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Abstract 

 

To enhance the efficiency and visualization level of road maintenance work, this paper proposes a lane-level road defect visualization 

method based on multi-source data fusion. Traditional visualization methods usually only display single data or overall road conditions, 

which are difficult to meet the needs of intuitive presentation of complex road operation situations. To address this, this paper combines 

multi-source data such as Beidou GPS data, road inspection images, defect detection results, lane line information, and camera 

calibration to construct a complete multi-source data fusion visualization framework. Firstly, by introducing the Polar R-CNN network 

model to efficiently extract lane line information, and using the improved YOLOv8 model for object detection of road defects; secondly, 

in order to obtain the morphological features of road defects, this paper proposes an image segmentation method based on anchor box 

cropping and improved Otsu threshold algorithm, which effectively enhances the extraction effect of crack texture details; then, inverse 

perspective mapping (IPM) is used to transform the inclined images into orthographic images to achieve accurate mapping of the spatial 

positions of objects. The experimental results show that this method performs well in lane line detection, defect shape extraction, and 

spatial positioning, and can accurately visualize the display of different types of defects in multiple lanes, providing an intuitive and 

efficient decision support tool for road maintenance departments. The visualization scheme proposed in this paper not only enhances 

the interpretability and interactivity of data but also provides an important reference for the development of future intelligent road 

inspection systems. 

 

1. Introduction 

With the rapid development of China's transportation 

infrastructure and the continuous expansion of the road network, 

the importance of road maintenance work has become 

increasingly prominent. As a key link in ensuring road traffic 

safety and service life, the timely detection and visualization of 

road defects are of great significance for maintenance decision-

making. Traditional road defect identification largely depends on 

manual inspection, which is not only inefficient and costly but 

also fails to meet the needs of large-scale road monitoring. In 

recent years, with the continuous progress of computer vision and 

artificial intelligence technology, image-based automatic road 

defect recognition methods have gradually become a research 

hotspot. 

 

In practical applications, the visualization of road defects serves 

as an important bridge connecting identification results with 

maintenance decisions. (Fan et al., 2019) proposed a crack 

detection method that combines deep learning and threshold 

segmentation, which first determines whether the image contains 

cracks through convolutional neural network, and then carries out 

filtering and adaptive threshold segmentation on the crack-

containing image in order to extract the cracked area. (Geng et 

al., 2024) improved the YOLOv8L model for embedded devices, 

introduced the SE attention mechanism after the C2f structure, 

and designed the Faster Block, which effectively improved the 

detection efficiency. (Zhou et al., 2025) developed a road disease 

detection and localization system in forest area using binocular 

camera and target detection network, realizing real-time 

identification and localization. (Han et al., 2023) used VGG and 

SSD models to jointly detect multiple types of diseases, and 

constructed a road health map based on ArcMap, which 

combined with a disease scatter plot to visualize the distribution 

of diseases. 

 

However, the current mainstream visualization methods are 

mostly based on single data sources or only display the overall 

road conditions, lacking a detailed presentation of lane-level 

defect information. This coarse-grained visualization approach 

fails to accurately reflect the distribution characteristics of 

defects in different lanes, limiting the ability to manage 

maintenance work in a refined manner. 

 

To address this, this paper proposes a lane-level road defect 

visualization method based on multi-source data fusion. By 

integrating Beidou GPS positioning data, road inspection images, 

lane detection results, and defect recognition and segmentation 

information, a complete visualization framework is constructed 

to accurately locate and visually express different types of defects 

in multiple lanes. 

 

The main research content of this paper includes: (1) using the 

advanced Polar R-CNN network model to achieve efficient lane 

detection; (2) combining the improved Otsu threshold algorithm 

with image preprocessing strategies to extract the morphological 

features of road defects; (3) using inverse perspective mapping 

(IPM) to transform inclined images into orthographic images, 

enhancing spatial mapping accuracy; (4) designing a multi-

source data storage structure based on the JSON format to 

achieve unified data management and visualization rendering. 

 

The innovations of this study are: (1) proposing a lane-level road 

defect visualization approach, making up for the shortcomings of 

traditional methods in spatial granularity; (2) integrating various 

sensors and image processing technologies to enhance the 

accuracy and practicality of the visualization results; (3) 

constructing a complete technical process and data structure 

system, providing an extensible basic framework for the 

development of subsequent intelligent road inspection systems. 
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Through experimental verification, the method proposed in this 

paper has shown good performance in lane line recognition, 

defect shape extraction, and spatial positioning, and can 

effectively assist road maintenance departments in achieving 

more efficient and intuitive decision support. 

 

2. Intelligent Extraction and Visualization Methods for 

Lane-Level Road Defects 

2.1 Introduction to Multi-Source Data and Design of Data 

Collection System 

Traditional data visualization methods mainly achieve 

visualization effects through a single data source. The 

visualization effects of a single data source are simple and cannot 

meet the growing complex visualization business needs. 

Therefore, by introducing multi-source data, it is possible to 

achieve visualization effects of data from multiple dimensions, 

effectively enhancing user experience and the intuitiveness of 

display. In this paper, data from multiple sources are selected for 

the demonstration of visualization effects, mainly including 

textual data, Beidou GPS receiver location data, road defect 

detection data, lane line data, and other intermediate data such as 

camera calibration. Since road sign data is three-dimensional and 

difficult to draw in a two-dimensional image, it is not considered 

in this experiment. Among them, textual data is used to explain 

and supplement the basic situation of the road; Beidou GPS 

receiver location data is used to locate the shooting point of the 

photo and to determine the real-world coordinates of other points 

in the photo; road defect detection data is used to obtain feature 

information of road defects for rendering on the digital base map; 

lane line data is used to record the position of lane lines to restore 

the lane lines on the map; camera calibration data is used to 

project the inclined images into orthographic images. The main 

equipment of the acquisition system includes industrial cameras, 

industrial lenses, industrial cables, industrial camera polarizers, 

and Beidou GPS. The equipment situation is shown in the Figure 

1 below. 

 

  
(a) Original image (b) Two types of Otsu 

operator segmentation 

Figure 1. Self-developed road inspection equipment 

 

2.2 Lane Line Data Extraction Based on Polar R-CNN 

The Polar R-CNN network model (Wang et al., 2024), proposed 

in 2024, is a relatively novel anchor-based lane detection method 

inspired by object detection methods such as YOLO and Faster 

R-CNN. Currently, the academic community has introduced 

several anchor-based methods for lane detection, with 

representative works including LaneATT (Tabelini et al., 2021) 

and CLRNet (Zheng et al., 2022). Although anchor-based 

methods perform well, they mainly have two issues. 

The first issue is anchor redundancy, which requires manually 

designing dense anchor boxes to cover various scenarios, 

resulting in low efficiency; the second issue is a heavy reliance 

on NMS (Non-Maximum Suppression) post-processing, which 

performs poorly in dense lane scenarios and has complex 

deployment. 

Therefore, the Polar R-CNN network model mainly proposes two 

improvements to address the aforementioned issues: introducing 

a Local Polar System and a Global Polar System based on the 

polar coordinate system to create more accurate anchor points, 

thereby reducing the number of anchors proposed in sparse 

scenarios; and proposing an NMS-Free detection framework to 

address the complexity of NMS post-processing, introducing a 

triple head structure with a GNN block to improve deployment 

efficiency and performance in dense lane scenarios. The main 

structure is shown in the Figure 2 below. 

 

 

Figure 2. Polar R-CNN network structure diagram 

 

Polar R-CNN mainly includes four modules: the Backbone 

main network, the FPN module, the LPM anchor generation 

module, and the GPM detection module. The main network is 

responsible for extracting high-level semantic features of the 

image, while the FPN further performs multi-scale feature fusion 

to enhance the model's adaptability to lanes of different shapes. 

The LPM module, based on the idea of polar coordinates, predicts 

the lane anchor points and their confidence at each position on 

the feature map. Through training, the model can generate more 

accurate and fewer candidate anchor points, thus reducing 

redundant calculations. The GPM module extracts features from 

these candidate anchor points and completes the final lane 

detection through a triple head structure that includes O2M 

classification, O2M regression, and O2O classification, 

achieving an efficient inference process without NMS. This 

paper optimizes the main network for adaptability while keeping 

the main structure of Polar R-CNN unchanged. The original Polar 

R-CNN uses a general Backbone structure (such as the ResNet 

series), while this paper selects ResNet18 and DLA34 as the main 

networks for comparative experiments based on the 

characteristics of the road dataset. Through comparative 

experiments, it was found that DLA34 outperforms ResNet18 in 

terms of precision (Precision), recall rate (Recall), and F1@50 

metrics (see Table 2), so DLA34 was ultimately chosen as the 

main network. This adjustment improves the model's 

performance in lane detection tasks and represents a structural 

adaptation and performance optimization of Polar R-CNN for 

specific application scenarios, achieving improved detection 

performance. 

 

2.3 Disease Morphology Extraction Based on the Improved 

Otsu Algorithm 

Since the anchor boxes in object detection only indicate the 

relative position of road defects and lack information such as 

texture, shape, length, and area of the defects, it is necessary to 

use relevant image segmentation algorithms to extract the texture 

and morphological information of road defects to enhance the 

visualization effect and facilitate the statistical analysis of road 

defect areas. 

 

To this end, this paper introduces an anchor-box-based image 

segmentation method that can better balance the advantages and 

disadvantages of traditional methods and deep learning 
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algorithms. Firstly, the object detection network has low 

hardware requirements and fast model inference speed, which 

can meet the real-time detection needs of road inspection using 

edge computing devices; secondly, visualization does not require 

high segmentation accuracy, only the recording of relevant data 

on road defect morphology, without the need for statistical 

analysis of defect areas; finally, the implementation cost of this 

method is low, and there is no need for pixel-level annotation of 

road defect datasets, reducing manual annotation costs. 

 

The Otsu threshold algorithm (Chen et al., 2021), also known as 

the maximum inter-class variance method, is a method that can 

automatically calculate the threshold value for image 

segmentation. Its basic idea is to divide the pixels in the image 

into two categories based on the grayscale information 

characteristics of the image, and the threshold value is optimal 

when the variance between these two categories is maximized. 

 

However, the traditional Otsu operator is easily affected by the 

grayscale distribution of the image itself and environmental noise, 

leading to unsatisfactory segmentation results in most cases, and 

due to the binary classification of the traditional Otsu operator, 

there is a situation of over-segmentation when facing complex 

environments. Especially during road inspection, road cracks and 

asphalt colors do not have a large deviation, often leading to over-

segmentation. 

  

(a) Original image 
(b) Two types of Otsu 

operator segmentation 

Figure.3 Two types of Otsu operator segmentation effect diagram 

 

As can be seen from the content of Figure 3, due to the reflection 

effect of ground asphalt, there will be a situation similar to the 

gray scale of road cracks, so it is difficult for the traditional Otsu 

operator to extract road crack information finely. 

 

Therefore, this paper proposes an improvement strategy for the 

Otsu operator. Firstly, to reduce the impact of environmental 

noise on road cracks, logarithmic transformation and bilateral 

filtering are used as preprocessing techniques. Secondly, to 

address the poor segmentation performance of the two-class Otsu 

algorithm, research indicates that there are typically four 

different gray levels of objects in road surface scenes, leading to 

the introduction of the four-class Otsu algorithm. Thirdly, due to 

the high computational load of the four-class Otsu algorithm, 

optimization strategies are proposed to effectively reduce the 

computational load. Finally, relevant post-processing techniques 

are introduced to enhance the segmentation effect and accuracy 

of the algorithm. 

 

2.3.1 Image Enhancement Preprocessing 

In the image preprocessing enhancement part, the logarithmic 

transformation method is first used to enhance the difference 

degree between road cracks and background. The formula of 

logarithmic transformation is as follows: 

 

𝑠 = 𝑐 × log⁡(1 + 𝑟) (1) 

𝑐 =
255

log⁡(1 + max(𝑟))
 

(2) 

 

Where is 𝑟𝑠𝑐⁡the pixel value of the original image, is the pixel 

value of the transformed image, and is the scaling constant. 

After the logarithmic transformation, the noise in the image is 

also amplified, necessitating denoising. Since bilateral filtering 

can effectively denoise images while preserving edges, it was 

chosen as the method𝑝 = (𝑥, 𝑦)Ω𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑝). Given a pixel and 

its neighborhood, the filtered value is calculated using the 

following formula. 

 

𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑝) =
1

𝑊𝑝
∑𝐼(𝑞) × 𝑓𝑟(|𝐼(𝑝)

𝑞∈𝛺

− 𝐼(𝑞)|) × 𝑓𝑠(||𝑝 − 𝑞||) 

(3) 

𝑓𝑟(|𝐼(𝑝) − 𝐼(𝑞)|) = 𝑒𝑥𝑝(−
|𝐼(𝑝) − 𝐼(𝑞)|2

2𝜎𝑟
2 ) (4) 

𝑓𝑠(||𝑝 − 𝑞||) = 𝑒𝑥𝑝⁡(−
||𝑝 − 𝑞||2

2𝜎𝑠
2 ) (5) 

𝑊𝑝 = ∑𝑓𝑟(|𝐼(𝑝) − 𝐼(𝑞)|)

𝑞∈𝛺

× 𝑓𝑠(||𝑝 − 𝑞||) (6) 

 

Using the above method, the image achieves a good denoising 

effect while preserving the details of the cracks. 

 

2.3.2 Four-class Otsu Algorithm and Optimization Method 

The traditional Otsu algorithm performs binary segmentation by 

using a single threshold to separate the image into two classes. 

The four-class Otsu algorithm, on the other hand, introduces 

multiple thresholds. Its calculation process is similar to that of 

the traditional Otsu algorithm. First, the grayscale image is 

computed, and the probability density of each gray level is 

determined. Then, the overall mean gray value of the image is 

calculated using the corresponding formula. 

 

𝜇𝑇 =∑𝑥 × 𝑝(𝑥)

255

0

 (7) 

 

For each pair(𝑡1, 𝑡2, 𝑡3)𝑡1 < 𝑡2 < 𝑡3, the inter-class variance is 

calculated by the following formula. 

First, use the following formula to calculate 𝜔0𝜔1𝜔2𝜔3 the 

weight of each class: 

 

𝜔0 = ∑𝑝(𝑥)

𝑡1

𝑥=0

 (8) 

𝜔1 = ∑ 𝑝(𝑥)

𝑡2

𝑥=𝑡1+1

 (9) 

𝜔2 = ∑ 𝑝(𝑥)

𝑡3

𝑥=𝑡2+1

 (10) 

𝜔3 = ∑ 𝑝(𝑥)

255

𝑥=𝑡3+1

 (11) 

 

Then use the following formula to calculate 𝜇0𝜇1𝜇2𝜇3the mean 

of each class: 

 

𝜇0 =
∑ 𝑥 × 𝑝(𝑥)
𝑡1
𝑥=0

𝜔0
 (12) 

𝜇1 =
∑ 𝑥 × 𝑝(𝑥)
𝑡2
𝑥=𝑡1+1

𝜔1
 (13) 
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𝜇2 =
∑ 𝑥 × 𝑝(𝑥)
𝑡3
𝑥=𝑡2+1

𝜔2
 (14) 

𝜇3 =
∑ 𝑥 × 𝑝(𝑥)255
𝑥=𝑡3+1

𝜔3
 (15) 

𝑎𝑏
2(𝑡) = 𝜔0 × (𝜇0 − 𝜇𝑇)

2 + 𝜔1 × (𝜇1 − 𝜇𝑇)
2 + 

𝜔2 × (𝜇2 − 𝜇𝑇)
2 + 𝜔3 × (𝜇3 − 𝜇𝑇)

2 
(16) 

 

Since the four-category Otsu algorithm (t1, t2, t3)S1enumerates 

each pair, the number of enumeration can be obtained by the 

following formula. 

 

𝑆1 = 𝐶(256,3) ≈ 2.7 × 108 (17) 

 

From the above equation, it can be observed that the 

computational complexity of the four-class Otsu algorithm is 

relatively high. To address this, an approximate search strategy 

is introduced. By adjusting the gray level range [0, 255] with a 

step size of 4 and 2, the number of parameters can be reduced 

while maintaining a similar segmentation performance. When the 

step size is 4, the number of enumeration combinations is 𝑆2; 

when the step size is 2, the number of enumeration combinations 

is 𝑆3 . Therefore, according to the following formula, we can 

obtain: 

 

𝑆2 = 𝐶(64,3) = 39711 (18) 

𝑆3 = 𝐶(128,3) = 326,976 (19) 

 

Therefore, it can be concluded that when the step size is set to 2, 

the computational load is reduced by approximately 828 times; 

when the step size is 4, the computational load is reduced by 

approximately 6,850 times. 

 

2.3.3 Image Post-Processing 

Since the Otsu algorithm performs threshold segmentation based 

on grayscale images, larger noise regions in the original image 

with gray values similar to those of cracks may still be classified 

as part of the cracks. Therefore, after applying the Otsu 

segmentation, this paper introduces an image post-processing 

procedure to address this issue. The post-processing method used 

includes morphological filtering and area filtering. 

 

Morphological filtering mainly consists of two operations: 

erosion and dilation. Dilation expands the foreground regions of 

the image using a structuring element, while erosion shrinks the 

foreground pixels and expands the background region. Opening 

operation is defined as first performing erosion followed by 

dilation, and is primarily used to remove small noise points from 

the image. Closing operation involves first performing dilation 

followed by erosion, and is used to fill gaps between objects and 

connect broken parts. 

 

𝐴 ∘ 𝐵 = (𝐴⊝ 𝐵)⨁𝐵 (20) 

𝐴 ⋅ 𝐵 = (𝐴⨁𝐵)⊝ 𝐵 (21) 

 

Area filtering is a morphological operation that processes targets 

or noise in an image based on the size of their areas. Typically, 

an area threshold is set to either remove objects smaller than the 

threshold or retain objects larger than the threshold. 

 

𝐴(𝐶𝑖) = ∑ 1

𝑝∈𝐶𝑖

 (22) 

 

2.4 Monocular Distance Measurement Based on Inverse 

Perspective Transformation 

In this paper, since the ground within the camera's field of view 

can be approximately abstracted as a plane, the method of inverse 

perspective mapping based on the ground plane is selected to 

achieve monocular distance measurement. 

 

When the camera captures a scene, the resulting image is a 

projection of the 3D world coordinates onto the 2D image 

coordinate system. This process is known as perspective mapping, 

which is similar to the principle of pinhole imaging. In contrast, 

inverse perspective mapping (IPM) is an image processing 

technique that transforms a perspective-distorted image into an 

orthographic (top-down) view. The coordinate transformation 

process is illustrated in Figure 4. 

 

 
Figure.4 Coordinate transformation process diagram 

 

Since the vehicle is fixed on the front side for collection, it only 

needs to calculate the single H correspondence matrix once at 

the beginning of collection. The specific process of calculating 

the single correspondence matrix is as follows. 

 

2.4.1 Equipment Installation 

First, install the equipment. Since the collection distance is set to 

20 meters, use a steel tape measure to draw a dividing line 20 

meters away, parallel to the ground projection of the optical axis. 

Next, adjust the camera and the equipment angle to ensure the 

equipment is level, the line of sight is centered, and the upper 

boundary of the image aligns with the dividing line. This 

completes the installation of the equipment. 

 

2.4.2 Control Point Drawing and Measurement 

Since the coordinates of the control points in a rectangle are easy 

to calculate, the four corner points of 𝑎𝑏𝑌𝑋𝑋 − 𝑋the rectangle 

are selected as control points. Then, a rectangle is drawn on the 

ground with a length of meters and a width of meters, 

perpendicular to the direction of the ground projection of the 

optical axis. Next, the distance from the rectangle to the camera 

is measured and denoted as, and the offset distance between the 

rectangle's centerline and the direction of the ground projection 

of the optical axis is denoted as. When the rectangle is left-shifted, 

it is denoted as, and when it is right-shifted, it is denoted as. 

 

2.4.3 Coordinate Extraction and Position Calculation 

Import the captured images and use the PyCharm script to obtain 

the coordinates of the four control points in the image, starting 

(𝑢1, 𝑣1)(𝑢2, 𝑣2)(𝑢3, 𝑣3)(𝑢4, 𝑣4)(𝑊,𝐻)from the top-left corner 

of the rectangle and marking them clockwise as,,, and. To ensure 

the relative position of the drawn rectangle is correct after 

transformation, it is also necessary to calculate the relative 

position of the real-world rectangle in the pixel coordinate system. 

Assuming the projected image size is and the height is. 

 

First, define the scale in the image coordinate system and the 

pixel coordinate system. The scale 𝑐𝑥is denoted as scale, and the 

value of the central pixel of the image is. The formula is as 

follows: 
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𝑠𝑐𝑎𝑙𝑒 =
𝐻

20
 (23) 

𝑐𝑥 =
𝑊

2
 (24) 

 

Therefore, the coordinates of the real-world rectangle in the pixel 

coordinate system can be derived. 

 

(𝑥1, 𝑦1) = (𝑐𝑥 − ((
𝑎

2
+ 𝑋) × 𝑠𝑐𝑎𝑙𝑒),𝐻 − ((𝑌 +

𝑏) × 𝑠𝑐𝑎𝑙𝑒)) (25) 

(𝑥2, 𝑦2) = (𝑐𝑥 + ((
𝑎

2
− 𝑋) × 𝑠𝑐𝑎𝑙𝑒), 𝐻 − ((𝑌 +

𝑏) × 𝑠𝑐𝑎𝑙𝑒)) (26) 

(𝑥3, 𝑦3) = (𝑐𝑥 + ((
𝑎

2
− 𝑋) × 𝑠𝑐𝑎𝑙𝑒), 𝐻 − (𝑌 × 𝑠𝑐𝑎𝑙𝑒)) (27) 

(𝑥4, 𝑦4) = (𝑐𝑥 − ((
𝑎

2
+ 𝑋) × 𝑠𝑐𝑎𝑙𝑒), 𝐻 − (𝑌 × 𝑠𝑐𝑎𝑙𝑒)) (28) 

 

2.4.4 Calculation and Transformation of the Homography 

Matrix 

After obtaining the control points and their corresponding image 

points, the homography matrix is computed using OpenCV’s 

cv2.getPerspectiveTransform(); the inverse perspective 

transformation is then applied to the image via 

cv2.perspectiveTransform. 

3. Experimental Results and Analysis 

3.1 Lane Line Extraction 

Since the road images captured by this collection system do not 

match the perspective of commonly used datasets, to ensure the 

detection accuracy of the model for the inspection data collected 

by this system, it is necessary to annotate the captured images. 

After annotation, a lane line dataset containing 2500 samples was 

obtained. To ensure the training effect of the model, the data was 

randomly divided into training and validation sets at a ratio of 80% 

and 20%. 

 

After the data division, the model training process was carried 

out. To compare the performance of different backbone networks 

in the actual lane line extraction task, ResNet18 and DLA34 were 

selected as the backbone networks for comparative experiments. 

According to the requirements of the task and the characteristics 

of the data, it is necessary to configure the model's parameters, 

such as input image size, learning rate, and other parameters. 

During the training process, parameters and optimizations are 

adjusted according to the changes in the model's loss function and 

evaluation metrics. The main configuration parameters are 

shown in Table 1. 

 

Param

eter 

Name 

Meani

ng 

Configur

ation 

Parame

ter 

Name 

Meani

ng 

Configur

ation 

backb

one 

Backb

one 

Netw

ork 

DLA34/ 

ResNet1

8 

epoch_

num 

Numbe

r of 

Trainin

g 

Epochs 

300 

pretrai

ned 

Pre-

trainin

g 

True lr 

Learni

ng 

Rate 

0.0006 

batchs

ize 
Batch 16 

max_la

nes 

Maxim

um 

Numbe

r of 

Lanes 

4 

imgsz 
Input 

Size 

320×80

0 

conf_t

hres 

Confid

ence 

Thresh

old 

0.48 

Table 1 Training parameters 

 

To ensure the reliability of the experimental results, all 

comparative experiments were conducted under the same 

software environment and hardware configuration. After model 

training, the test set was used to validate the model. The 

experimental results are shown in Table 2. 

 

Model 
Backbone 

Network 
P R F1@50 

Polar R-

CNN 
ResNet18 71.65 70.39 71.01 

Polar R-

CNN 
DLA34 71.83 70.54 71.18 

Table 2 Comparative experimental results 

 

According to the experimental results, the DLA34 backbone 

network has better accuracy and recall rate compared to the 

ResNet18 backbone network. Therefore, in this paper's lane line 

detection task, the DLA34 backbone network is selected as the 

main model. The specific recognition results can be seen in 

Figure 5. 

 

  
(a) Original image (b) Lane extraction image 

Figure.5 Lane line network extraction result image 

 
3.2 Disease Morphology Extraction 

First, the crack image is subjected to image grayscale conversion, 

logarithmic transformation preprocessing, and bilateral filtering 

preprocessing. The preprocessing results are shown in Figure 6. 

Among them, 6(a) is the original image; 6(b) is the grayscale 

image after grayscale conversion; 6(c) is the image after 

logarithmic transformation of the grayscale image; and 6(d) is the 

final result after bilateral filtering. 

 

    

    
(a) Original 

image 

(b) 

Grayscale 

(c) 

Logarithmic 

transformati

on 

(d) Bilateral 

filtering 

Figure.6 Image preprocessing results 

 

To verify the effectiveness of the Otsu optimization method, the 

runtime and segmentation performance of the two-class Otsu, 

three-class Otsu, four-class Otsu, and the four-class Otsu 

algorithm with an approximate search strategy were compared. 

The comparison results are shown in Table 3 below. 
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Two-

Class 

Otsu 

Three-

Class 

Otsu 

Four-

Class 

Otsu 

This 

algorith

m(Step=

2) 

This 

algorith

m(Step=

4) 

Runti

me/s 

0.0030

02 

0.0063

87 

43.797

021 

5.62363

0 

0.68003

1 

Segm

entati

on 

Perfor

manc

e 
     

Table 3 Comparison table of methods 

 

According to the above table, the four-class Otsu method has a 

relatively long runtime. The optimized algorithm proposed in this 

experiment can effectively reduce the computation time. 

Furthermore, based on the segmentation results, it can be seen 

that the optimized algorithm has minimal impact on the image 

quality, which verifies the effectiveness of the optimization 

algorithm. 

 

Finally, by integrating the post-processing workflow, the 

complete extraction of road cracks using a four-class Otsu 

optimized algorithm with a step size of 2 was achieved. The 

extraction results are shown in Figure 7. Figure 7(a) represents 

the input original image; Figure 7(b) shows the result after four-

class Otsu segmentation; Figure 7(c) displays the result after 

morphological closing operation; and Figure7(d) illustrates the 

final result after area filtering. 

 

    

    
(a) Original 

image 

(b) Four 

categories 

Otsu 

(c) Closing 

operation 

(d) Area 

filter 

Figure.7 Road morphology data extraction through layer map 

 
The above figure 7 shows that the four-class Otsu segmentation 

algorithm can effectively extract the morphological features of 

road defects. Additionally, the morphological closing operation 

helps to expand the background region. 

 

3.3 Perspective Transformation 

In this paper, a control point rectangle is first constructed, and the 

homography matrix is calculated. The homography matrix is then 

used to perform an inverse perspective transformation on the 

original image. The specific results are shown in Figure 8. 

Among them, Figure 8(a) is the original image, and Figure 8(b) 

is the transformed image. 

 

  

  

  
(a) Original image (b) Transformed image 

Figure.8 Inverse perspective transformation effect diagram 

 

According to the above Figure 8, the inverse perspective 

transformation algorithm achieves good results, accurately 

restoring the relative positions of objects in the real world. At the 

same time, it can be seen that the position calculation method 

proposed in this paper effectively reconstructs the relative 

position of the control point rectangle in the real world. 

 

3.4 Visualization Results 

After constructing the data storage structure, the input image is 

visualized by extracting information from the structural data. 

First, the input image is fed into the Polar R-CNN network and 

the object detection algorithm to extract lane line and defect 

bounding box data. The visualization results of the lane line and 

defect bounding box extraction are shown in Figure 9. Figure 9(a) 

represents the original input image; Figure 9(b) shows the result 

after lane line extraction using the network; and Figure 9(c) 

displays the bounding boxes of detected defects obtained through 

the object detection model. 

 

   

   

   
(a) Original image (b) Lane line 

extraction image 

(c) Disease 

anchor diagram 

Figure.9 Lane line and defect anchor frame extraction 

 
Then, the lane line information is recorded and stored in the 

structural data file. The images within the defect bounding boxes 

are cropped, and the cropping information is recorded. The 

cropped images are saved, and the cropping schematic is shown 

in Figure 10. Subsequently, the cropped defect detail images are 

processed using the method described in Section 2.3 of this paper 

to extract the morphological information of the defects. The 

specific results are shown in Figure 11. 
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Figure.10 Image cropping effect diagram 

 

    

    

    

    

    
(a) Original 

image 

(b) Four 

categories 

Otsu 

(c) Closing 

operation 

(d) Area 

filter 

Figure.11 Post-segmentation extraction flow chart 

 
After extracting the cropped images, the threshold segmentation 

results are recorded and saved into the corresponding structural 

data files. The threshold segmentation results are then mapped 

back to the original image using coordinate mapping. At the same 

time, the lane line information is read and also mapped back onto 

the original image. The reconstructed results are shown in Figure 

12. 

 

   

   

   
(a) Original image (b) Threshold 

restore 

(c) Overall 

restoration 

diagram 

Figure.12 Data restoration effect diagram 

 
Through observation of the above results, it can be seen that the 

proposed algorithm achieves good extraction performance for 

deep cracks. To eliminate the influence of the background on the 

visualization and to enhance the clarity of the visual results, the 

lane line information and road crack feature information 

mentioned above are extracted using a mask. After applying the 

inverse perspective transformation to the extracted masks, an 

orthographic visualization result of the lane lines and defects is 

obtained. The specific results are shown in Figure 13. 

 

   

   

   
(a) Disease feature 

mask 

(b) Lane mask (c) Fusion 

visualization 

results 

Figure.13 Final rendering 

 

4. Conclusion 

This paper presents a lane-level road defect visualization method 

based on multi-source data fusion to improve the efficiency and 

visualization level of road maintenance work. Traditional 

visualization methods often lack the spatial granularity to display 

detailed lane-level defect information, making it difficult to 

support refined road maintenance decision-making. To address 

this issue, the study integrates multi-source data, including road 

inspection images, lane line detection results, and road defect 

recognition and segmentation information, to construct a 

comprehensive visualization framework.   

 

The proposed method employs advanced deep learning models, 

such as the Polar R-CNN network for efficient lane line detection 

and an improved YOLOv8 model for road defect detection. 

Additionally, an image segmentation approach combining anchor 

box cropping and an improved Otsu threshold algorithm is 

introduced to extract detailed morphological features of road 

defects. Inverse perspective mapping (IPM) is applied to 

transform inclined images into orthographic views, ensuring 

accurate spatial positioning of defects.   

 

Experimental results demonstrate that the proposed method 

performs well in lane line detection, defect shape extraction, and 

spatial mapping. The visualization framework provides an 

intuitive and interactive representation of lane-level road defects, 

offering road maintenance departments an efficient decision-

support tool. Furthermore, the integration of multi-source data 

and image processing technologies enhances the practicality and 

accuracy of the visualization results, making this method a 

valuable reference for the development of future intelligent road 

inspection systems.   

 

In conclusion, the proposed lane-level road-defect visualization 

method not only enhances the interpretability and intuitiveness of 

the data, but also advances the further refinement of intelligent 

road inspection technologies. 
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