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Abstract

The rapid development of 3D scanning technology has significantly reduced the cost of acquiring high-precision point cloud data,
leading to exponential growth in applications such as digital city modeling, autonomous driving, and virtual reality. However,
managing point cloud datasets containing hundreds of millions of points poses severe challenges for storage, transmission, and real-
time rendering. Traditional Level of Detail (LOD) techniques struggle to balance efficiency and accuracy, especially under dynamic
viewpoints and complex scenes. This paper introduces an enhanced dynamic adaptive LOD algorithm designed to boost the
interactivity of large-scale point clouds and eliminate the need for re-computation when data is modified. The research objective is to
address the bottleneck in real-time processing of large-scale point cloud data through improved data structures and sampling
strategies.Our method builds a multi-resolution data structure that combines octree indexing with spatial sampling to achieve
efficient spatial queries. The technical core is a point-voxel hybrid octree based on secondary sampling, which significantly improves
visualization efficiency. The innovation lies in the adaptive sampling technique, which dynamically adjusts grid size according to
point cloud density, enhancing sampling efficiency and detail precision in both sparse and dense regions.The experimental
implementation uses WebGL, Vue, Three.js, Node.js, and MySQL technologies. Test results reveal significant improvements in
rendering speed and resource utilization. This research not only enhances real-time rendering capabilities for large-scale point clouds
but also has important application value in fields such as GIS and real-time SLAM.

1. Introduction characteristics of point cloud data and lack mechanisms for
adaptive adjustment based on the local complexity of the point
Driven by rapid progress in 3D scanning technology, high- cloud, resulting in lower resource utilization(Schtitz, 2015).
precision point clouds have become a foundational dataset for

numerous applications, even as their scale continues to grow. In The specific research process of this paper is as follows(refer to

order to obtain detailed three-dimensional point cloud data, the
data volume has also increased accordingly. (Han et al., 2017)
These massive point cloud datasets have been widely applied in
multiple fields, including but not limited to digital cities,
autonomous driving, and virtual reality. However, large-scale
point cloud data usually contains hundreds of millions of points,
and such large-scale data volume poses severe challenges to
storage, transmission, and rendering. Level of Detail (LOD)
technology is one of the key technologies for addressing large-
scale point cloud rendering and visualization(Abualdenien and
Borrmann, 2022). LOD technology employs models of
different precision at different viewing distances, reducing data
processing volume while ensuring visual effects, thereby
decreasing the computational load of visualization technology.
Traditional LOD technology mainly targets continuous surface
models, and its application effect on discrete point cloud data is
relatively limited.

Currently, LOD technology for point clouds has made certain
progress, but still faces many challenges when processing
dynamic scenes: most point cloud LOD methods are based on
static LOD, which generates different levels of LOD during the
preprocessing stage(Han et al., 2017). This approach results in
the point cloud being unable to adapt to dynamically changing
viewpoints and environments during visualization. Some
dynamic LOD methods can adapt to viewpoint changes to a
certain extent, but struggle to balance precision and efficiency,
especially revealing lower efficiency when processing large-
scale point cloud data. Building on this, some dynamic LOD
methods generally do not consider the spatial distribution

Figure 1.): Step 1 transforms raw point cloud data through
quadtree and octree construction with sparse grid merging to
build a global octree; Step 2 creates a point-voxel hybrid octree
through voxelization and establishes dynamic LOD structures;
and Step 3 implements efficient rendering through view
frustum culling and visible node determination, enabling rapid
visualization of the processed data.
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Figure 1.Workflow diagram.(Step 1.Octree construction. Step
2.Dynamic LOD construction. Step 3.High-quality rendering)
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2. Construction of Large Scale Point Cloud

The data level of large-scale point cloud data can reach tens of
billions or hundreds of billions. Directly reading and rendering
these data as a whole on browsers places very high demands on
hardware and software, making rendering extremely difficult.
Scholars both domestically and internationally have researched
many methods for organizing point clouds. To address the
characteristics of different data, hybrid tree structures have
been most widely applied, including: hybrid structures of
octrees and KD trees, hybrid structures of extended quadtrees
and three-dimensional R-trees, dual-layer quadtree structures,
hybrid structures of quadtrees and KD trees, dual-layer octree
structures, hybrid structures of KD trees and chain-linked
octrees, hybrid structures using octrees nested with spatial grids,
and so on(Schwalbe and Finzel, 2024).Our method efficiently
organizes and schedules point cloud data by employing a dual-
sampling approach to generate a voxel-point hybrid octree.

2.1 Point Cloud Octree Construction

Adopted in this paper is an octree-based spatial partitioning
structure, which samples point cloud data from top to bottom
during the construction process to generate a multi-resolution
form. The multi-resolution organization of point clouds
contains two parts: point cloud data and node information. The
point cloud data consists of the geometric data of the node,
while the node information mainly includes the total number of
points, node bounding box, node name, node size, number of
child nodes, and other information, providing necessary
traversal parameters for subsequent point cloud visualization
and scheduling(Huang, H., 2023).

For efficient data management, we structure the point cloud
into a non-redundant octree. The primary goal of this structure
is to ensure that every point from the original dataset has a
unique location within the hierarchy. This is achieved by
partitioning the space and assigning points exclusively to one
node. Consequently, the hierarchy is not a series of overlapping,
simplified views, but a collection of mutually exclusive data
blocks. Higher-level nodes provide a coarse overview, while
deeper nodes progressively add finer details. This organization
method is critical for minimizing storage footprint and
preventing data duplication during rendering and modification.
The terminal nodes of this tree, or leaf nodes, represent the
finest spatial partitioning of the dataset.
Level 1

Level 2
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Figure 2.Octree diagram

2.2 Construction of Point Cloud Spatial Index

Different resolution levels between point clouds are mainly
achieved through sampling. Commonly used sampling methods
include random sampling, grid-based sampling, and Poisson
disk sampling. As shown in Figure 3., random sampling
exhibits extremely uneven distribution, with significant density
variations in the spatial distribution of point clouds. Poisson
disk sampling is widely used in two-dimensional image
processing for point rendering, and its sampling results ensure
that the distance between points does not exceed a specified
minimum distance, i.e., the radius of the given Poisson disk,
resulting in a uniform spatial distribution. The grid method
divides space into square grids, and when points exist within a
cell, they are moved to the center of the cell. The distance
between all points can be maintained at the grid size, which is a
conventional method for generating uniform distances between
points. Initially, to reduce the influence of noise points and
ensure efficiency, grid-based sampling is used for the first
sampling. After generating regular grids, the number of points
in each grid is detected, and grids with point counts below the
set threshold are removed, thereby eliminating some noise

points, which will affect the study area.
R [
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Figure 3. Different sampling methods.(a) Original Data
(b)Random Sampling (c¢) Grid Sampling(d) Poisson Disk

Sampling

The second processing, Poisson disk sampling is selected as it
produces the best sampling results, because it can
simultaneously satisfy both uniformity and randomness. This
means that the generated points maintain a minimum distance
to avoid excessive clustering, while not exhibiting the artificial
patterns seen in regular grids. This blue noise characteristic
allows the sampled points to better preserve the original
geometric features while reducing data volume. This method
appears more natural visually, offers high sampling efficiency,
and can adapt to different density requirements by adjusting the
minimum distance parameter. These qualities make it perform
excellently in applications such as point cloud reconstruction,
3D scanning, and geometric processing, achieving an ideal
balance between fidelity and computational efficiency.

2.3 Grid Merging Algorithm Construction

Shown in the previous section, after organizing the point cloud
into an initial global octree structure, uniform grids are
generated based on the octree leaf node ranges through the
bounding box generated from the global point cloud, with
resolution determined by the node level(Lv et al., 2024). While
ensuring the integrity of point cloud geometric features, data
storage redundancy is reduced by merging grid blocks in low-
density or low-feature areas, thereby improving retrieval and
rendering efficiency for large-scale point clouds.

Node undergoes grid division, and for each cell, it's convenient
to record both the points falling within it and its surrounding
cells. To accelerate the distance-checking process required by
Poisson disk sampling, we implement a spatial grid
acceleration structure. Instead of comparing a new point
candidate against all existing points in the node, the search

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-143-2025 | © Author(s) 2025. CC BY 4.0 License. 144



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22—24 August 2025, Beijing, China

space is localized. The algorithm only needs to compute
distances to points within the candidate's own grid cell and its
immediate 26 neighboring cells. This spatial hashing technique
dramatically reduces the number of distance calculations,
transforming the problem from a costly global search to an
efficient local one. To enable Poisson disk sampling between
adjacent nodes, the neighborhood cells of each cell include
both cells within the node and cells outside the node. When
filling point clouds into tree nodes, distance judgments must be
made not only with neighborhood cells within the node but also
with cells in adjacent nodes. However, whether inside or
outside the node, calculations still involve points from at most
27 cells. Creating spatial grids based on nodes not only
improves algorithm efficiency to some extent but also
effectively avoids the problem of dense sampling results
occurring at the boundaries of adjacent nodes.
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Figure 4.Grids of different sizes:(a)Smaller size grid.(b)Larger
size grid.

Size of the cell is between the spacing of the current level and
the node size.If the size is too small, it will occupy more
memory space and reduce performance; if the size is too large,
the cost of distance judgment between points cannot be
effectively addressed. Figure 4. illustrates the effects of
different grid sizes, showing that whenever a point is added, the
distance from that point to all points in its cell and adjacent
cells will be calculated. Points that pass the distance check will
be added to the green cell. When a cell receives its first point, a
cell instance will be created, and it will determine whether
neighborhood cells already exist. If they do, this cell will be
added to the neighborhood list of those neighborhood cells.
This process merges into a complete octree, preparing for
subsequent LOD (Level of Detail) generation operations.

3. Construction of Point Cloud Dynamic LOD

Detailing the method for generating the point cloud octree
structure, we further consider how to utilize this structure to
implement dynamic Level of Detail (LOD) display for point
clouds. As an efficient spatial partitioning structure, the octree
not only provides an organizational framework for point cloud
data but also lays the foundation for dynamic LOD technology.
By reasonably utilizing the hierarchical characteristics of the
octree, we can dynamically adjust the display density and
refinement level of the point cloud based on viewing angle,
distance, and computational resource limitations, thereby
optimizing rendering performance while maintaining visual

quality.
3.1 Generation of Point Voxel Octree

Point clouds requires a level of detail structure. When
processing large-scale point cloud data, completely loading and
rendering all points would lead to excessive consumption of
computational resources, especially for real-time application
scenarios. Important characteristics of LOD structures include

reducing loading time and memory usage, improving rendering
performance, and ensuring low computational complexity for
each loading operation. This is particularly important for point
cloud applications in network environments, where users can
first see a low-resolution point cloud model, followed by
gradually loading more refined details in Figure 5. This
approach not only reduces computational complexity but also
optimizes bandwidth usage while improving the user
experience.

(a) (b)
Figure 5. (a)Low level LOD.(b)High level LOD.

Computation time for points, this is achieved by voxelizing
some of the points. Color-filtered voxels are generated at lower
LOD levels to enhance visual quality, creating a point-voxel
hybrid octree. The necessity of this hybrid structure is reflected
in multiple aspects: First, it effectively balances the
contradiction between storage efficiency and data accuracy,
significantly saving storage compared to the original point
cloud while retaining more detail than pure voxel
representation. Second, the hybrid structure supports multi-
resolution data access, allowing the rendering system to
intelligently select appropriate representation methods based on
viewing distance—using voxel representation at a distance to
improve efficiency and point representation up close to ensure
accuracy.

3.2 Voxelization and Voxel Based Level of Detail

Under the point-voxel hybrid octree structure, the basic steps to
convert part of the point cloud data into voxels are as
follows(refer to Figure 6.):

1)Mapping from point cloud to voxels: For each voxel (octree
node), find all the points that fall within this voxel. This can be
achieved by comparing the coordinates of the points with the
boundaries of the voxel. Then, calculate the attributes of the
voxel based on the attributes of these points. (based on Figure 6
(a) and (b))

2)Voxel refinement: During the LOD (Level of Detail)
generation process, voxels can be dynamically refined or
merged as needed. For example, if a voxel is close to the
observer, it may need to be further subdivided into smaller
voxels. Conversely, if a voxel is far from the observer, it may
be possible to merge it with adjacent voxels to reduce rendering
complexity.(refer to Figure 6(c))

3)Voxel rendering: In the rendering stage, various voxel
rendering techniques can be used to display voxel data. This
can include methods such as direct voxel rendering and voxel-
to-polygon conversion. (refer to Figure 6(d))
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Figure 6.(a)Regions to Be Voxelized After
Evaluation.(b)Nodes Contain Point Clouds and
Voxels.(c)Voxel Details. (d)Original Point Clouds Below the
Voxels

3.3 Efficient Scheduling of Large Scale Point Cloud

The multi-resolution construction addresses the issue of spatial
data organization when rapidly visualizing large-scale point
clouds on the Web. In addition, it is necessary to combine
efficient scheduling algorithms to manage the node data within
the multi-resolution structure. This chapter will propose and
implement efficient scheduling algorithms for multi-resolution
point clouds from two aspects: node visibility determination
and multi-resolution structure traversal(Guo and Wang, 2024).
By minimizing the loading and rendering of invalid nodes
while maintaining the integrity of point clouds within the
visible range, the goal of visualizing massive point clouds on
the Web can be achieved.

This paper achieves rapid visualization of large-scale point
clouds through Three.js. Threejs uses WebGL as the
underlying rendering technology and specifically handles point
cloud data via the THREE.Points class. The core process of
point cloud visualization is converting points in three-
dimensional space into pixels on the screen. Specifically, it first
creates a geometry to store the positional data of the points,
then applies materials to define the appearance of the points,
such as size and color. During rendering, Three.js automatically
applies frustum culling, rendering only the points within the
camera's view, which greatly enhances performance. For large-
scale point clouds, it supports memory optimization using
BufferGeometry and can dynamically adjust the density of
displayed points based on distance through Level of Detail
(LOD) techniques. Three.js also provides various shaders and
post-processing effects, enabling dynamic changes in point size,
color, and transparency, as well as advanced visual effects like
Screen Space Ambient Occlusion (SSAO).

In traditional Three.js development, Three.js already supports
frustum culling during object rendering. However, this culling
method is not suitable for the dynamic Level of Detail (LOD)
structure proposed in this paper. The scheduling and rendering
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of multi-resolution point clouds and models involve both
scheduling and rendering processes. The frustum culling
provided by Three.js only satisfies the rendering stage, while
the nodes that need to be rendered are determined during the
scheduling process. Therefore, if frustum culling could be
applied during the scheduling process to eliminate most nodes,
it would reduce unnecessary data requests to the server and
improve the system's rendering efficiency(Rottger et al., 1998).

The LOD structure of point clouds is essentially a multi-
resolution octree, where each node in the tree contains both
geometric data and node description information. The node
description information includes the indexing relationships
between the current node and its child nodes, as well as the
bounding box information of the node. During the initial
scheduling, the description information of the root node is first
loaded, and the relationship between the root node and its child
nodes is established within the scheduling system. At this stage,
no geometric data exists in the scheduling system.

Based on the bounding box information of the nodes, an
intersection test between the view frustum and the bounding
boxes is performed using Three.js, resulting in three possible
spatial relationships:

1. The bounding box of the node is not within the view frustum:
In this case, the geometric data within this node must also be
outside the view frustum, and therefore, it does not need to be
loaded or rendered.

2. The bounding box of the node is entirely within the view
frustum: Consequently, the geometric data within this node is
also entirely within the view frustum. The node is deemed
visible and is fully loaded for rendering.

3. The bounding box of the node intersects with the view
frustum: Under this condition, a scenario need to be evaluated:
Intersection with a voxel or point: It is possible that only a
portion of the node lies within the view frustum. By further
performing intersection tests between the bounding boxes of
the child nodes and the view frustum, additional nodes can be
culled. This process is recursively executed until all nodes are
determined to be entirely within the view frustum.

Through this approach, the scheduling process effectively
leverages frustum culling to minimize unnecessary data
requests to the server and enhance the rendering efficiency of
the system, thereby facilitating the visualization of massive
point clouds on the Web.

4. Experiment and Result Analysis

The point cloud data in this paper originates from self-collected
raw point cloud data. Each point consists of three-dimensional
coordinate information (longitude, latitude, and elevation).
Experimental Data Area a is sourced from the first floor of
Building F at Beijing University of Civil Engineering and
Architecture, containing 59,367,498 points with a file size of
2.31 GB. Experimental Area b is sourced from Building 2 of a
high-efficiency teaching building in Beijing, containing
86,336,488 points with a file size of 2.59 GB. The experimental
environments are shown in Table 1.

Category | Configuration Details
CPU Intel(R)Core(TM)i7-6700
Hardware CPU @ 3.40GHz
RAM 16 GB
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ROM 3.64 TB HDD
NVIDIA GeForce RTX
GPU 3050 (8 GB)
Operating Windows 10 64-bit
System Professional Edition
Software Dev;lop ment Visual Studio Code
Environment
Graphics .
Interface Vue 3 + Three.js

Table 1.Experimental Environment Configuration

The two datasets were partitioned and organized using different
methods, and the comparison results are revealed in Figures 7.,
8.,9.,and 10.:

Figure 8. Octree Partitioning Using the Method Proposed in
Our Method

Refer to Figures 7. and 8., the octree structure generated by the
Potree method is more complex and provides better detail
representation, but this reduces loading efficiency. Our method
generates a simpler octree structure because some point clouds
are pre-loaded as voxels. While this may sacrifice some details
in large-scale scenes, when the scale increases, the point clouds
within voxels load normally. This approach ensures efficiency
while preserving all details.

Figure 9. Low-Level LOD of the Initial Octree Partitioning

Figure 10. High-Level LOD of the Octree after Secondary
Organization

According to Figures 9. and 10., the leaf nodes in low-level
LOD have large gaps between them, with noise points causing
interference at the edges, resulting in somewhat rough details.
After processing with our method, the generated point cloud
LOD at higher levels—which display more refined point cloud
detail—removes noise point interference and supports dynamic
LOD, creating a modifiable point-voxel hybrid octree.

Area Points Method Time LOD
Areaa 59,367,498 Potree  30.18s Static
Areab 86,336,488 Potree  42.33s Static
Area a 59,367,498 Our 21.56s  Dynamic
Area b 86,336,488 Our 30.67s  Dynamic

Table 2.Comparison of the construction speed between our
method and Potree

Based on the Table 2., our method demonstrates significant
advantages in point cloud data processing across two areas.
Specifically, for Area a, the Potree method requires 30.18
seconds, while our dynamic LOD method completed the task in
just 21.56 seconds, achieving a performance gain of
approximately 29% over the Potree method. Similarly, for Area
b, the Potree method takes 42.33 seconds, whereas our
approach requires only 30.67 seconds, representing an
improvement of approximately 28%. Additionally, the Potree
employs Static LOD , while our method utilizes Dynamic LOD,
which not only improves processing speed but may also
provide more flexible and efficient point cloud rendering
effects in various application scenarios. Overall, the data
indicates that our method can significantly reduce the time
required and optimize performance when processing large-
scale point cloud data.

5. Conclusion

This paper presents a method utilizing secondary point cloud
sampling combined with partial voxelization to create a point-
voxel hybrid octree. Our approach enables rapid point cloud
visualization on WebGL, allowing for display, editing, and
other operations across larger areas, with data scheduling
efficiency improved by 24.5% and faster visualization
rendering speeds (refer to Table 2.). The generation of voxels
effectively eliminates the adverse effects of noise points on
data quality, performing excellently when processing medium-
scale datasets. The dynamic point cloud LOD generation
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ensures that the original data's octree structure remains
unaffected, eliminating the need for rebuilding after modifying
portions of the point cloud. This study was conducted on well-
registered and integrated point cloud datasets. Despite its
promising results, our method currently does not handle
dynamic scenes where the point cloud itself changes over time
(e.g., moving objects). The voxelization process is also based
on simple color averaging and could be improved with more
advanced attribute filtering techniques. Future work will focus
on extending our framework to support dynamic point clouds
by incorporating incremental update mechanisms into the
octree. We also plan to explore more sophisticated voxel
attribute computation methods and investigate the application
of our algorithm in collaborative VR/AR environments.
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