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Abstract

To enhance the efficiency and visualization level of road maintenance work, this paper proposes a lane-level road defect visualization
method based on multi-source data fusion. Traditional visualization methods usually only display single data or overall road conditions,
which are difficult to meet the needs of intuitive presentation of complex road operation situations. To address this, this paper combines
multi-source data such as Beidou GPS data, road inspection images, defect detection results, lane line information, and camera
calibration to construct a complete multi-source data fusion visualization framework. Firstly, by introducing the Polar R-CNN network
model to efficiently extract lane line information, and using the improved YOLOv8 model for object detection of road defects; secondly,
in order to obtain the morphological features of road defects, this paper proposes an image segmentation method based on anchor box
cropping and improved Otsu threshold algorithm, which effectively enhances the extraction effect of crack texture details; then, inverse
perspective mapping (IPM) is used to transform the inclined images into orthographic images to achieve accurate mapping of the spatial
positions of objects. The experimental results show that this method performs well in lane line detection, defect shape extraction, and
spatial positioning, and can accurately visualize the display of different types of defects in multiple lanes, providing an intuitive and
efficient decision support tool for road maintenance departments. The visualization scheme proposed in this paper not only enhances
the interpretability and interactivity of data but also provides an important reference for the development of future intelligent road

inspection systems.
1. Introduction

With the rapid development of China's transportation
infrastructure and the continuous expansion of the road network,
the importance of road maintenance work has become
increasingly prominent. As a key link in ensuring road traffic
safety and service life, the timely detection and visualization of
road defects are of great significance for maintenance decision-
making. Traditional road defect identification largely depends on
manual inspection, which is not only inefficient and costly but
also fails to meet the needs of large-scale road monitoring. In
recent years, with the continuous progress of computer vision and
artificial intelligence technology, image-based automatic road
defect recognition methods have gradually become a research
hotspot.

In practical applications, the visualization of road defects serves
as an important bridge connecting identification results with
maintenance decisions. (Fan et al., 2019) proposed a crack
detection method that combines deep learning and threshold
segmentation, which first determines whether the image contains
cracks through convolutional neural network, and then carries out
filtering and adaptive threshold segmentation on the crack-
containing image in order to extract the cracked area. (Geng et
al., 2024) improved the YOLOvV8L model for embedded devices,
introduced the SE attention mechanism after the C2f structure,
and designed the Faster Block, which effectively improved the
detection efficiency. (Zhou et al., 2025) developed a road disease
detection and localization system in forest area using binocular
camera and target detection network, realizing real-time
identification and localization. (Han et al., 2023) used VGG and
SSD models to jointly detect multiple types of diseases, and
constructed a road health map based on ArcMap, which
combined with a disease scatter plot to visualize the distribution
of diseases.

However, the current mainstream visualization methods are
mostly based on single data sources or only display the overall
road conditions, lacking a detailed presentation of lane-level
defect information. This coarse-grained visualization approach
fails to accurately reflect the distribution characteristics of
defects in different lanes, limiting the ability to manage
maintenance work in a refined manner.

To address this, this paper proposes a lane-level road defect
visualization method based on multi-source data fusion. By
integrating Beidou GPS positioning data, road inspection images,
lane detection results, and defect recognition and segmentation
information, a complete visualization framework is constructed
to accurately locate and visually express different types of defects
in multiple lanes.

The main research content of this paper includes: (1) using the
advanced Polar R-CNN network model to achieve efficient lane
detection; (2) combining the improved Otsu threshold algorithm
with image preprocessing strategies to extract the morphological
features of road defects; (3) using inverse perspective mapping
(IPM) to transform inclined images into orthographic images,
enhancing spatial mapping accuracy; (4) designing a multi-
source data storage structure based on the JSON format to
achieve unified data management and visualization rendering.

The innovations of this study are: (1) proposing a lane-level road
defect visualization approach, making up for the shortcomings of
traditional methods in spatial granularity; (2) integrating various
sensors and image processing technologies to enhance the
accuracy and practicality of the visualization results; (3)
constructing a complete technical process and data structure
system, providing an extensible basic framework for the
development of subsequent intelligent road inspection systems.
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Through experimental verification, the method proposed in this
paper has shown good performance in lane line recognition,
defect shape extraction, and spatial positioning, and can
effectively assist road maintenance departments in achieving
more efficient and intuitive decision support.

2. Intelligent Extraction and Visualization Methods for
Lane-Level Road Defects

2.1 Introduction to Multi-Source Data and Design of Data
Collection System

Traditional data visualization methods mainly achieve
visualization effects through a single data source. The
visualization effects of a single data source are simple and cannot
meet the growing complex visualization business needs.
Therefore, by introducing multi-source data, it is possible to
achieve visualization effects of data from multiple dimensions,
effectively enhancing user experience and the intuitiveness of
display. In this paper, data from multiple sources are selected for
the demonstration of visualization effects, mainly including
textual data, Beidou GPS receiver location data, road defect
detection data, lane line data, and other intermediate data such as
camera calibration. Since road sign data is three-dimensional and
difficult to draw in a two-dimensional image, it is not considered
in this experiment. Among them, textual data is used to explain
and supplement the basic situation of the road; Beidou GPS
receiver location data is used to locate the shooting point of the
photo and to determine the real-world coordinates of other points
in the photo; road defect detection data is used to obtain feature
information of road defects for rendering on the digital base map;
lane line data is used to record the position of lane lines to restore
the lane lines on the map; camera calibration data is used to
project the inclined images into orthographic images. The main
equipment of the acquisition system includes industrial cameras,
industrial lenses, industrial cables, industrial camera polarizers,
and Beidou GPS. The equipment situation is shown in the Figure
1 below.

(a) Original image

(b) Two types of Otsu
operator segmentation

Figure 1. Self-developed road inspection equipment

2.2 Lane Line Data Extraction Based on Polar R-CNN

The Polar R-CNN network model (Wang et al., 2024), proposed
in 2024, is a relatively novel anchor-based lane detection method
inspired by object detection methods such as YOLO and Faster
R-CNN. Currently, the academic community has introduced
several anchor-based methods for lane detection, with
representative works including LaneATT (Tabelini et al., 2021)
and CLRNet (Zheng et al., 2022). Although anchor-based
methods perform well, they mainly have two issues.

The first issue is anchor redundancy, which requires manually
designing dense anchor boxes to cover various scenarios,
resulting in low efficiency; the second issue is a heavy reliance
on NMS (Non-Maximum Suppression) post-processing, which
performs poorly in dense lane scenarios and has complex
deployment.

Therefore, the Polar R-CNN network model mainly proposes two
improvements to address the aforementioned issues: introducing
a Local Polar System and a Global Polar System based on the
polar coordinate system to create more accurate anchor points,
thereby reducing the number of anchors proposed in sparse
scenarios; and proposing an NMS-Free detection framework to
address the complexity of NMS post-processing, introducing a
triple head structure with a GNN block to improve deployment
efficiency and performance in dense lane scenarios. The main
structure is shown in the Figure 2 below.

LPM module

Backbone

Input image GPM module

Figure 2. Polar R-CNN network structure diagram

Polar R-CNN mainly includes four modules: the Backbone
main network, the FPN module, the LPM anchor generation
module, and the GPM detection module. The main network is
responsible for extracting high-level semantic features of the
image, while the FPN further performs multi-scale feature fusion
to enhance the model's adaptability to lanes of different shapes.
The LPM module, based on the idea of polar coordinates, predicts
the lane anchor points and their confidence at each position on
the feature map. Through training, the model can generate more
accurate and fewer candidate anchor points, thus reducing
redundant calculations. The GPM module extracts features from
these candidate anchor points and completes the final lane
detection through a triple head structure that includes O2M
classification, O2M regression, and 020 classification,
achieving an efficient inference process without NMS. This
paper optimizes the main network for adaptability while keeping
the main structure of Polar R-CNN unchanged. The original Polar
R-CNN uses a general Backbone structure (such as the ResNet
series), while this paper selects ResNet18 and DLA34 as the main
networks for comparative experiments based on the
characteristics of the road dataset. Through comparative
experiments, it was found that DLA34 outperforms ResNet18 in
terms of precision (Precision), recall rate (Recall), and F1@50
metrics (see Table 2), so DLA34 was ultimately chosen as the
main network. This adjustment improves the model's
performance in lane detection tasks and represents a structural
adaptation and performance optimization of Polar R-CNN for
specific application scenarios, achieving improved detection
performance.

2.3 Disease Morphology Extraction Based on the Improved
Otsu Algorithm

Since the anchor boxes in object detection only indicate the
relative position of road defects and lack information such as
texture, shape, length, and area of the defects, it is necessary to
use relevant image segmentation algorithms to extract the texture
and morphological information of road defects to enhance the
visualization effect and facilitate the statistical analysis of road
defect areas.

To this end, this paper introduces an anchor-box-based image
segmentation method that can better balance the advantages and
disadvantages of traditional methods and deep learning
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algorithms. Firstly, the object detection network has low
hardware requirements and fast model inference speed, which
can meet the real-time detection needs of road inspection using
edge computing devices; secondly, visualization does not require
high segmentation accuracy, only the recording of relevant data
on road defect morphology, without the need for statistical
analysis of defect areas; finally, the implementation cost of this
method is low, and there is no need for pixel-level annotation of
road defect datasets, reducing manual annotation costs.

The Otsu threshold algorithm (Chen et al., 2021), also known as
the maximum inter-class variance method, is a method that can
automatically calculate the threshold value for image
segmentation. Its basic idea is to divide the pixels in the image
into two categories based on the grayscale information
characteristics of the image, and the threshold value is optimal
when the variance between these two categories is maximized.

However, the traditional Otsu operator is easily affected by the
grayscale distribution of the image itself and environmental noise,
leading to unsatisfactory segmentation results in most cases, and
due to the binary classification of the traditional Otsu operator,
there is a situation of over-segmentation when facing complex
environments. Especially during road inspection, road cracks and
asphalt colors do not have a large deviation, often leading to over-
segmentation.

e

>

(b) Two types of Otsu
operator segmentation

Figure.3 Two types of Otsu operator segmentation effect diagram

(a) Original image

As can be seen from the content of Figure 3, due to the reflection
effect of ground asphalt, there will be a situation similar to the
gray scale of road cracks, so it is difficult for the traditional Otsu
operator to extract road crack information finely.

Therefore, this paper proposes an improvement strategy for the
Otsu operator. Firstly, to reduce the impact of environmental
noise on road cracks, logarithmic transformation and bilateral
filtering are used as preprocessing techniques. Secondly, to
address the poor segmentation performance of the two-class Otsu
algorithm, research indicates that there are typically four
different gray levels of objects in road surface scenes, leading to
the introduction of the four-class Otsu algorithm. Thirdly, due to
the high computational load of the four-class Otsu algorithm,
optimization strategies are proposed to effectively reduce the
computational load. Finally, relevant post-processing techniques
are introduced to enhance the segmentation effect and accuracy
of the algorithm.

2.3.1 Image Enhancement Preprocessing

In the image preprocessing enhancement part, the logarithmic
transformation method is first used to enhance the difference
degree between road cracks and background. The formula of
logarithmic transformation is as follows:

s=cxlog(1+r) (1)
255 2

€= log (1 + max(r))

Where is rsc the pixel value of the original image, is the pixel
value of the transformed image, and is the scaling constant.
After the logarithmic transformation, the noise in the image is
also amplified, necessitating denoising. Since bilateral filtering
can effectively denoise images while preserving edges, it was
chosen as the methodp = (x, y)Qljjterea (). Given a pixel and
its neighborhood, the filtered value is calculated using the
following formula.
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Using the above method, the image achieves a good denoising
effect while preserving the details of the cracks.

2.3.2 Four-class Otsu Algorithm and Optimization Method
The traditional Otsu algorithm performs binary segmentation by
using a single threshold to separate the image into two classes.
The four-class Otsu algorithm, on the other hand, introduces
multiple thresholds. Its calculation process is similar to that of
the traditional Otsu algorithm. First, the grayscale image is
computed, and the probability density of each gray level is
determined. Then, the overall mean gray value of the image is
calculated using the corresponding formula.

255

pr = ) XX px) ™

0

For each pair(ty, t,, t3)t; < t, < t3, the inter-class variance is
calculated by the following formula.

First, use the following formula to calculate wqyw,w,w5the
weight of each class:

wo = Y @) ®)
x=0
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w= Y p() (10)
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255

ws= Y Pk (11)
x=tz+1

Then use the following formula to calculate pou,u,usthe mean
of each class:

Tilox X p(x)

po = 220D (12)
ty
fy = —Z"zf”f xp®) (13)
1
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Since the four-category Otsu algorithm (tq, t, t3)S;enumerates
each pair, the number of enumeration can be obtained by the
following formula.

S, = C(256,3) ~ 2.7 x 108 (17)

From the above equation, it can be observed that the
computational complexity of the four-class Otsu algorithm is
relatively high. To address this, an approximate search strategy
is introduced. By adjusting the gray level range [0, 255] with a
step size of 4 and 2, the number of parameters can be reduced
while maintaining a similar segmentation performance. When the
step size is 4, the number of enumeration combinations is S,;
when the step size is 2, the number of enumeration combinations
is S;. Therefore, according to the following formula, we can
obtain:

S, = C(64,3) = 39711 (18)
Sy = C(128,3) = 326,976 (19)

Therefore, it can be concluded that when the step size is set to 2,
the computational load is reduced by approximately 828 times;
when the step size is 4, the computational load is reduced by
approximately 6,850 times.

2.3.3 Image Post-Processing

Since the Otsu algorithm performs threshold segmentation based
on grayscale images, larger noise regions in the original image
with gray values similar to those of cracks may still be classified
as part of the cracks. Therefore, after applying the Otsu
segmentation, this paper introduces an image post-processing
procedure to address this issue. The post-processing method used
includes morphological filtering and area filtering.

Morphological filtering mainly consists of two operations:
erosion and dilation. Dilation expands the foreground regions of
the image using a structuring element, while erosion shrinks the
foreground pixels and expands the background region. Opening
operation is defined as first performing erosion followed by
dilation, and is primarily used to remove small noise points from
the image. Closing operation involves first performing dilation
followed by erosion, and is used to fill gaps between objects and
connect broken parts.

A°eB=(AQ©B)®B (20)
A-B=(A®B)OB (21)

Avrea filtering is a morphological operation that processes targets
or noise in an image based on the size of their areas. Typically,
an area threshold is set to either remove objects smaller than the
threshold or retain objects larger than the threshold.

A€ =) 1 (22)

PEC;

2.4 Monocular Distance Measurement Based on Inverse
Perspective Transformation

In this paper, since the ground within the camera's field of view
can be approximately abstracted as a plane, the method of inverse
perspective mapping based on the ground plane is selected to
achieve monocular distance measurement.

When the camera captures a scene, the resulting image is a
projection of the 3D world coordinates onto the 2D image
coordinate system. This process is known as perspective mapping,
which is similar to the principle of pinhole imaging. In contrast,
inverse perspective mapping (IPM) is an image processing
technique that transforms a perspective-distorted image into an
orthographic (top-down) view. The coordinate transformation
process is illustrated in Figure 4.

World Camera Image Pixel
Coordinates Coordinates Coordinates Coordinates

Perspective Mapping Process

Camera World
Coordinates Coordinates

Pixel Image
Coordinates Coordinates

Inverse Perspective Mapping Process

Figure.4 Coordinate transformation process diagram

Since the vehicle is fixed on the front side for collection, it only
needs to calculate the single H correspondence matrix once at
the beginning of collection. The specific process of calculating
the single correspondence matrix is as follows.

2.4.1 Equipment Installation

First, install the equipment. Since the collection distance is set to
20 meters, use a steel tape measure to draw a dividing line 20
meters away, parallel to the ground projection of the optical axis.
Next, adjust the camera and the equipment angle to ensure the
equipment is level, the line of sight is centered, and the upper
boundary of the image aligns with the dividing line. This
completes the installation of the equipment.

2.4.2 Control Point Drawing and Measurement

Since the coordinates of the control points in a rectangle are easy
to calculate, the four corner points of abYXX — Xthe rectangle
are selected as control points. Then, a rectangle is drawn on the
ground with a length of meters and a width of meters,
perpendicular to the direction of the ground projection of the
optical axis. Next, the distance from the rectangle to the camera
is measured and denoted as, and the offset distance between the
rectangle's centerline and the direction of the ground projection
of the optical axis is denoted as. When the rectangle is left-shifted,
it is denoted as, and when it is right-shifted, it is denoted as.

2.4.3 Coordinate Extraction and Position Calculation

Import the captured images and use the PyCharm script to obtain
the coordinates of the four control points in the image, starting
(uq, v1) (Uy, v2) (U3, v3) (uy, v4) (W, H)from the top-left corner
of the rectangle and marking them clockwise as,,, and. To ensure
the relative position of the drawn rectangle is correct after
transformation, it is also necessary to calculate the relative
position of the real-world rectangle in the pixel coordinate system.
Assuming the projected image size is and the height is.

First, define the scale in the image coordinate system and the
pixel coordinate system. The scale c,is denoted as scale, and the
value of the central pixel of the image is. The formula is as
follows:
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H
=— 23
scale WZO (23)
Cy = > (24)

Therefore, the coordinates of the real-world rectangle in the pixel
coordinate system can be derived.

(x1,¥1) = (¢ — ((% + X) x scale),H — ((Y +

b) X scale)) (25)
(x2,v2) = (cy + ((g —X) x scale),H — ((Y +
b) X scale)) (26)

(x3,73) = (&x + (G — X) x scale), H — (Y x scale))(27)
(x4, ys) = (cy — ((% + X) x scale), H — (Y x scale))(28)

2.4.4 Calculation and Transformation of the Homography
Matrix

After obtaining the control points and their corresponding image
points, the homography matrix is computed using OpenCV’ s
cv2.getPerspectiveTransform();  the  inverse  perspective
transformation is then applied to the image via
cv2.perspectiveTransform.

3. Experimental Results and Analysis

3.1 Lane Line Extraction

Since the road images captured by this collection system do not
match the perspective of commonly used datasets, to ensure the
detection accuracy of the model for the inspection data collected
by this system, it is necessary to annotate the captured images.
After annotation, a lane line dataset containing 2500 samples was
obtained. To ensure the training effect of the model, the data was

randomly divided into training and validation sets at a ratio of 80%

and 20%.

After the data division, the model training process was carried
out. To compare the performance of different backbone networks
in the actual lane line extraction task, ResNet18 and DLA34 were
selected as the backbone networks for comparative experiments.
According to the requirements of the task and the characteristics
of the data, it is necessary to configure the model's parameters,
such as input image size, learning rate, and other parameters.
During the training process, parameters and optimizations are
adjusted according to the changes in the model's loss function and
evaluation metrics. The main configuration parameters are
shown in Table 1.

Pztr::n Meani  Configur Patrs:ne Meani  Configur
Name ng ation Name ng ation
Numbe
backb Bgﬁlgb DLA34/ epoch “.)f.
ResNetl — Trainin 300
one Netw num
ork 8 g
Epochs
retrai Pre- Learni
P trainin True Ir ng 0.0006
ned
g Rate
Maxim
um
ba}tchs Batch 16 max_la Numbe 4
ize nes
r of
Lanes

Confid
. Input 32080  conf_t ence
Imgsz Size 0 hres Thresh 0.48
old

Table 1 Training parameters

To ensure the reliability of the experimental results, all
comparative experiments were conducted under the same
software environment and hardware configuration. After model
training, the test set was used to validate the model. The
experimental results are shown in Table 2.

Backbone
Model Network P R F1@50
Polar R-
CNN ResNet18 71.65 70.39 71.01
Polar R-
CNN DLA34 71.83 70.54 71.18

Table 2 Comparative experimental results

According to the experimental results, the DLA34 backbone
network has better accuracy and recall rate compared to the
ResNet18 backbone network. Therefore, in this paper's lane line
detection task, the DLA34 backbone network is selected as the
main model. The specific recognition results can be seen in
Figure 5.

" = ﬁ ——

(a) Original image » (b) Lane extraction ima;c‘je
Figure.5 Lane line network extraction result image

3.2 Disease Morphology Extraction

First, the crack image is subjected to image grayscale conversion,
logarithmic transformation preprocessing, and bilateral filtering
preprocessing. The preprocessing results are shown in Figure 6.
Among them, 6(a) is the original image; 6(b) is the grayscale
image after grayscale conversion; 6(c) is the image after
logarithmic transformation of the grayscale image; and 6(d) is the
final result after bilateral filtering.

e e ¢ o

B BEE E {
(a) Original (b) (©) (d) Bilateral
image Grayscale Logarithmic filtering
transformati
on

Figure.6 Image preprocessing results

To verify the effectiveness of the Otsu optimization method, the
runtime and segmentation performance of the two-class Otsu,
three-class Otsu, four-class Otsu, and the four-class Otsu
algorithm with an approximate search strategy were compared.
The comparison results are shown in Table 3 below.
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Two- Three-  Four- aITg:?th aITg:?th
Class Class Class m(gSte= m(gSte=
Otsu Otsu Otsu 2) P 4) P
Runti  0.0030 0.0063 43.797 5.62363 0.68003
me/s 02 87 021 0 1
Segm
entati
on
Perfor
manc
e

Table 3 Comparison table of methods

According to the above table, the four-class Otsu method has a
relatively long runtime. The optimized algorithm proposed in this
experiment can effectively reduce the computation time.
Furthermore, based on the segmentation results, it can be seen
that the optimized algorithm has minimal impact on the image
quality, which verifies the effectiveness of the optimization
algorithm.

Finally, by integrating the post-processing workflow, the
complete extraction of road cracks using a four-class Otsu
optimized algorithm with a step size of 2 was achieved. The
extraction results are shown in Figure 7. Figure 7(a) represents
the input original image; Figure 7(b) shows the result after four-
class Otsu segmentation; Figure 7(c) displays the result after
morphological closing operation; and Figure7(d) illustrates the
final result after area filtering.

S

A

(d) Area

(a) Orlgil ‘ ' (b Four ) c osing '
image categories operation filter
Otsu

Figure.7 Road morphology data extraction through layer map

The above figure 7 shows that the four-class Otsu segmentation
algorithm can effectively extract the morphological features of
road defects. Additionally, the morphological closing operation
helps to expand the background region.

3.3 Perspective Transformation

In this paper, a control point rectangle is first constructed, and the
homography matrix is calculated. The homography matrix is then
used to perform an inverse perspective transformation on the
original image. The specific results are shown in Figure 8.
Among them, Figure 8(a) is the original image, and Figure 8(b)
is the transformed image.

(a) Original image V
Figure.8 Inverse perspective transformation effect diagram

(b) Transformed image

According to the above Figure 8, the inverse perspective
transformation algorithm achieves good results, accurately
restoring the relative positions of objects in the real world. At the
same time, it can be seen that the position calculation method
proposed in this paper effectively reconstructs the relative
position of the control point rectangle in the real world.

3.4 Visualization Results

After constructing the data storage structure, the input image is
visualized by extracting information from the structural data.
First, the input image is fed into the Polar R-CNN network and
the object detection algorithm to extract lane line and defect
bounding box data. The visualization results of the lane line and
defect bounding box extraction are shown in Figure 9. Figure 9(a)
represents the original input image; Figure 9(b) shows the result
after lane line extraction using the network; and Figure 9(c)
displays the bounding boxes of detected defects obtained through
the object detection model.

(b) Lane line
extraction image
Figure.9 Lane line and defect anchor frame extraction

(a) Original image (c) Disease

anchor diagram

Then, the lane line information is recorded and stored in the
structural data file. The images within the defect bounding boxes
are cropped, and the cropping information is recorded. The
cropped images are saved, and the cropping schematic is shown
in Figure 10. Subsequently, the cropped defect detail images are
processed using the method described in Section 2.3 of this paper
to extract the morphological information of the defects. The
specific results are shown in Figure 11.
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Figure.11 Post-segmentation extraction flow chart

After extracting the cropped images, the threshold segmentation
results are recorded and saved into the corresponding structural
data files. The threshold segmentation results are then mapped
back to the original image using coordinate mapping. At the same
time, the lane line information is read and also mapped back onto
the original image. The reconstructed results are shown in Figure
12.

(c) Overall
restore restoration
diagram

(a) Original image  (b) Threshold

Figure.12 Data restoration effect diagram

Through observation of the above results, it can be seen that the
proposed algorithm achieves good extraction performance for
deep cracks. To eliminate the influence of the background on the
visualization and to enhance the clarity of the visual results, the
lane line information and road crack feature information
mentioned above are extracted using a mask. After applying the
inverse perspective transformation to the extracted masks, an

orthographic visualization result of the lane lines and defects is
obtained. The specific results are shown in Figure 13.

(a) Disease feature (b) Lane mask (c) Fusion
mask visualization
results

Figure.13 Final rendering
4. Conclusion

This paper presents a lane-level road defect visualization method
based on multi-source data fusion to improve the efficiency and
visualization level of road maintenance work. Traditional
visualization methods often lack the spatial granularity to display
detailed lane-level defect information, making it difficult to
support refined road maintenance decision-making. To address
this issue, the study integrates multi-source data, including road
inspection images, lane line detection results, and road defect
recognition and segmentation information, to construct a
comprehensive visualization framework.

The proposed method employs advanced deep learning models,
such as the Polar R-CNN network for efficient lane line detection
and an improved YOLOV8 model for road defect detection.
Additionally, an image segmentation approach combining anchor
box cropping and an improved Otsu threshold algorithm is
introduced to extract detailed morphological features of road
defects. Inverse perspective mapping (IPM) is applied to
transform inclined images into orthographic views, ensuring
accurate spatial positioning of defects.

Experimental results demonstrate that the proposed method
performs well in lane line detection, defect shape extraction, and
spatial mapping. The visualization framework provides an
intuitive and interactive representation of lane-level road defects,
offering road maintenance departments an efficient decision-
support tool. Furthermore, the integration of multi-source data
and image processing technologies enhances the practicality and
accuracy of the visualization results, making this method a
valuable reference for the development of future intelligent road
inspection systems.

In conclusion, the proposed lane-level road-defect visualization
method not only enhances the interpretability and intuitiveness of
the data, but also advances the further refinement of intelligent
road inspection technologies.
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