

An Improved Adaptive Dynamic LOD Algorithm Based on Large-Scale Point Clouds

Zhaolong Li1,Chenzhe Wang2,Xuewei Chen3, Shiliang Tao4

1School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, China -

lzlfofficial@163.com
2 National Geomatics Center of China, Beijing, China - wangchenzhe@ngcc.cn

3 Tencent, Beijing, China - cxw0911@163.com
4 Tencent, Beijing, China - 505165517@qq.com

Keywords:Point Cloud, Level of Detail, Dynamic Scene, Adaptive Adjustment, Spatial Distribution Characteristics

Abstract

The rapid development of 3D scanning technology has significantly reduced the cost of acquiring high-precision point cloud data,

leading to exponential growth in applications such as digital city modeling, autonomous driving, and virtual reality. However,

managing point cloud datasets containing hundreds of millions of points poses severe challenges for storage, transmission, and real-

time rendering. Traditional Level of Detail (LOD) techniques struggle to balance efficiency and accuracy, especially under dynamic

viewpoints and complex scenes. This paper introduces an enhanced dynamic adaptive LOD algorithm designed to boost the

interactivity of large-scale point clouds and eliminate the need for re-computation when data is modified. The research objective is to

address the bottleneck in real-time processing of large-scale point cloud data through improved data structures and sampling

strategies.Our method builds a multi-resolution data structure that combines octree indexing with spatial sampling to achieve

efficient spatial queries. The technical core is a point-voxel hybrid octree based on secondary sampling, which significantly improves

visualization efficiency. The innovation lies in the adaptive sampling technique, which dynamically adjusts grid size according to

point cloud density, enhancing sampling efficiency and detail precision in both sparse and dense regions.The experimental

implementation uses WebGL, Vue, Three.js, Node.js, and MySQL technologies. Test results reveal significant improvements in

rendering speed and resource utilization. This research not only enhances real-time rendering capabilities for large-scale point clouds

but also has important application value in fields such as GIS and real-time SLAM.

1. Introduction

Driven by rapid progress in 3D scanning technology, high-

precision point clouds have become a foundational dataset for

numerous applications, even as their scale continues to grow. In

order to obtain detailed three-dimensional point cloud data, the

data volume has also increased accordingly. (Han et al., 2017)

These massive point cloud datasets have been widely applied in

multiple fields, including but not limited to digital cities,

autonomous driving, and virtual reality. However, large-scale

point cloud data usually contains hundreds of millions of points,

and such large-scale data volume poses severe challenges to

storage, transmission, and rendering. Level of Detail (LOD)

technology is one of the key technologies for addressing large-

scale point cloud rendering and visualization(Abualdenien and

Borrmann, 2022). LOD technology employs models of

different precision at different viewing distances, reducing data

processing volume while ensuring visual effects, thereby

decreasing the computational load of visualization technology.

Traditional LOD technology mainly targets continuous surface

models, and its application effect on discrete point cloud data is

relatively limited.

Currently, LOD technology for point clouds has made certain

progress, but still faces many challenges when processing

dynamic scenes: most point cloud LOD methods are based on

static LOD, which generates different levels of LOD during the

preprocessing stage(Han et al., 2017). This approach results in

the point cloud being unable to adapt to dynamically changing

viewpoints and environments during visualization. Some

dynamic LOD methods can adapt to viewpoint changes to a

certain extent, but struggle to balance precision and efficiency,

especially revealing lower efficiency when processing large-

scale point cloud data. Building on this, some dynamic LOD

methods generally do not consider the spatial distribution

characteristics of point cloud data and lack mechanisms for

adaptive adjustment based on the local complexity of the point

cloud, resulting in lower resource utilization(Schütz, 2015).

The specific research process of this paper is as follows(refer to

Figure 1.): Step 1 transforms raw point cloud data through

quadtree and octree construction with sparse grid merging to

build a global octree; Step 2 creates a point-voxel hybrid octree

through voxelization and establishes dynamic LOD structures;

and Step 3 implements efficient rendering through view

frustum culling and visible node determination, enabling rapid

visualization of the processed data.

Figure 1.Workflow diagram.(Step 1.Octree construction. Step

2.Dynamic LOD construction. Step 3.High-quality rendering)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-143-2025 | © Author(s) 2025. CC BY 4.0 License.

143

2. Construction of Large Scale Point Cloud

The data level of large-scale point cloud data can reach tens of

billions or hundreds of billions. Directly reading and rendering

these data as a whole on browsers places very high demands on

hardware and software, making rendering extremely difficult.

Scholars both domestically and internationally have researched

many methods for organizing point clouds. To address the

characteristics of different data, hybrid tree structures have

been most widely applied, including: hybrid structures of

octrees and KD trees, hybrid structures of extended quadtrees

and three-dimensional R-trees, dual-layer quadtree structures,

hybrid structures of quadtrees and KD trees, dual-layer octree

structures, hybrid structures of KD trees and chain-linked

octrees, hybrid structures using octrees nested with spatial grids,

and so on(Schwalbe and Finzel, 2024).Our method efficiently

organizes and schedules point cloud data by employing a dual-

sampling approach to generate a voxel-point hybrid octree.

2.1 Point Cloud Octree Construction

Adopted in this paper is an octree-based spatial partitioning

structure, which samples point cloud data from top to bottom

during the construction process to generate a multi-resolution

form. The multi-resolution organization of point clouds

contains two parts: point cloud data and node information. The

point cloud data consists of the geometric data of the node,

while the node information mainly includes the total number of

points, node bounding box, node name, node size, number of

child nodes, and other information, providing necessary

traversal parameters for subsequent point cloud visualization

and scheduling(Huang, H., 2023).

For efficient data management, we structure the point cloud

into a non-redundant octree. The primary goal of this structure

is to ensure that every point from the original dataset has a

unique location within the hierarchy. This is achieved by

partitioning the space and assigning points exclusively to one

node. Consequently, the hierarchy is not a series of overlapping,

simplified views, but a collection of mutually exclusive data

blocks. Higher-level nodes provide a coarse overview, while

deeper nodes progressively add finer details. This organization

method is critical for minimizing storage footprint and

preventing data duplication during rendering and modification.

The terminal nodes of this tree, or leaf nodes, represent the

finest spatial partitioning of the dataset.

Figure 2.Octree diagram

2.2 Construction of Point Cloud Spatial Index

Different resolution levels between point clouds are mainly

achieved through sampling. Commonly used sampling methods

include random sampling, grid-based sampling, and Poisson

disk sampling. As shown in Figure 3., random sampling

exhibits extremely uneven distribution, with significant density

variations in the spatial distribution of point clouds. Poisson

disk sampling is widely used in two-dimensional image

processing for point rendering, and its sampling results ensure

that the distance between points does not exceed a specified

minimum distance, i.e., the radius of the given Poisson disk,

resulting in a uniform spatial distribution. The grid method

divides space into square grids, and when points exist within a

cell, they are moved to the center of the cell. The distance

between all points can be maintained at the grid size, which is a

conventional method for generating uniform distances between

points. Initially, to reduce the influence of noise points and

ensure efficiency, grid-based sampling is used for the first

sampling. After generating regular grids, the number of points

in each grid is detected, and grids with point counts below the

set threshold are removed, thereby eliminating some noise

points, which will affect the study area.

(a) (b) (c) (d)

Figure 3. Different sampling methods.(a) Original Data

(b)Random Sampling (c) Grid Sampling(d) Poisson Disk

Sampling

The second processing, Poisson disk sampling is selected as it

produces the best sampling results, because it can

simultaneously satisfy both uniformity and randomness. This

means that the generated points maintain a minimum distance

to avoid excessive clustering, while not exhibiting the artificial

patterns seen in regular grids. This blue noise characteristic

allows the sampled points to better preserve the original

geometric features while reducing data volume. This method

appears more natural visually, offers high sampling efficiency,

and can adapt to different density requirements by adjusting the

minimum distance parameter. These qualities make it perform

excellently in applications such as point cloud reconstruction,

3D scanning, and geometric processing, achieving an ideal

balance between fidelity and computational efficiency.

2.3 Grid Merging Algorithm Construction

Shown in the previous section, after organizing the point cloud

into an initial global octree structure, uniform grids are

generated based on the octree leaf node ranges through the

bounding box generated from the global point cloud, with

resolution determined by the node level(Lv et al., 2024). While

ensuring the integrity of point cloud geometric features, data

storage redundancy is reduced by merging grid blocks in low-

density or low-feature areas, thereby improving retrieval and

rendering efficiency for large-scale point clouds.

Node undergoes grid division, and for each cell, it's convenient

to record both the points falling within it and its surrounding

cells. To accelerate the distance-checking process required by

Poisson disk sampling, we implement a spatial grid

acceleration structure. Instead of comparing a new point

candidate against all existing points in the node, the search

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-143-2025 | © Author(s) 2025. CC BY 4.0 License.

144

space is localized. The algorithm only needs to compute

distances to points within the candidate's own grid cell and its

immediate 26 neighboring cells. This spatial hashing technique

dramatically reduces the number of distance calculations,

transforming the problem from a costly global search to an

efficient local one. To enable Poisson disk sampling between

adjacent nodes, the neighborhood cells of each cell include

both cells within the node and cells outside the node. When

filling point clouds into tree nodes, distance judgments must be

made not only with neighborhood cells within the node but also

with cells in adjacent nodes. However, whether inside or

outside the node, calculations still involve points from at most

27 cells. Creating spatial grids based on nodes not only

improves algorithm efficiency to some extent but also

effectively avoids the problem of dense sampling results

occurring at the boundaries of adjacent nodes.

Figure 4.Grids of different sizes:(a)Smaller size grid.(b)Larger

size grid.

Size of the cell is between the spacing of the current level and

the node size.If the size is too small, it will occupy more

memory space and reduce performance; if the size is too large,

the cost of distance judgment between points cannot be

effectively addressed. Figure 4. illustrates the effects of

different grid sizes, showing that whenever a point is added, the

distance from that point to all points in its cell and adjacent

cells will be calculated. Points that pass the distance check will

be added to the green cell. When a cell receives its first point, a

cell instance will be created, and it will determine whether

neighborhood cells already exist. If they do, this cell will be

added to the neighborhood list of those neighborhood cells.

This process merges into a complete octree, preparing for

subsequent LOD (Level of Detail) generation operations.

3. Construction of Point Cloud Dynamic LOD

Detailing the method for generating the point cloud octree

structure, we further consider how to utilize this structure to

implement dynamic Level of Detail (LOD) display for point

clouds. As an efficient spatial partitioning structure, the octree

not only provides an organizational framework for point cloud

data but also lays the foundation for dynamic LOD technology.

By reasonably utilizing the hierarchical characteristics of the

octree, we can dynamically adjust the display density and

refinement level of the point cloud based on viewing angle,

distance, and computational resource limitations, thereby

optimizing rendering performance while maintaining visual

quality.

3.1 Generation of Point Voxel Octree

Point clouds requires a level of detail structure. When

processing large-scale point cloud data, completely loading and

rendering all points would lead to excessive consumption of

computational resources, especially for real-time application

scenarios. Important characteristics of LOD structures include

reducing loading time and memory usage, improving rendering

performance, and ensuring low computational complexity for

each loading operation. This is particularly important for point

cloud applications in network environments, where users can

first see a low-resolution point cloud model, followed by

gradually loading more refined details in Figure 5. This

approach not only reduces computational complexity but also

optimizes bandwidth usage while improving the user

experience.

(a) (b)

Figure 5. (a)Low level LOD.(b)High level LOD.

Computation time for points, this is achieved by voxelizing

some of the points. Color-filtered voxels are generated at lower

LOD levels to enhance visual quality, creating a point-voxel

hybrid octree. The necessity of this hybrid structure is reflected

in multiple aspects: First, it effectively balances the

contradiction between storage efficiency and data accuracy,

significantly saving storage compared to the original point

cloud while retaining more detail than pure voxel

representation. Second, the hybrid structure supports multi-

resolution data access, allowing the rendering system to

intelligently select appropriate representation methods based on

viewing distance—using voxel representation at a distance to

improve efficiency and point representation up close to ensure

accuracy.

3.2 Voxelization and Voxel Based Level of Detail

Under the point-voxel hybrid octree structure, the basic steps to

convert part of the point cloud data into voxels are as

follows(refer to Figure 6.):

1)Mapping from point cloud to voxels: For each voxel (octree

node), find all the points that fall within this voxel. This can be

achieved by comparing the coordinates of the points with the

boundaries of the voxel. Then, calculate the attributes of the

voxel based on the attributes of these points. (based on Figure 6

(a) and (b))

2)Voxel refinement: During the LOD (Level of Detail)

generation process, voxels can be dynamically refined or

merged as needed. For example, if a voxel is close to the

observer, it may need to be further subdivided into smaller

voxels. Conversely, if a voxel is far from the observer, it may

be possible to merge it with adjacent voxels to reduce rendering

complexity.(refer to Figure 6(c))

3)Voxel rendering: In the rendering stage, various voxel

rendering techniques can be used to display voxel data. This

can include methods such as direct voxel rendering and voxel-

to-polygon conversion. (refer to Figure 6(d))

(a) (b)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-143-2025 | © Author(s) 2025. CC BY 4.0 License.

145

(a) (b)

(c) (d)

Figure 6.(a)Regions to Be Voxelized After

Evaluation.(b)Nodes Contain Point Clouds and

Voxels.(c)Voxel Details. (d)Original Point Clouds Below the

Voxels

3.3 Efficient Scheduling of Large Scale Point Cloud

The multi-resolution construction addresses the issue of spatial

data organization when rapidly visualizing large-scale point

clouds on the Web. In addition, it is necessary to combine

efficient scheduling algorithms to manage the node data within

the multi-resolution structure. This chapter will propose and

implement efficient scheduling algorithms for multi-resolution

point clouds from two aspects: node visibility determination

and multi-resolution structure traversal(Guo and Wang, 2024).

By minimizing the loading and rendering of invalid nodes

while maintaining the integrity of point clouds within the

visible range, the goal of visualizing massive point clouds on

the Web can be achieved.

This paper achieves rapid visualization of large-scale point

clouds through Three.js. Three.js uses WebGL as the

underlying rendering technology and specifically handles point

cloud data via the THREE.Points class. The core process of

point cloud visualization is converting points in three-

dimensional space into pixels on the screen. Specifically, it first

creates a geometry to store the positional data of the points,

then applies materials to define the appearance of the points,

such as size and color. During rendering, Three.js automatically

applies frustum culling, rendering only the points within the

camera's view, which greatly enhances performance. For large-

scale point clouds, it supports memory optimization using

BufferGeometry and can dynamically adjust the density of

displayed points based on distance through Level of Detail

(LOD) techniques. Three.js also provides various shaders and

post-processing effects, enabling dynamic changes in point size,

color, and transparency, as well as advanced visual effects like

Screen Space Ambient Occlusion (SSAO).

In traditional Three.js development, Three.js already supports

frustum culling during object rendering. However, this culling

method is not suitable for the dynamic Level of Detail (LOD)

structure proposed in this paper. The scheduling and rendering

of multi-resolution point clouds and models involve both

scheduling and rendering processes. The frustum culling

provided by Three.js only satisfies the rendering stage, while

the nodes that need to be rendered are determined during the

scheduling process. Therefore, if frustum culling could be

applied during the scheduling process to eliminate most nodes,

it would reduce unnecessary data requests to the server and

improve the system's rendering efficiency(Röttger et al., 1998).

The LOD structure of point clouds is essentially a multi-

resolution octree, where each node in the tree contains both

geometric data and node description information. The node

description information includes the indexing relationships

between the current node and its child nodes, as well as the

bounding box information of the node. During the initial

scheduling, the description information of the root node is first

loaded, and the relationship between the root node and its child

nodes is established within the scheduling system. At this stage,

no geometric data exists in the scheduling system.

Based on the bounding box information of the nodes, an

intersection test between the view frustum and the bounding

boxes is performed using Three.js, resulting in three possible

spatial relationships:

1. The bounding box of the node is not within the view frustum:

In this case, the geometric data within this node must also be

outside the view frustum, and therefore, it does not need to be

loaded or rendered.

2. The bounding box of the node is entirely within the view

frustum: Consequently, the geometric data within this node is

also entirely within the view frustum. The node is deemed

visible and is fully loaded for rendering.

3. The bounding box of the node intersects with the view

frustum: Under this condition, a scenario need to be evaluated:

Intersection with a voxel or point: It is possible that only a

portion of the node lies within the view frustum. By further

performing intersection tests between the bounding boxes of

the child nodes and the view frustum, additional nodes can be

culled. This process is recursively executed until all nodes are

determined to be entirely within the view frustum.

Through this approach, the scheduling process effectively

leverages frustum culling to minimize unnecessary data

requests to the server and enhance the rendering efficiency of

the system, thereby facilitating the visualization of massive

point clouds on the Web.

4. Experiment and Result Analysis

The point cloud data in this paper originates from self-collected

raw point cloud data. Each point consists of three-dimensional

coordinate information (longitude, latitude, and elevation).

Experimental Data Area a is sourced from the first floor of

Building F at Beijing University of Civil Engineering and

Architecture, containing 59,367,498 points with a file size of

2.31 GB. Experimental Area b is sourced from Building 2 of a

high-efficiency teaching building in Beijing, containing

86,336,488 points with a file size of 2.59 GB. The experimental

environments are shown in Table 1.

Category Configuration Details

Hardware
CPU

Intel(R)Core(TM)i7-6700

CPU @ 3.40GHz

RAM 16 GB

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-143-2025 | © Author(s) 2025. CC BY 4.0 License.

146

ROM 3.64 TB HDD

GPU
NVIDIA GeForce RTX

3050 (8 GB)

Software

Operating

System

Windows 10 64-bit

Professional Edition

Development

Environment
Visual Studio Code

Graphics

Interface
Vue 3 + Three.js

Table 1.Experimental Environment Configuration

The two datasets were partitioned and organized using different

methods, and the comparison results are revealed in Figures 7.,

8., 9., and 10.:

Figure 7. Octree Partitioning Using the Potree Method

Figure 8. Octree Partitioning Using the Method Proposed in

Our Method

Refer to Figures 7. and 8., the octree structure generated by the

Potree method is more complex and provides better detail

representation, but this reduces loading efficiency. Our method

generates a simpler octree structure because some point clouds

are pre-loaded as voxels. While this may sacrifice some details

in large-scale scenes, when the scale increases, the point clouds

within voxels load normally. This approach ensures efficiency

while preserving all details.

Figure 9. Low-Level LOD of the Initial Octree Partitioning

Figure 10. High-Level LOD of the Octree after Secondary

Organization

According to Figures 9. and 10., the leaf nodes in low-level

LOD have large gaps between them, with noise points causing

interference at the edges, resulting in somewhat rough details.

After processing with our method, the generated point cloud

LOD at higher levels—which display more refined point cloud

detail—removes noise point interference and supports dynamic

LOD, creating a modifiable point-voxel hybrid octree.

Area Points Method Time LOD

Area a 59,367,498 Potree 30.18s Static

Area b 86,336,488 Potree 42.33s Static

Area a 59,367,498 Our 21.56s Dynamic

Area b 86,336,488 Our 30.67s Dynamic

Table 2.Comparison of the construction speed between our

method and Potree

Based on the Table 2., our method demonstrates significant

advantages in point cloud data processing across two areas.

Specifically, for Area a, the Potree method requires 30.18

seconds, while our dynamic LOD method completed the task in

just 21.56 seconds, achieving a performance gain of

approximately 29% over the Potree method. Similarly, for Area

b, the Potree method takes 42.33 seconds, whereas our

approach requires only 30.67 seconds, representing an

improvement of approximately 28%. Additionally, the Potree

employs Static LOD , while our method utilizes Dynamic LOD,

which not only improves processing speed but may also

provide more flexible and efficient point cloud rendering

effects in various application scenarios. Overall, the data

indicates that our method can significantly reduce the time

required and optimize performance when processing large-

scale point cloud data.

5. Conclusion

This paper presents a method utilizing secondary point cloud

sampling combined with partial voxelization to create a point-

voxel hybrid octree. Our approach enables rapid point cloud

visualization on WebGL, allowing for display, editing, and

other operations across larger areas, with data scheduling

efficiency improved by 24.5% and faster visualization

rendering speeds (refer to Table 2.). The generation of voxels

effectively eliminates the adverse effects of noise points on

data quality, performing excellently when processing medium-

scale datasets. The dynamic point cloud LOD generation

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-143-2025 | © Author(s) 2025. CC BY 4.0 License.

147

ensures that the original data's octree structure remains

unaffected, eliminating the need for rebuilding after modifying

portions of the point cloud. This study was conducted on well-

registered and integrated point cloud datasets. Despite its

promising results, our method currently does not handle

dynamic scenes where the point cloud itself changes over time

(e.g., moving objects). The voxelization process is also based

on simple color averaging and could be improved with more

advanced attribute filtering techniques. Future work will focus

on extending our framework to support dynamic point clouds

by incorporating incremental update mechanisms into the

octree. We also plan to explore more sophisticated voxel

attribute computation methods and investigate the application

of our algorithm in collaborative VR/AR environments.

References

Abualdenien, J., Borrmann, A., 2022: Levels of detail,

development, definition, and information need: a critical

literature review. Journal of Information Technology in

Construction 27.

Bagul, S., Laefer, D., 2022: Three-Dimensional Enablement of

Place-Based, Pandemic Behaviors. ISPRS Annals of the

Photogrammetry, Remote Sensing and Spatial Information

Sciences 10, 21-28.

Fang, Y., Li, Y., Fan, L., 2024: A Case Study on the 3D

Interactive Virtual Geological Scene of the Yangshan

Monument for Geology Education. 2024 International

Conference on Virtual Reality Technology 68-73.

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., Bennamoun, M.,

2020: Deep learning for 3d point clouds: A survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence

43(12), 4338-4364.

Han, S., 2018: Towards efficient implementation of an octree

for a large 3D point cloud. Sensors 18(12), 4398.

Han, X. F., Jin, J. S., Wang, M. J., Jiang, W., Gao, L., Xiao, L.,

2017: A review of algorithms for filtering the 3D point cloud.

Signal Processing: Image Communication 57, 103-112.

Huang, H., 2023: Construction of Multi-resolution Spatial Data

Organization for Ultralarge-scale 3D Laser Point Cloud.

Sensors and Materials 35(1), 87-102.

Lei, H., Akhtar, N., Mian, A., 2019: Octree guided cnn with

spherical kernels for 3d point clouds. IEEE/CVF conference on

computer vision and pattern recognition 9631-9640.

Lv, J., Su, H., Liu, Q., Yuan, H., 2024: No-reference bitstream-

based perceptual quality assessment of octree-lifting encoded

3D point clouds. IEEE Transactions on Visualization and

Computer Graphics.

Röttger, S., Heidrich, W., Slusallek, P., Seidel, H. P., 1998:

Real-time generation of continuous levels of detail for height

fields WSCG’98 315-322.

Rusu, R. B., Cousins, S., 2011: 3d is here: Point cloud library

(pcl). 2011 IEEE International Conference on Robotics and

Automation 1-4.

Schütz, M., 2015: Potree: Rendering large point clouds in web

browsers. Doctoral dissertation, Technische Universität Wien.

Schwalbe, G., Finzel, B., 2024: A comprehensive taxonomy for

explainable artificial intelligence: a systematic survey of

surveys on methods and concepts. Data Mining and Knowledge

Discovery 38(5), 3043-3101.

Umemiya, S., Hasegawa, R., Yasumuro, Y., Kubota, S., 2024:

Maintenance Information System of Utility Tunnel Using 3D

Point Cloud Data. Springer Nature, Cham.

Vo, A. V., Truong, H. L., Laefer, D. F., Bertolotto, M., 2015:

Octree-based region growing for point cloud

segmentation. ISPRS Journal of Photogrammetry and Remote

Sensing 104, 88-100.

Yeshwanth, K. A., Noufia, M. A., Shahira, K. A., Ramiya, A.

M., 2019: Building information modelling of a multi storey

building using terrestrial laser scanner and visualisation using

potree: An open source point cloud renderer. The International

Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences 42, 421-426.

Zhang, W. Y., Tan, G. X., 2022: Research on semantic 3D

building modeling with multiple levels of detail. Journal of

Graphics 43(1), 163.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-143-2025 | © Author(s) 2025. CC BY 4.0 License.

148

