPS, 
GNSS, level, etc., can only obtain high-precision surface 
deformation information at the point location, which cannot 
meet the requirements of large-scale deformation monitoring, 
and the required manpower and material costs are high (Fan et 
al., 2018).  
 
Interferometric synthetic aperture radar (InSAR) technology can 
extract a large range of high-precision surface deformation 
information, and is widely used in the monitoring of surface 
deformation caused by earthquakes, volcanoes, landslides and 
resource exploitation (Chen et al., 2016; Ma et al., 2022; Zhang 
et al., 2015). In order to remove the influence of factors such as 
spatiotemporal incoherence and atmospheric effect existing in 
InSAR technology, some scholars put forward time-series 
InSAR technology (such as SBAS, PS, etc.), which can 
effectively improve the acquisition accuracy of long-time series 
surface deformation information (Samsonov et al., 2013). 
 
At present, the identification of coal mining subsidence area is 
to extract suspected surface subsidence area based on a large 
number of SAR image data and the surface deformation rate 
obtained by time-series InSAR technology. The extraction 
efficiency of the surface subsidence area is low, so it is difficult 
to find the potential surface subsidence area in time. Therefore, 
it is necessary to propose a new automatic detection and 
identification method of coal mining subsidence area based on 
InSAR data results.  
 
Deep learning provides the possibility to process a large amount 
of data information, and can provide an effective model based 
on a large number of training data to realize the automatic 
detection and recognition of a large number of data. Some 

scholars have begun to try to apply deep learning methods to 
the monitoring of ground deformation. Guo combined SBAS-
InSAR and Yolo model to detect landslides in a high 
mountainous county (Guo et al., 2022). Yu proposed a 
lightweight model for subsidence basin detection based on the 
YOLOv5 network, significantly reducing model parameters 
while enhancing model accuracy (Yu et al., 2022). Guo 
proposed a novel method combining YOLOv8 model with 
InSAR methods to automatically high-precision detect 
subsidence funnels in mining areas within large-scale regions 
(Guo et al., 2024).  
 
In this paper, the YOLOv11 model is applied to the automatic 
detection and identification of coal mining subsidence area, so 
as to improve the detection efficiency and accuracy of surface 
subsidence area. A mining area in Shanxi Province was used for 
experimental research, SAR image data in the study area was 
collected to extract differential interferogram, and model 
training and testing were carried out based on YOLOv11 model. 
Finally, the experimental results are discussed and analyzed. 
 

2. Study Area 

Shanxi Province is located in northern China, bordering the 
Inner Mongolia Autonomous Region to the north by the Great 
Wall, Shaanxi Province to the west by the Yellow River, Hebei 
Province to the east by the Taihang Mountains, and Henan 
Province to the south. Shanxi is distributed with rich mineral 
resources and is a large province for resource development and 
utilization, occupying an important position in China's mining 
economy. Among them, there are 270,901 million tons of coal 
reserves, accounting for 17.3 per cent of the country's reserves 
and ranking third in the country (Wu et al., 2021). 
 
Yangquan City is located in the east wing of central Shanxi 
Province, with geographic coordinates 112°5′~114°4′E, 
37°40′~38°31′N. It is situated on the west side of the 
central Taihang Mountains, and is connected to Dingxiang 
County and Wutai County of Xinzhou City in the north, and 
Pingshan County and Jingfu County of Shijiazhuang City and 
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Jingfuzhe County of Hebei Province in the east, and connected 
to Xiyang County of Jinzhong City in the south, and next to 
Jinzhong City Shouyang County, Taiyuan City, Yangqu County; 
north-south length of about 106 kilometers, east-west width of 
about 42 kilometers. 
 
Yangquan City is an important mineral concentration area in the 
country, rich in mineral resources, a long history of 
development, known as the “hometown of coal and iron” 
reputation. Proven deposits of up to 52 kinds of minerals, 
especially anthracite, sulfurous iron ore, bauxite reserves, high 
grade, easy to mine and known in the world, is one of China's 
largest anthracite production base, one of the country's three 
major bauxite production base and one of the five major 
sulfurous iron ore production base (Xia et al., 2023). 
 
Sentinel-1, an Earth observation satellite launched by the 
Copernicus Programme of the European Space Agency (ESA), 
carries a C-band synthetic aperture radar (SAR) that provides 
all-weather, all-day surface observations. Sentinel 1 has a wide 
range of applications, including polar environmental monitoring, 
surface deformation monitoring, forest monitoring, water 
resource management, agricultural monitoring, urban 
monitoring and sea ice monitoring. 
 
In this paper, a Sentinel-1 image is selected for experimental 
study, and the image is cropped according to the administrative 
area of Yangquan City to obtain a SAR image coverage area of 
about 10,000 square kilometers. The location of study area is 
shown in Figure 1. 
 

 
Figure 1. Location of study area. 

 
3. Methodology 

The technology roadmap used in this article is shown in the 
Figure 2. First, the SAR images in the study area are processed 
and the differential interference fringe patterns of each image 
pair are extracted. Based on the limited interferogram data, the 
surface subsidence area is identified manually and marked with 
samples. The marked difference interferogram is cropped to 
make a uniform size sample data set. The limited sample data 
set was used for model training and testing to obtain the optimal 
model, which was used for automatic detection and 
identification of coal mining subsidence area near the study area, 
and the detection accuracy of the model was analyzed. 
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Figure 2. The technology roadmap. 

 
3.1 SAR Data Processing 

A total of 50 Sentinel-1 SAR image data covering a mining area 
in Yangquan City were collected in this paper. Take an image as 
the main image, and register the other slave images to the main 
image. In this experiment, the time baseline was set to 60 days, 
interference image pairs were established, and a total of about 
120 image pairs were obtained. SRTM 30m DEM and Satellite 
orbit data are used to remove the topographic phase of the 
interference image pair to extract the differential interferograms. 
Among them, 80% of the differential interferograms are 
selected to make the training and verification sample set, and 
the remaining 20% are used as the test data set.  
 
The differential interferogram of the training and verification 
samples was manually marked with the coal mining settling area. 
The coal mining settlement area in the interferogram is marked 
as “insar”, as shown in Figure 3. At the same time, the data set 
is enhanced to increase the sample size. The sample set is 
rotated at 8 different angles between 0 and 90 degrees, and the 
sample set is scaled, flipped horizontally and vertically. Finally 
the marked interferogram was cropped to make 512 size 
samples for subsequent model training and testing. In the end, 
the obtained model training samples are about 10,000, the 
verification samples are about 2,000, and the test samples are 
about 1,000, which are used for the model training and testing 
in this paper. 
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Figure 3. The labelled data set. 

 
3.2 YOLOv11 Model Training and Testing 

YOLOv11 is the latest generation of object detection algorithms 
developed by Ultralytics, building upon significant architecture 
and training method improvements from its predecessors. This 
version aims to provide higher accuracy, faster speed, and 
broader support for various visual AI tasks.  

 
The YOLOv11 model continues to balance accuracy and 
efficiency while performing real-time object detection. Based 
on previous versions of YOLO, YOLO 11 features significant 
architectural and training improvements. The most significant 
architectural changes to improve performance while 
maintaining speed are the addition of the C3K2 block, the SPFF 
module, and the C2PSA block. The model is shown in Figure 4. 
The C3K2 block is an enhancement to the CSP (Cross Stage 
Part) block introduced in previous versions. This block 
optimizes the extraction of more complex features using 
different kernel sizes (e.g. 3x3 or 5x5) and channel separation 
strategies. The SPFF (Spatial Pyramid Pooling Fusion) module 
is an optimized version of the SPP (Spatial Pyramid Pooling) 
module used in the YOLO version. This block enables better 
model execution by capturing object properties at different 
scales. The C2PSA block provides more efficient feature 
extraction by combining channel and spatial information. It also 
works with the multiple attention mechanism to enable more 
accurate perception of objects. It optimizes the feature maps of 
the previous layers and enriches them using the attention 
mechanism to improve the performance of the model. This 
structure enables more accurate detection, especially in complex 
scenes, and improves the accuracy of YOLOv11. 
 
 

 

 
Figure 4. YOLOv11 Model. 
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YOLOv11 supports a variety of visual AI tasks, including but 
not limited to object detection, segmentation, pose estimation, 
tracking, and classification. It continues to employ an efficient 
Convolutional Neural Network (CNN) structure, which helps in 
improving processing speed and reducing latency. Compared 
with the previous YOLO model, the YOLOv11 model has the 
following advantages: 1) Significantly improved accuracy 
compared to previous versions. 2) Maintains the real-time 
advantage of the YOLO series, enabling efficient detection even 
in complex scenarios. 3) Capable of handling a large number of 
bounding boxes, such as up to 8400, making it suitable for 
complex multi-object detection tasks. 
 
The input data of the model is 512X512 interferogram sample 
set, and the output is the confidence value between the external 
rectangular box and the target along the settlement region. 
YOLOv11 model was trained and tested on a computer 
equipped with an Intel Xeon w7-3455 and an NVIDIA RTX 
A6000 graphics card. PyTorch was used as the experimental 
deep learning framework, with CUDA 11.8 for GPU parallel 
computing and GPU acceleration. The initial learning rate for 
training was set to 1e-4. The mini-batch size was set to 8 and 
the training iteration number was set to 200.  
 
According to the model training results, the optimal model 
weight is selected to detect the coal mining subsidence area 
automatically on the test data set, and the target detection 
accuracy of the model in different regions is analyzed. 
 
3.3 Accuracy Verification 

In order to evaluate the accuracy of detection and identification 
of coal mining subsidence area by this model, mAP and F1 
index were used to verify the accuracy of the model prediction 
results. 
 
Mean Average Precision (mAP) is a widely used metric in 
object detection and information retrieval tasks to evaluate the 
performance of a model. It provides a single-figure summary 
that combines both precision and recall across different classes 
or categories. A higher mAP indicates better overall 
performance, with a perfect score being 1.0. mAP balances the 
trade-off between precision and recall, providing a 
comprehensive measure of the model's ability to detect objects 

accurately and comprehensively. The mAP is the mean of the 
APs across all classes. If there are N  classes, the mAP is 
calculated as: 
 

 
1

1mAP AP
N

i
iN =

= ∑        (1) 

 
where APi   = the Average Precision for the i-th class. 
 
F1 Score, also known as the F1 measure or F-score, is a 
statistical measure that combines precision and recall into a 
single metric. It is particularly useful in scenarios where there is 
an uneven class distribution, and it provides a balance between 
the two metrics. The F1 Score ranges from 0 to 1, with 1 being 
the best possible score, indicating perfect precision and recall. 
The F1 Score gives equal weight to both precision and recall, 
making it a balanced measure. It is especially useful when you 
need to balance the trade-off between false positives and false 
negatives. The F1 Score is the harmonic mean of precision and 
recall, which can be calculated using the following formula:  
 

 Precision RecallF1 Score=2
Precision+Recall

×
×                (2) 

 

where 
TPPrecision=

TP+FP
, it measures the accuracy of 

positive predictions, the ratio of true positive results (TP) to the 
total number of positive predictions (TP + FP). 

TPRecall=
TP+FN

, it measures the ability of the model to find 

all the relevant cases, the ratio of true positive results (TP) to 
the total number of actual positive instances (TP + FN). 
 

4. Results and Discussion 

In this paper, based on the sample data set made above, 
YOLOv11 model is adopted for model training, and the optimal 
model obtained is the training model obtained by the 134th 
epoch. The result curve of model training is shown in the Figure 
5. 
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Figure 5. Model training result curves. 

 
As shown in Figure 5, this image consists of multiple subplots 
that display various metrics over time. Train/Box Loss 
(train/box_loss) shows thhe loss starts high and decreases over 
time, indicating that the model is learning and improving. The 
solid blue line represents the actual loss values, while the dotted 
orange line represents a smoothed version of the loss.  
Train/Class Loss (train/cls_loss) shows the training class loss 
over time. Similar to the box loss, the class loss starts high and 
decreases over time, indicating improvement in classification 
accuracy. Metrics/Precision (metrics/precision(B)) shows the 
recision starts low and increases over time, indicating that the 
model is becoming more accurate in its predictions. 
Metrics/mAP50-95 (metrics/mAP50-95(B)) shows the mean 
Average Precision (mAP) over time, ranging from 50% to 95% 
confidence levels and the mAP increases over time, indicating 
that the model is improving in its ability to detect objects 
accurately. Metrics/Recall (metrics/recall(B)) shows the recall 
starts low and increases over time, indicating that the model is 
becoming better at detecting all relevant instances. 
Metrics/mAP50 (metrics/mAP50(B)) shows the mean Average 
Precision (mAP) over time at a 50% confidence level and the 
mAP increases over time, indicating that the model is improving 
in its ability to detect objects accurately at this confidence level. 
 

 
Figure 6. F1-score curve. 

 
Figure 6 depicts the relationship between the F1 score and 
confidence level, titled "F1-Confidence Curve." The plot 
includes two curves: 1) Blue Curve (insar): This curve 
represents the F1 score for the "insar" class across different 
confidence thresholds. 2) Dark Blue Curve (all classes 0.83 at 
0.703): This curve represents the overall F1 score across all 
classes, with a peak F1 score of 0.83 at a confidence threshold 
of 0.703. At low confidence levels (close to 0), the F1 score 
rapidly increases. Between confidence levels of approximately 
0.2 to 0.8, the F1 score remains relatively high and stable, close 
to 0.8. As the confidence level approaches 1, the F1 score drops 
sharply, approaching 0. This indicates that the model performs 
best within a moderate range of confidence levels, with the 
optimal performance occurring at a confidence threshold of 
0.703, where the F1 score reaches its peak of 0.83. This 
suggests that a confidence threshold of around 0.703 is an ideal 
choice for balancing precision and recall. 
 
Several groups of SAR interferogram were selected for model 
testing, and part of the test results were shown in Figure 7. The 
image contains several blue bounding boxes with labels 
indicating "insar" followed by a numerical value. These values 
likely represent the coherence or confidence level of the InSAR 
measurements in those specific regions. The numerical values 
range from 0.36 to 0.86, with higher values indicating higher 
coherence and thus more reliable measurements. Areas with 
high coherence (e.g., 0.86) are likely to be stable or have 
minimal deformation, while areas with lower coherence (e.g., 
0.36) may have experienced significant changes or have 
inherent noise. The distribution of coherence values can help 
identify regions of interest for further analysis, such as areas 
with potential ground deformation. Regions with high 
coherence values (e.g., 0.86) are likely stable and have reliable 
InSAR measurements. Regions with low coherence values (e.g., 
0.36) may have experienced significant changes or have high 
noise levels.  
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Figure 7. Model testing results. 

 
5. Conclusion 

In this paper, we applied YOLOv11 model for the first time to 
the automatic identification of subsidence area in mining area, 
and achieved good research results. By training YOlOv11 
model with limited SAR interferogram, an AI model suitable for 
automatic identification of subsidence area in Shanxi mining 
area is obtained. 
 
Although the recognition effect of this paper is good, there are 
still some problems as follows. 1) The current model has only 
been tested in Shanxi mining area and has not been tested in 
more mining areas. The model will be applied to other mining 
areas to test the accuracy of the model in the future. 2) 
Currently, the sample data used only uses SAR interferogram. 
In the future, more types of data will be applied, such as DEM, 
terrain and other data, to improve the identification accuracy 
and generalization of the model for mining areas. 3) The 
YOLOv11 model will also be applied to surface deformation 
caused by landslides and earthquakes in the future, so as to 
improve the identification efficiency of geological disasters and 
reduce the possible human and property losses caused by 
ground disasters. 
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