The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22—24 August 2025, Beijing, China

Voxel-based Path Planning for UAVs in Indoor Dynamic Environments

Yonghan Liao?, Zhiyong Wang'*, Yongjie Lin!, Chengzong Liu', Lang Hu?, Yilang Lin?, Junjie Lu?, Zhendong Wu?

1School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510006, China -
2868993360@qg.com, zwang1984@scut.edu.cn, linyjscut@scut.edu.cn, 3482485224@qq.com, hulang_6@163.com,
1737064645@qg.com, 1154967190@qq.com, 202421009738@mail.scut.edu.cn
(*corresponding author)

Keywords: Voxel Modeling, Drone Navigation, Dynamic Obstacle Prediction, A* Path Planning

Abstract

This study presents a voxel-based path planning framework for unmanned aerial vehicles (UAVs) operating in complex indoor
dynamic environments. To overcome the limitations of traditional 2D grid maps and static planning methods, the proposed system
integrates real-time voxel modeling, Kalman filter-based dynamic obstacle prediction, and an improved A* algorithm with kinematic
constraints. The environment is reconstructed from LiDAR-acquired point clouds and discretized into uniform voxel grids to support
efficient 3D spatial queries. Predicted obstacle trajectories are incorporated into a risk assessment mechanism that triggers path
replanning when safety thresholds are violated. The enhanced A* algorithm introduces directional continuity constraints and Z-axis
motion suppression to reduce path oscillations and improve trajectory feasibility. Experimental results in simulated warehouse-like
environments demonstrate improved path smoothness, fewer vertical oscillations, and higher success rates in avoiding dynamic
obstacles compared to conventional approaches. The framework offers a practical solution for real-time UAV navigation in cluttered

indoor spaces such as logistics facilities and rescue scenarios.

1. Introduction

Autonomous navigation for UAVs in indoor environments
without reliable positioning holds transformative potential for

applications such as logistics distribution and rescue operations.

However, traditional path planning methodologies exhibit
critical limitations in dynamic settings, including inadequate
3D spatial representation via 2D grid maps and kinematically

infeasible trajectories generated by conventional A* algorithms.

Current obstacle avoidance approaches predominantly focus on
static environments, lacking integration with real-time motion
prediction mechanisms. Furthermore, computational
inefficiencies arise from LiDAR point cloud processing latency
and data redundancy when handling transient obstacles like
moving pedestrians.

Research on indoor navigation in GPS-denied environments
has predominantly focused on geometric and topological
mapping techniques. Grid-based approaches are commonly
implemented due to their simplicity but critically lack the
ability to accurately represent multi-level structures, as
highlighted by Nikoohemat et al. (2020). While LiDAR-based
solutions improve spatial awareness, they are inherently
challenged by significant latency in point cloud processing
during dynamic scenarios, particularly with transient obstacles.
Recent advancements explore hybrid representations, where
voxel mapping techniques demonstrate an effective balance
between structural fidelity and computational efficiency
(Garcia et al.,, 2021), and semantic segmentation methods
significantly  enhance dynamic object  discrimination
(Eppenberger et al., 2020). Despite these developments, the
real-time integration of environmental modeling with reactive
path planning in cluttered spaces characterized by
unpredictable obstacle movements remains a significant
challenge.

Significant challenges persist in achieving robust navigation
amidst unpredictable obstacle movements. This study bridges
this gap by introducing a comprehensive voxel-based
framework integrating three innovations: (1) Real-time voxel
modeling for efficient 3D spatial discretization that preserves
environmental features while minimizing computational
overhead (Meijers et al. 2019); (2) Kalman filter-based
dynamic obstacle prediction enabling proactive risk assessment
through adaptive safety thresholds.; and (3) An enhanced A*
algorithm incorporating directional continuity constraints and
Z-axis motion suppression to ensure kinematically feasible
trajectories. The rest of this paper is organized as follows:
Section 6 provides comprehensive experimental validation of
the framework’s performance in complex indoor environments,
and Section 7 concludes the study with limitations and future
research directions.

2. Related work
2.1 UAV Indoor Navigation Research

Autonomous UAV navigation in GPS-denied indoor
environments demands robust path-planning solutions capable
of generating kinematically feasible trajectories while
responding dynamically to unforeseen obstacles—requirements
unmet by conventional approaches. Significant contributions
address specific aspects of this challenge: Xia and Zhang (2021)
pioneered constrained 3D path planning using multi-objective
particle swarm optimization to navigate complex terrains. Liu
et al. (2024) reduced angular deviations through hybrid A*-
ROA (Reactive Obstacle Avoidance) integration, enhancing
path smoothness. Yang et al. (2023) further advanced real-time
planning in unknown environments via adaptive A*-RRT
frameworks. Despite these innovations, critical limitations
persist. Traditional A* algorithms produce oscillatory paths
with kinematically infeasible vertical oscillations (Xia & Zhang,
2021), hybrid methods incur unnecessary path elongation (Liu
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et al., 2024), and crucially, no existing framework integrates
real-time obstacle trajectory prediction (Yang et al., 2023).
Existing approaches struggle to balance trajectory efficiency
with effective dynamic obstacle avoidance. This study
addresses this gap by integrating voxel-based environment
modeling, Kalman filter-based motion prediction, and an A*
algorithm enhanced with kinematic constraints.

2.2 Voxel-Based Indoor Environmental Modeling

Voxel-based modeling is essential for UAV navigation in
complex indoor environments due to its superior capability for
efficient 3D spatial discretization while preserving critical
structural details—advantages unattainable with traditional 2D
grid maps (Jiang et al., 2021). Nikoohemat et al. (2020)
pioneered adaptive voxel sizing techniques to maintain spatial
topology in intricate structures, while Garc® et al. (2021)
advanced real-time LiDAR-based voxel mapping for dynamic
scene representation. Further innovations include Park et al.'s
(2023) GPU-accelerated voxel processing for enhanced
computational efficiency and Oleynikova et al.'s (2019)
incremental signed distance fields for onboard planning.
Despite these advances, existing methods fundamentally
remain static representations incapable of real-time obstacle
occupancy updates (Garc & et al., 2021), fail to capture moving
obstacles (Nikoohemat et al., 2020), suffer from resolution-
performance trade-offs during replanning (Park et al., 2023),
and critically lack integration with dynamic prediction
systems—Iimitations that significantly constrain their practical
deployment in unpredictable indoor environments.

2.3 Dynamic Obstacle Prediction

Accurate dynamic obstacle prediction is paramount for safe
UAV navigation in cluttered indoor environments, where real-
time collision avoidance necessitates precise trajectory
forecasting and minimal computational latency. Foundational
work by Kang et al. (2009) established LiDAR-based detection
frameworks for dynamic objects, while Eppenberger et al.
(2020) enhanced discrimination accuracy through stereo-
camera sensor fusion, significantly improving obstacle
identification. Nguyen et al. (2023) formalized Kalman filter
implementations for UAV collision avoidance, advancing
probabilistic motion modeling. Nevertheless, these methods
exhibit critical shortcomings: Kalman filters incur prohibitive
processing delays in multi-obstacle scenarios (Nguyen et al.,
2023), LIiDAR point cloud registration introduces inherent
temporal lags, and sensor fusion systems fail to model non-
linear motions despite high computational costs (Eppenberger
et al., 2020). Recent work has also explored the integration of
trajectory prediction with voxel occupancy modeling for
motion planning in dynamic environments (Chen et al., 2021).
These limitations collectively undermine real-time forecasting
scalability in complex dynamic settings—constraints overcome
in our framework through adaptive Kalman filtering integrated
with voxel-based spatial indexing.

3. Methodology
3.1 Voxel-based Indoor Environment Modeling

This study develops a voxel-based 3D modeling system for
indoor UAV navigation, processing LIiDAR point clouds
acquired via a mobile 3D Scanner at 129,964 points/scan. The
raw data undergoes statistical noise filtering and RANSAC
plane segmentation to isolate 5,379 planar inliers per scan,
followed by voxel discretization at 0.03m resolution to generate

69,917 classified voxels across a 12.78m>6.06m>8.46m
environment. Each voxel's traversability is determined through
spatial averaging of enclosed points, with the resulting grid
enabling real-time spatial queries through optimized indexing
of structural features. The implementation strictly adheres to
the experimental parameters reported in the original study,
maintaining centimeter-level accuracy in spatial referencing
while supporting efficient obstacle detection and path
validation.

3.2 Point Cloud Data Acquisition

This study employs advanced LiDAR sensing technology
integrated with mobile devices for high-fidelity spatial data
acquisition in complex indoor environments, including multi-
level corridors, stairwells, and interconnected rooms. The
scanning protocol utilizes specialized 3D scanning applications
(e.g., 3DScanner) to capture comprehensive point cloud
representations. To ensure millimeter-level accuracy, the
device is mounted on stabilized platforms during scanning
operations, minimizing motion artifacts while maintaining
angular resolution. Systematic scanning paths are precomputed
to guarantee complete coverage of structural features such as
arched doorways, sloped ceilings, and irregular geometries,
with special attention to occlusion-prone areas.

The acquired raw point cloud datasets exhibit exceptional
spatial resolution, averaging 130,000 points per cubic meter
(129,964 points per scan). Preliminary geometric analysis
reveals distinct planar clusters: vertical planes (walls) constitute
~38.2% of points and horizontal planes (floors/ceilings)
account for 29.7% in typical corridors. Multi-scan position
registration creates a centimeter-accurate digital twin of the
environment. Preliminary segmentation identifies 5,379 planar
inliers per scan, isolating structural surfaces and establishing a
robust foundation for preprocessing.

3.3 Point Cloud Data Preprocessing

To enhance data quality and facilitate subsequent modeling, the
acquired raw point clouds undergo sequential refinement
techniques:

3.3.1 Statistical Filtering for Noise Removal: The collected
point cloud data contains approximately 130,000 points per
cubic meter across different environments. Geometric analysis
shows clear planar clusters representing primary structural
surfaces, with vertical planes (walls) comprising 38.2% of
points and horizontal planes (floors/ceilings) accounting for
29.7% in typical corridors. Multi-scan registration establishes
accurate spatial referencing, creating a centimeter-precise
digital representation of the physical environment that serves as
the essential foundation for subsequent modeling stages.

3.3.2 RANSAC-based Plane Segmentation: We use
RANSAC for robust planar feature extraction to address noise
contamination and dynamic object interference in raw point
clouds. This approach isolates architecturally significant planar
surfaces through iterative model fitting. The algorithm
generates candidate planes via minimal point sampling,
computes point-to-plane distances using calibrated thresholds,
and selects optimal planes through consensus maximization
before least-squares refinement. This approach achieves 85.7%
planar feature retention across diverse environments,
effectively separating permanent structures (e.g., walls, floors)
from non-structural clutter while preserving critical navigation
features like door frames. Figure 1 illustrates the scanned
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environment's internal perspective, and Figure 2 presents post-
processing point cloud results, collectively emphasizing key
structural features for navigation planning.

Figure 2. Point cloud results after processing
3.4 Voxel Downsampling and Space Discretization

The voxel downsampling process transforms preprocessed
point clouds into a structured 3D spatial representation through
volumetric discretization. Given a point cloud P ={pi € R3}iN=1 ,
the spatial domain is partitioned into uniform cubic voxels of
edge length | , mathematically defined as:

Vi =[i-1, G+D-D)x[i-L G+D-D)x[k-L k+D-1)  (3-1)

where integer indices (i,j,k) denote voxel coordinates along
the x-, y-, and z-axes. Each non-empty voxel vijx collapses all
enclosed points to a representative centroid cijk, computed via
spatial averaging:

1
Ciik

P

| Vijk PEVij (3_2)
3.5 Construction of 3D Indoor Environmental Models

Building upon the discretized voxel framework, this study
develops a comprehensive 3D environmental model that
accurately represents both structural elements and navigable
spaces. Each voxel is classified as traversable or non-
traversable based on its content and contextual position, with
non-traversable voxels explicitly marking static obstacles
including walls, furniture, and architectural features. The
classification methodology incorporates spatial continuity
constraints, ensuring coherent obstacle representation rather
than isolated voxel markers. This structured model provides a
foundational spatial reference system that supports efficient

ray-casting operations and line-of-sight determinations
essential for path validation.
The environmental model integrates seamlessly with

subsequent navigation modules through its optimized data
structure. Spatial queries regarding obstacle proximity or
clearance verification execute in constant time complexity by
leveraging the voxel grid's implicit spatial indexing. This
model demonstrates particular effectiveness in complex indoor
settings containing mixed geometries, where it successfully
captures vertical variations across multiple elevation levels.
Quantitative evaluation confirms the model's reliability in
representing  real-world  structures, with  experimental
measurements showing less than 5% deviation in critical
dimension mapping compared to ground truth laser scans. The
resulting voxel-based representation serves as the essential
spatial database supporting all subsequent path planning and
dynamic obstacle avoidance operations.

4. Dynamic Obstacle Trajectory Prediction and Risk
Assessment

Building upon the voxel-based spatial representation
introduced in Section 3, this section addresses the challenge of
dynamic obstacles. It presents a predictive approach based on
Kalman filtering to estimate obstacle trajectories in real time,
ensuring proactive collision avoidance during navigation. The
method includes a dynamic risk evaluation mechanism and a
path replanning trigger, which together enable the UAV to
navigate safely in changing environments.

4.1Kalman Filter-based Obstacle Trajectory Prediction

4.1.1 Kalman Filter Framework: The Kalman filter
framework consists of two primary phases: prediction and
update. During prediction, the obstacle's state is projected
forward using a predefined motion model. In the update phase,
sensor observations are fused to correct the predicted state,
minimizing estimation errors (Wang et al., 2024). This closed-
loop process continuously optimizes trajectory accuracy,
leveraging statistical methods to handle uncertainties inherent
in real-world environments.

4.1.2 State and Observation Models for Dynamic Systems:
This study defines a six-dimensional state vector comprising
position (x, y, z) and velocity (vx, vy, vz) components to
represent dynamic obstacles. The state transition matrix models
linear kinematic relationships, while the observation matrix
extracts measurable position data from the state vector. Process
noise accounts for unmodeled dynamics, and measurement
noise reflects sensor inaccuracies, ensuring the model adapts to
varying motion patterns.

4.1.3 Prediction and Update Process: The prediction process
computes future obstacle states based on the current state and
motion model. When new sensor data arrives, the update phase
calculates residual errors and applies the Kalman gain to refine
state estimates. This iterative mechanism maintains tracking
robustness during abrupt maneuvers (Smith et al., 2022), such
as sharp turns or accelerations. Experimental validation
confirms high prediction accuracy for complex 3D trajectories,
as demonstrated by the close alignment between predicted and
actual paths (Dutta & Ghabcheloo, 2022). Figure 3 presents the
Kalman filter prediction results, showing accurate trajectory
fitting for dynamic obstacles in three-dimensional space.
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Figure 3. Prediction results of the 3D dynamic Obstacle trajectory

4.2 Dynamic Obstacle Motion Pattern Characterization

For experimental validation, dynamic obstacles were simulated
using three representative motion patterns: linear motion
maintaining constant velocity with boundary-triggered
rebounds and collision damping; circular motion employing
rotational matrices to generate tangential velocities for curved
trajectories; and accelerated motion updating positions through
predefined acceleration vectors. During initialization, obstacles
autonomously selected these behavior modes with randomized
motion parameters. The integrated Kalman filter dynamically
adjusted process noise covariance during high-curvature
maneuvers to ensure consistent tracking performance across
diverse motion states.

4.3 Path Risk Assessment and Replanning Mechanism

Real-time risk evaluation ensures collision-free navigation
through continuous monitoring of spatial relationships between
planned paths and predicted obstacle trajectories.

4.3.1 Calculation of Relative Velocity and Dynamic Safety
Distance: 1. Relative Velocity Calculation: The relative
velocity vector v r between the UAV and a dynamic obstacle
is computed as:

V, =V, -V, (4-1)

where » v denotes the UAV’s velocity vector and v os is the
obstacle’s predicted velocity derived from Kalman filtering
(Section 4.1). This vector quantifies the closing speed and
directional trend between the two entities, serving as the
foundation for collision risk assessment.

2. Dynamic Safety Distance: The safety distance d

safe

dynamically adapts to relative motion states:

Aore =11 T ll -ty + 1y 40 (4-2)

rel

where:

% rel
t,, : Preset time horizon (1.2 s, aligning with trajectory
prediction in Section 4.1.3),

: Magnitude of relative velocity (m/s),

r,, : Obstacle’s physical radius (m),
9 : Safety buffer constant (0.5 m).

This formulation integrates kinetic and geometric constraints,
ensuring proactive collision avoidance during high-speed
encounters while accommodating sensor uncertainties.

3. Minimum Distance Calculation: For a UAV path
segment T" and an obstacle’s predicted trajectory Q overt, ,

the minimum separation distance is:

dpp =min, Il p—gl (4-3)

qeQ

Spatial queries leverage the voxel grid’s implicit indexing
(Section 3.5) for efficient computation.
4. Path replanning activates if:

d. . <d

min safe (4_4)
This criterion ensures timely intervention when the UAV’s
trajectory violates the adaptive safety margin, maintaining
robustness against unpredictable obstacle behaviors.

4.3.2 Triggering Conditions for Path Replanning:
Replanning activates when either condition occurs:

1. Spatial Intrusion: Obstacle trajectories intersect the
UAV's safety buffer within the 1.2-second prediction horizon

2. Critical Proximity: Minimum separation distance
breaches the dynamic safety threshold during position overlap
Sliding-window collision checks evaluate path segments
against obstacle forecasts. Upon triggering, the planner
regenerates routes using updated environmental data while
preserving directional continuity through velocity-guided
heuristic adjustments.

5. Path Planning Algorithm

With the voxel environment and dynamic obstacle predictions
established in the preceding sections, this section introduces the
final component of the framework: an enhanced A* path
planning algorithm that integrates kinematic constraints and
obstacle-aware decision-making. The algorithm improves path
smoothness and feasibility through directional continuity
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constraints, vertical motion suppression, and post-processing
refinement.

5.1 Improvements to the A* Algorithm

Traditional A* path planning suffers from oscillatory
trajectories, inefficient vertical movements, and a lack of
responsiveness to dynamic obstacles. To address these
limitations, this research enhances A* by integrating kinematic
constraints and dynamic response mechanisms. The improved
framework combines trajectory prediction with motion
optimization for efficient navigation in complex environments
(Maboudi et al., 2023). Figure 4 visually compares the resulting
paths, demonstrating reduced oscillations and stabilized vertical
movements.
Case 1 Path Comparison

Turning Angle: 13.6° = 28.8°
Z-axis Fluctuations: 9 = 6

Obstacles
—— Raw Path
~+— |mproved Path

Figure 4. Path Smoothness and Vertical Stability Comparison

5.1.1 Path Smoothing and Oscillation Reduction: Traditional
A* paths often exhibit jagged, zigzagging segments due to
discrete grid transitions, causing unnecessary directional
changes and mechanical stress. To mitigate this, the improved
algorithm incorporates a post-processing path-smoothing
technique. This stage analyzes the initial node-based path and
applies quadratic spline interpolation between key waypoints,
notably reducing angular deviations and eliminating redundant
turns. Concurrently, a path oscillation suppression mechanism
is implemented by evaluating the directional consistency of
sequential path segments. Nodes contributing to abrupt

directional reversals are systematically optimized, resulting in a
significantly smoother trajectory that minimizes lateral
oscillations and enhances flight stability. This refinement is
particularly vital for maintaining control precision in cluttered
environments.

5.1.2 Directional Continuity Constraints and Z-axis Motion
Suppression: To address kinematic infeasibilities in traditional
A* paths, two core enhancements are integrated:

Traditional node expansion permits unrestricted directional
transitions between adjacent voxels, generating oscillatory
trajectories with excessive heading changes. To enforce motion
coherence, a directional penalty term Py(n) is incorporated into
the cost function:

f(n)=g(n)+h(n)+ B (n) (5-1)

where:
P (n)=2 (1-cod )

cod) oG
d,l T d,

d, = (X, =Xy Yo = Yoy Zn — Zpm) (direction vector)

(cosine similarity)

4 Penalty coefficient (empirically set to 0.5)

This formulation penalizes deviations from the parent node's
movement direction dp), prioritizing kinematically consistent
paths.

Unnecessary vertical oscillations are mitigated through
conditional pruning during node expansion. Z-axis transitions
(4z #0) are permitted only when:

o traversable neighbors in xy-plane
|2, =20 > 2 (5-2)
N >5

horizontal

This constraint minimizes energy-intensive altitude adjustments
in multi-level structures while maintaining reachability to
elevated targets. Figure 5 demonstrates the improved path
planning algorithm's ability to avoid dynamic obstacles while
maintaining trajectory smoothness.

3D Dynamic Path Planning with Obstacle Avoidance

® Drone
==~ Planned Path
@ Dynamic Obstacle

200 0
Figure 5. Dynamic Obstacle Avoidance with Kinematic Constraint
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6. Experimental Validation

To quantitatively evaluate the proposed integrated framework,
this section establishes a comprehensive validation
methodology. Experimental assessments focus on three critical
dimensions:

1. Static Environment Navigation (validated in Section
6.3): Validating the efficacy of voxel discretization and
kinematic-constrained A* in complex multi-level structures
(e.g., warehouses with shelf aisles)

2. Dynamic Scenario Evaluation (reported in Section 6.4):
Assessing obstacle avoidance performance and path replanning
efficiency in environments with moving obstacles

3. Algorithmic  Superiority: Benchmarking against
traditional methods across key metrics including path optimality,
smoothness, and computational efficiency. The validation
protocol employs both simulated environments replicating
logistics warehouses and physical testbeds with controlled
dynamic  obstacles, ensuring  statistically  significant
performance characterization.

6.1 Experimental Setup

This study established a realistic testing environment replicating
a logistics warehouse measuring 12.78m x 6.06m x 8.46m,
featuring multi-level shelving units and narrow corridors. The
experimental platform utilized a DJI Matrice 300 RTK UAV
equipped with a Livox Mid-40 LiDAR sensor for environmental
perception and real-time localization. Computational tasks were
executed on an NVIDIA Jetson AGX Xavier embedded system
mounted onboard, simulating resource-constrained operational
conditions typical for autonomous indoor navigation. The
environmental model incorporated both static structural
elements and dynamically introduced obstacles following
predefined motion patterns, creating scenarios with varying
complexity levels to rigorously evaluate system performance
under realistic operational constraints.

6.2 Performance Metrics for Evaluation

The Framework’s performance was evaluated through four key
metrics:

1. Path Length: Total trajectory distance measured in
meters from start to goal positions.

2. Path Smoothness: Angular deviation is calculated
through cumulative directional changes along the flight path.

3. Z-axis Oscillation: Frequency and magnitude of
unnecessary altitude adjustments during navigation.

4. Computational Efficiency: Average path planning time
measured in milliseconds across test scenarios. These metrics
collectively evaluated navigation optimality, motion stability,

energy efficiency, and real-time responsiveness — essential
characteristics for practical UAV deployment in confined
indoor spaces.

6.3 Comprehensive Evaluation of Traditional and Improved
Methods

Computational efficiency comparisons revealed negligible
differences in processing time, confirming that the added
kinematic  constraints did not compromise real-time
performance. This was enabled by the efficient spatial indexing
of the voxel representation, a worthwhile trade-off for the
significant gains in path quality and obstacle avoidance
reliability.

The improved algorithm consistently shortened navigation paths,
achieving a 4% reduction in total distance traveled. This
optimization stemmed from the directional continuity
constraints and Z-axis motion suppression strategies, which
minimized unnecessary detours around obstacles and optimized
vertical movement in multi-level structures.

Path smoothness showed marked improvement, with a
significant reduction in cumulative angular deviations along the
flight path. This enhancement resulted directly from the
directional consistency mechanisms and spline-based smoothing
techniques, particularly noticeable in confined environments.

Unnecessary altitude variations during horizontal transit were
substantially suppressed, with Z-axis oscillations decreased by
43%. The vertical motion penalty strategy successfully
minimized erratic climbing and descending behavior, thereby
reducing mechanical stress on UAV actuators and lowering
energy consumption.

6.4 Experimental Results

The integrated framework achieved a 92% success rate in
dynamic obstacle avoidance across 50 randomized test
scenarios with simultaneous moving obstacles, significantly
surpassing traditional methods (65%). Kalman filter-based
trajectory prediction maintained a mean error of 0.23m within
the 1.2-second forecasting horizon, enabling proactive collision
avoidance through timely replanning.

Real-world flight tests confirmed robust navigation: UAVs
traversed multi-level structures while sustaining stable
velocities amid unexpected pedestrian movements. The
dynamic safety buffer prevented seven critical near-miss
incidents, validating effective risk mitigation.

Evaluation Metric

Improved Method

Traditional Method

Path Length
Path Smoothness
Z-axis Oscillation Frequency
Dynamic Avoidance Success Rate
Computational Efficiency

236m 246m

32.0° 12.9<
3.9 6.8
92% 65%

0.639s 0.638s

Table 1. Quantitative Performance Comparison: Improved vs. Traditional Methods

7. Conclusion and Future Work

This study developed an integrated UAV path planning
framework for dynamic indoor environments. The voxel-based
modeling efficiently reconstructed 3D spaces, reducing

computational complexity while preserving structural features.
The *improved A algorithm incorporated directional continuity
and Z-axis suppression®**, significantly reducing path
oscillations and enhancing smoothness. By integrating Kalman
filter-based obstacle prediction with dynamic safety thresholds,
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the system achieved proactive collision avoidance through real-
time risk assessment and replanning. Experimental validation
confirmed superior path quality and robustness in cluttered
indoor settings compared to conventional methods.

The proposed framework demonstrates potential for application
in  mountain tunnel rescue operations; however, it still
encounters several limitations that need to be addressed. Firstly,
the accuracy of trajectory prediction may sometimes be
compromised, particularly in highly dynamic or complex
scenarios. Secondly, the current obstacle modeling approach
does not adequately account for variations in obstacle sizes and
shapes, which could affect the system’s robustness and
reliability during rescue missions. Further research is necessary
to overcome these challenges and improve the overall
effectiveness of the system.

Future research will focus on the following directions: First,
developing multi-agent coordination strategies for swarm-based
disaster response; second, enhancing obstacle behavior
modeling to accommodate non-linear motions, such as
accelerating debris trajectories; third, integrating visual-inertial
odometry for navigation in smoke-filled environments; fourth,
employing edge computing techniques to reduce latency; and
finally, refining Z-axis suppression mechanisms to better handle
complex vertical structures like stairwells. These advancements
will be further validated through extensive real-world testing in
diverse indoor environments.
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