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Abstract 

 

The rapid development of 3D scanning technology has significantly reduced the cost of acquiring high-precision point cloud data, 

leading to exponential growth in applications such as digital city modeling, autonomous driving, and virtual reality. However, 

managing point cloud datasets containing hundreds of millions of points poses severe challenges for storage, transmission, and real-

time rendering. Traditional Level of Detail (LOD) techniques struggle to balance efficiency and accuracy, especially under dynamic 

viewpoints and complex scenes. This paper introduces an enhanced dynamic adaptive LOD algorithm designed to boost the 

interactivity of large-scale point clouds and eliminate the need for re-computation when data is modified. The research objective is to 

address the bottleneck in real-time processing of large-scale point cloud data through improved data structures and sampling 

strategies.Our method builds a multi-resolution data structure that combines octree indexing with spatial sampling to achieve 

efficient spatial queries. The technical core is a point-voxel hybrid octree based on secondary sampling, which significantly improves 

visualization efficiency. The innovation lies in the adaptive sampling technique, which dynamically adjusts grid size according to 

point cloud density, enhancing sampling efficiency and detail precision in both sparse and dense regions.The experimental 

implementation uses WebGL, Vue, Three.js, Node.js, and MySQL technologies. Test results reveal significant improvements in 

rendering speed and resource utilization. This research not only enhances real-time rendering capabilities for large-scale point clouds 

but also has important application value in fields such as GIS and real-time SLAM. 

 

1.   Introduction 

Driven by rapid progress in 3D scanning technology, high-

precision point clouds have become a foundational dataset for 

numerous applications, even as their scale continues to grow. In 

order to obtain detailed three-dimensional point cloud data, the 

data volume has also increased accordingly. (Han et al., 2017) 

These massive point cloud datasets have been widely applied in 

multiple fields, including but not limited to digital cities, 

autonomous driving, and virtual reality. However, large-scale 

point cloud data usually contains hundreds of millions of points, 

and such large-scale data volume poses severe challenges to 

storage, transmission, and rendering. Level of Detail (LOD) 

technology is one of the key technologies for addressing large-

scale point cloud rendering and visualization(Abualdenien and 

Borrmann, 2022). LOD technology employs models of 

different precision at different viewing distances, reducing data 

processing volume while ensuring visual effects, thereby 

decreasing the computational load of visualization technology. 

Traditional LOD technology mainly targets continuous surface 

models, and its application effect on discrete point cloud data is 

relatively limited. 

 

Currently, LOD technology for point clouds has made certain 

progress, but still faces many challenges when processing 

dynamic scenes: most point cloud LOD methods are based on 

static LOD, which generates different levels of LOD during the 

preprocessing stage(Han et al., 2017). This approach results in 

the point cloud being unable to adapt to dynamically changing 

viewpoints and environments during visualization. Some 

dynamic LOD methods can adapt to viewpoint changes to a 

certain extent, but struggle to balance precision and efficiency, 

especially revealing lower efficiency when processing large-

scale point cloud data. Building on this, some dynamic LOD 

methods generally do not consider the spatial distribution 

characteristics of point cloud data and lack mechanisms for 

adaptive adjustment based on the local complexity of the point 

cloud, resulting in lower resource utilization(Schütz, 2015).  

 

The specific research process of this paper is as follows(refer to 

Figure 1.): Step 1 transforms raw point cloud data through 

quadtree and octree construction with sparse grid merging to 

build a global octree; Step 2 creates a point-voxel hybrid octree 

through voxelization and establishes dynamic LOD structures; 

and Step 3 implements efficient rendering through view 

frustum culling and visible node determination, enabling rapid 

visualization of the processed data. 

 

Figure 1.Workflow diagram.(Step 1.Octree construction. Step 

2.Dynamic LOD construction. Step 3.High-quality rendering) 
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2.  Construction of Large Scale Point Cloud 

The data level of large-scale point cloud data can reach tens of 

billions or hundreds of billions. Directly reading and rendering 

these data as a whole on browsers places very high demands on 

hardware and software, making rendering extremely difficult. 

Scholars both domestically and internationally have researched 

many methods for organizing point clouds. To address the 

characteristics of different data, hybrid tree structures have 

been most widely applied, including: hybrid structures of 

octrees and KD trees, hybrid structures of extended quadtrees 

and three-dimensional R-trees, dual-layer quadtree structures, 

hybrid structures of quadtrees and KD trees, dual-layer octree 

structures, hybrid structures of KD trees and chain-linked 

octrees, hybrid structures using octrees nested with spatial grids, 

and so on(Schwalbe and Finzel, 2024).Our method efficiently 

organizes and schedules point cloud data by employing a dual-

sampling approach to generate a voxel-point hybrid octree. 

 

2.1   Point Cloud Octree Construction 

Adopted in this paper is an octree-based spatial partitioning 

structure, which samples point cloud data from top to bottom 

during the construction process to generate a multi-resolution 

form. The multi-resolution organization of point clouds 

contains two parts: point cloud data and node information. The 

point cloud data consists of the geometric data of the node, 

while the node information mainly includes the total number of 

points, node bounding box, node name, node size, number of 

child nodes, and other information, providing necessary 

traversal parameters for subsequent point cloud visualization 

and scheduling(Huang, H., 2023). 

 

For efficient data management, we structure the point cloud 

into a non-redundant octree. The primary goal of this structure 

is to ensure that every point from the original dataset has a 

unique location within the hierarchy. This is achieved by 

partitioning the space and assigning points exclusively to one 

node. Consequently, the hierarchy is not a series of overlapping, 

simplified views, but a collection of mutually exclusive data 

blocks. Higher-level nodes provide a coarse overview, while 

deeper nodes progressively add finer details. This organization 

method is critical for minimizing storage footprint and 

preventing data duplication during rendering and modification. 

The terminal nodes of this tree, or leaf nodes, represent the 

finest spatial partitioning of the dataset. 

 

Figure 2.Octree diagram 

 

2.2   Construction of Point Cloud Spatial Index 

Different resolution levels between point clouds are mainly 

achieved through sampling. Commonly used sampling methods 

include random sampling, grid-based sampling, and Poisson 

disk sampling. As shown in Figure 3., random sampling 

exhibits extremely uneven distribution, with significant density 

variations in the spatial distribution of point clouds. Poisson 

disk sampling is widely used in two-dimensional image 

processing for point rendering, and its sampling results ensure 

that the distance between points does not exceed a specified 

minimum distance, i.e., the radius of the given Poisson disk, 

resulting in a uniform spatial distribution. The grid method 

divides space into square grids, and when points exist within a 

cell, they are moved to the center of the cell. The distance 

between all points can be maintained at the grid size, which is a 

conventional method for generating uniform distances between 

points. Initially, to reduce the influence of noise points and 

ensure efficiency, grid-based sampling is used for the first 

sampling. After generating regular grids, the number of points 

in each grid is detected, and grids with point counts below the 

set threshold are removed, thereby eliminating some noise 

points, which will affect the study area. 

 
(a) (b) (c) (d) 

Figure 3. Different sampling methods.(a) Original Data 

(b)Random Sampling (c) Grid Sampling(d) Poisson Disk 

Sampling 

 

The second processing, Poisson disk sampling is selected as it 

produces the best sampling results, because it can 

simultaneously satisfy both uniformity and randomness. This 

means that the generated points maintain a minimum distance 

to avoid excessive clustering, while not exhibiting the artificial 

patterns seen in regular grids. This blue noise characteristic 

allows the sampled points to better preserve the original 

geometric features while reducing data volume. This method 

appears more natural visually, offers high sampling efficiency, 

and can adapt to different density requirements by adjusting the 

minimum distance parameter. These qualities make it perform 

excellently in applications such as point cloud reconstruction, 

3D scanning, and geometric processing, achieving an ideal 

balance between fidelity and computational efficiency. 

 

2.3   Grid Merging Algorithm Construction 

Shown in the previous section, after organizing the point cloud 

into an initial global octree structure, uniform grids are 

generated based on the octree leaf node ranges through the 

bounding box generated from the global point cloud, with 

resolution determined by the node level(Lv et al., 2024). While 

ensuring the integrity of point cloud geometric features, data 

storage redundancy is reduced by merging grid blocks in low-

density or low-feature areas, thereby improving retrieval and 

rendering efficiency for large-scale point clouds. 

 

Node undergoes grid division, and for each cell, it's convenient 

to record both the points falling within it and its surrounding 

cells. To accelerate the distance-checking process required by 

Poisson disk sampling, we implement a spatial grid 

acceleration structure. Instead of comparing a new point 

candidate against all existing points in the node, the search 
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space is localized. The algorithm only needs to compute 

distances to points within the candidate's own grid cell and its 

immediate 26 neighboring cells. This spatial hashing technique 

dramatically reduces the number of distance calculations, 

transforming the problem from a costly global search to an 

efficient local one. To enable Poisson disk sampling between 

adjacent nodes, the neighborhood cells of each cell include 

both cells within the node and cells outside the node. When 

filling point clouds into tree nodes, distance judgments must be 

made not only with neighborhood cells within the node but also 

with cells in adjacent nodes. However, whether inside or 

outside the node, calculations still involve points from at most 

27 cells. Creating spatial grids based on nodes not only 

improves algorithm efficiency to some extent but also 

effectively avoids the problem of dense sampling results 

occurring at the boundaries of adjacent nodes.  

Figure 4.Grids of different sizes:(a)Smaller size grid.(b)Larger 

size grid. 

 

Size of the cell is between the spacing of the current level and 

the node size.If the size is too small, it will occupy more 

memory space and reduce performance; if the size is too large, 

the cost of distance judgment between points cannot be 

effectively addressed. Figure 4. illustrates the effects of 

different grid sizes, showing that whenever a point is added, the 

distance from that point to all points in its cell and adjacent 

cells will be calculated. Points that pass the distance check will 

be added to the green cell. When a cell receives its first point, a 

cell instance will be created, and it will determine whether 

neighborhood cells already exist. If they do, this cell will be 

added to the neighborhood list of those neighborhood cells. 

This process merges into a complete octree, preparing for 

subsequent LOD (Level of Detail) generation operations. 

 

3.  Construction of Point Cloud Dynamic LOD 

Detailing the method for generating the point cloud octree 

structure, we further consider how to utilize this structure to 

implement dynamic Level of Detail (LOD) display for point 

clouds. As an efficient spatial partitioning structure, the octree 

not only provides an organizational framework for point cloud 

data but also lays the foundation for dynamic LOD technology. 

By reasonably utilizing the hierarchical characteristics of the 

octree, we can dynamically adjust the display density and 

refinement level of the point cloud based on viewing angle, 

distance, and computational resource limitations, thereby 

optimizing rendering performance while maintaining visual 

quality. 

 

3.1   Generation of Point Voxel Octree 

Point clouds requires a level of detail structure. When 

processing large-scale point cloud data, completely loading and 

rendering all points would lead to excessive consumption of 

computational resources, especially for real-time application 

scenarios. Important characteristics of LOD structures include 

reducing loading time and memory usage, improving rendering 

performance, and ensuring low computational complexity for 

each loading operation. This is particularly important for point 

cloud applications in network environments, where users can 

first see a low-resolution point cloud model, followed by 

gradually loading more refined details in Figure 5. This 

approach not only reduces computational complexity but also 

optimizes bandwidth usage while improving the user 

experience. 

  
(a) (b) 

Figure 5. (a)Low level LOD.(b)High level LOD. 

 

Computation time for points, this is achieved by voxelizing 

some of the points. Color-filtered voxels are generated at lower 

LOD levels to enhance visual quality, creating a point-voxel 

hybrid octree. The necessity of this hybrid structure is reflected 

in multiple aspects: First, it effectively balances the 

contradiction between storage efficiency and data accuracy, 

significantly saving storage compared to the original point 

cloud while retaining more detail than pure voxel 

representation. Second, the hybrid structure supports multi-

resolution data access, allowing the rendering system to 

intelligently select appropriate representation methods based on 

viewing distance—using voxel representation at a distance to 

improve efficiency and point representation up close to ensure 

accuracy. 

 

3.2   Voxelization and Voxel Based Level of Detail 

Under the point-voxel hybrid octree structure, the basic steps to 

convert part of the point cloud data into voxels are as 

follows(refer to Figure 6.): 

 

1)Mapping from point cloud to voxels: For each voxel (octree 

node), find all the points that fall within this voxel. This can be 

achieved by comparing the coordinates of the points with the 

boundaries of the voxel. Then, calculate the attributes of the 

voxel based on the attributes of these points. (based on Figure 6 

(a) and (b)) 

 

2)Voxel refinement: During the LOD (Level of Detail) 

generation process, voxels can be dynamically refined or 

merged as needed. For example, if a voxel is close to the 

observer, it may need to be further subdivided into smaller 

voxels. Conversely, if a voxel is far from the observer, it may 

be possible to merge it with adjacent voxels to reduce rendering 

complexity.(refer to Figure 6(c)) 

 

3)Voxel rendering: In the rendering stage, various voxel 

rendering techniques can be used to display voxel data. This 

can include methods such as direct voxel rendering and voxel-

to-polygon conversion. (refer to Figure 6(d)) 

 

(a) (b) 
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(a) (b) 

  
(c) (d) 

Figure 6.(a)Regions to Be Voxelized After 

Evaluation.(b)Nodes Contain Point Clouds and 

Voxels.(c)Voxel Details. (d)Original Point Clouds Below the 

Voxels 

 

3.3   Efficient Scheduling of Large Scale Point Cloud 

The multi-resolution construction addresses the issue of spatial 

data organization when rapidly visualizing large-scale point 

clouds on the Web. In addition, it is necessary to combine 

efficient scheduling algorithms to manage the node data within 

the multi-resolution structure. This chapter will propose and 

implement efficient scheduling algorithms for multi-resolution 

point clouds from two aspects: node visibility determination 

and multi-resolution structure traversal(Guo and Wang, 2024). 

By minimizing the loading and rendering of invalid nodes 

while maintaining the integrity of point clouds within the 

visible range, the goal of visualizing massive point clouds on 

the Web can be achieved. 

 

This paper achieves rapid visualization of large-scale point 

clouds through Three.js. Three.js uses WebGL as the 

underlying rendering technology and specifically handles point 

cloud data via the THREE.Points class. The core process of 

point cloud visualization is converting points in three-

dimensional space into pixels on the screen. Specifically, it first 

creates a geometry to store the positional data of the points, 

then applies materials to define the appearance of the points, 

such as size and color. During rendering, Three.js automatically 

applies frustum culling, rendering only the points within the 

camera's view, which greatly enhances performance. For large-

scale point clouds, it supports memory optimization using 

BufferGeometry and can dynamically adjust the density of 

displayed points based on distance through Level of Detail 

(LOD) techniques. Three.js also provides various shaders and 

post-processing effects, enabling dynamic changes in point size, 

color, and transparency, as well as advanced visual effects like 

Screen Space Ambient Occlusion (SSAO). 

 

In traditional Three.js development, Three.js already supports 

frustum culling during object rendering. However, this culling 

method is not suitable for the dynamic Level of Detail (LOD) 

structure proposed in this paper. The scheduling and rendering 

of multi-resolution point clouds and models involve both 

scheduling and rendering processes. The frustum culling 

provided by Three.js only satisfies the rendering stage, while 

the nodes that need to be rendered are determined during the 

scheduling process. Therefore, if frustum culling could be 

applied during the scheduling process to eliminate most nodes, 

it would reduce unnecessary data requests to the server and 

improve the system's rendering efficiency(Röttger et al., 1998). 

 

The LOD structure of point clouds is essentially a multi-

resolution octree, where each node in the tree contains both 

geometric data and node description information. The node 

description information includes the indexing relationships 

between the current node and its child nodes, as well as the 

bounding box information of the node. During the initial 

scheduling, the description information of the root node is first 

loaded, and the relationship between the root node and its child 

nodes is established within the scheduling system. At this stage, 

no geometric data exists in the scheduling system.  

 

Based on the bounding box information of the nodes, an 

intersection test between the view frustum and the bounding 

boxes is performed using Three.js, resulting in three possible 

spatial relationships: 

 

1. The bounding box of the node is not within the view frustum: 

In this case, the geometric data within this node must also be 

outside the view frustum, and therefore, it does not need to be 

loaded or rendered. 

 

2. The bounding box of the node is entirely within the view 

frustum: Consequently, the geometric data within this node is 

also entirely within the view frustum. The node is deemed 

visible and is fully loaded for rendering. 

 

3. The bounding box of the node intersects with the view 

frustum: Under this condition, a scenario need to be evaluated: 

Intersection with a voxel or point: It is possible that only a 

portion of the node lies within the view frustum. By further 

performing intersection tests between the bounding boxes of 

the child nodes and the view frustum, additional nodes can be 

culled. This process is recursively executed until all nodes are 

determined to be entirely within the view frustum. 

 

Through this approach, the scheduling process effectively 

leverages frustum culling to minimize unnecessary data 

requests to the server and enhance the rendering efficiency of 

the system, thereby facilitating the visualization of massive 

point clouds on the Web. 

 

4.  Experiment and Result Analysis 

The point cloud data in this paper originates from self-collected 

raw point cloud data. Each point consists of three-dimensional 

coordinate information (longitude, latitude, and elevation). 

Experimental Data Area a is sourced from the first floor of 

Building F at Beijing University of Civil Engineering and 

Architecture, containing 59,367,498 points with a file size of 

2.31 GB. Experimental Area b is sourced from Building 2 of a 

high-efficiency teaching building in Beijing, containing 

86,336,488 points with a file size of 2.59 GB. The experimental 

environments are shown in Table 1. 

 

Category Configuration Details 

Hardware 
CPU 

Intel(R)Core(TM)i7-6700 

CPU @ 3.40GHz 

RAM 16 GB 
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ROM 3.64 TB HDD 

GPU 
NVIDIA GeForce RTX 

3050 (8 GB) 

Software 

Operating 

System 

Windows 10 64-bit 

Professional Edition 

Development 

Environment 
Visual Studio Code 

Graphics 

Interface 
Vue 3 + Three.js 

Table 1.Experimental Environment Configuration 

 

The two datasets were partitioned and organized using different 

methods, and the comparison results are revealed in Figures 7., 

8., 9., and 10.: 

 

Figure 7. Octree Partitioning Using the Potree Method 

 

Figure 8. Octree Partitioning Using the Method Proposed in 

Our Method 

Refer to Figures 7. and 8., the octree structure generated by the 

Potree method is more complex and provides better detail 

representation, but this reduces loading efficiency. Our method 

generates a simpler octree structure because some point clouds 

are pre-loaded as voxels. While this may sacrifice some details 

in large-scale scenes, when the scale increases, the point clouds 

within voxels load normally. This approach ensures efficiency 

while preserving all details. 

 

Figure 9. Low-Level LOD of the Initial Octree Partitioning 

 

 

Figure 10. High-Level LOD of the Octree after Secondary 

Organization 

According to Figures 9. and 10., the leaf nodes in low-level 

LOD have large gaps between them, with noise points causing 

interference at the edges, resulting in somewhat rough details. 

After processing with our method, the generated point cloud 

LOD at higher levels—which display more refined point cloud 

detail—removes noise point interference and supports dynamic 

LOD, creating a modifiable point-voxel hybrid octree. 

 

Area Points Method Time LOD 

Area a 59,367,498 Potree 30.18s Static  

Area b 86,336,488 Potree 42.33s Static  

Area a 59,367,498 Our 21.56s Dynamic 

Area b 86,336,488 Our 30.67s Dynamic 

Table 2.Comparison of the construction speed between our 

method and Potree 

Based on the Table 2., our method demonstrates significant 

advantages in point cloud data processing across two areas. 

Specifically, for Area a, the Potree method requires 30.18 

seconds, while our dynamic LOD method completed the task in 

just 21.56 seconds, achieving a performance gain of 

approximately 29% over the Potree method. Similarly, for Area 

b, the Potree method takes 42.33 seconds, whereas our 

approach requires only 30.67 seconds, representing an 

improvement of approximately 28%. Additionally, the Potree 

employs Static LOD , while our method utilizes Dynamic LOD, 

which not only improves processing speed but may also 

provide more flexible and efficient point cloud rendering 

effects in various application scenarios. Overall, the data 

indicates that our method can significantly reduce the time 

required and optimize performance when processing large-

scale point cloud data. 

 

5.  Conclusion 

This paper presents a method utilizing secondary point cloud 

sampling combined with partial voxelization to create a point-

voxel hybrid octree. Our approach enables rapid point cloud 

visualization on WebGL, allowing for display, editing, and 

other operations across larger areas, with data scheduling 

efficiency improved by 24.5% and faster visualization 

rendering speeds (refer to Table 2.). The generation of voxels 

effectively eliminates the adverse effects of noise points on 

data quality, performing excellently when processing medium-

scale datasets. The dynamic point cloud LOD generation 
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ensures that the original data's octree structure remains 

unaffected, eliminating the need for rebuilding after modifying 

portions of the point cloud. This study was conducted on well-

registered and integrated point cloud datasets. Despite its 

promising results, our method currently does not handle 

dynamic scenes where the point cloud itself changes over time 

(e.g., moving objects). The voxelization process is also based 

on simple color averaging and could be improved with more 

advanced attribute filtering techniques. Future work will focus 

on extending our framework to support dynamic point clouds 

by incorporating incremental update mechanisms into the 

octree. We also plan to explore more sophisticated voxel 

attribute computation methods and investigate the application 

of our algorithm in collaborative VR/AR environments. 
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