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Abstract 

 

This study presents a voxel-based path planning framework for unmanned aerial vehicles (UAVs) operating in complex indoor 

dynamic environments. To overcome the limitations of traditional 2D grid maps and static planning methods, the proposed system 

integrates real-time voxel modeling, Kalman filter-based dynamic obstacle prediction, and an improved A* algorithm with kinematic 

constraints. The environment is reconstructed from LiDAR-acquired point clouds and discretized into uniform voxel grids to support 

efficient 3D spatial queries. Predicted obstacle trajectories are incorporated into a risk assessment mechanism that triggers path 

replanning when safety thresholds are violated. The enhanced A* algorithm introduces directional continuity constraints and Z-axis 

motion suppression to reduce path oscillations and improve trajectory feasibility. Experimental results in simulated warehouse-like 

environments demonstrate improved path smoothness, fewer vertical oscillations, and higher success rates in avoiding dynamic 

obstacles compared to conventional approaches. The framework offers a practical solution for real-time UAV navigation in cluttered 

indoor spaces such as logistics facilities and rescue scenarios. 

 

 

1. Introduction 

 

Autonomous navigation for UAVs in indoor environments 

without reliable positioning holds transformative potential for 

applications such as logistics distribution and rescue operations. 

However, traditional path planning methodologies exhibit 

critical limitations in dynamic settings, including inadequate 

3D spatial representation via 2D grid maps and kinematically 

infeasible trajectories generated by conventional A* algorithms. 

Current obstacle avoidance approaches predominantly focus on 

static environments, lacking integration with real-time motion 

prediction mechanisms. Furthermore, computational 

inefficiencies arise from LiDAR point cloud processing latency 

and data redundancy when handling transient obstacles like 

moving pedestrians. 

 

Research on indoor navigation in GPS-denied environments 

has predominantly focused on geometric and topological 

mapping techniques. Grid-based approaches are commonly 

implemented due to their simplicity but critically lack the 

ability to accurately represent multi-level structures, as 

highlighted by Nikoohemat et al. (2020). While LiDAR-based 

solutions improve spatial awareness, they are inherently 

challenged by significant latency in point cloud processing 

during dynamic scenarios, particularly with transient obstacles. 

Recent advancements explore hybrid representations, where 

voxel mapping techniques demonstrate an effective balance 

between structural fidelity and computational efficiency 

(Garcia et al., 2021), and semantic segmentation methods 

significantly enhance dynamic object discrimination 

(Eppenberger et al., 2020). Despite these developments, the 

real-time integration of environmental modeling with reactive 

path planning in cluttered spaces characterized by 

unpredictable obstacle movements remains a significant 

challenge. 

 

Significant challenges persist in achieving robust navigation 

amidst unpredictable obstacle movements. This study bridges 

this gap by introducing a comprehensive voxel-based 

framework integrating three innovations: (1) Real-time voxel 

modeling for efficient 3D spatial discretization that preserves 

environmental features while minimizing computational 

overhead (Meijers et al. 2019); (2) Kalman filter-based 

dynamic obstacle prediction enabling proactive risk assessment 

through adaptive safety thresholds.; and (3) An enhanced A* 

algorithm incorporating directional continuity constraints and 

Z-axis motion suppression to ensure kinematically feasible 

trajectories. The rest of this paper is organized as follows: 

Section 6 provides comprehensive experimental validation of 

the framework's performance in complex indoor environments,  

and Section 7 concludes the study with limitations and future 

research directions. 

 

2. Related work 

 

2.1 UAV Indoor Navigation Research 

 

Autonomous UAV navigation in GPS-denied indoor 

environments demands robust path-planning solutions capable 

of generating kinematically feasible trajectories while 

responding dynamically to unforeseen obstacles—requirements 

unmet by conventional approaches. Significant contributions 

address specific aspects of this challenge: Xia and Zhang (2021) 

pioneered constrained 3D path planning using multi-objective 

particle swarm optimization to navigate complex terrains. Liu 

et al. (2024) reduced angular deviations through hybrid A*-

ROA (Reactive Obstacle Avoidance) integration, enhancing 

path smoothness. Yang et al. (2023) further advanced real-time 

planning in unknown environments via adaptive A*-RRT 

frameworks. Despite these innovations, critical limitations 

persist. Traditional A* algorithms produce oscillatory paths 

with kinematically infeasible vertical oscillations (Xia & Zhang, 

2021), hybrid methods incur unnecessary path elongation (Liu 
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et al., 2024), and crucially, no existing framework integrates 

real-time obstacle trajectory prediction (Yang et al., 2023). 

Existing approaches struggle to balance trajectory efficiency 

with effective dynamic obstacle avoidance. This study 

addresses this gap by integrating voxel-based environment 

modeling, Kalman filter-based motion prediction, and an A* 

algorithm enhanced with kinematic constraints. 

 

2.2 Voxel-Based Indoor Environmental Modeling 

 

Voxel-based modeling is essential for UAV navigation in 

complex indoor environments due to its superior capability for 

efficient 3D spatial discretization while preserving critical 

structural details—advantages unattainable with traditional 2D 

grid maps (Jiang et al., 2021). Nikoohemat et al. (2020) 

pioneered adaptive voxel sizing techniques to maintain spatial 

topology in intricate structures, while García et al. (2021) 

advanced real-time LiDAR-based voxel mapping for dynamic 

scene representation. Further innovations include Park et al.'s 

(2023) GPU-accelerated voxel processing for enhanced 

computational efficiency and Oleynikova et al.'s (2019) 

incremental signed distance fields for onboard planning. 

Despite these advances, existing methods fundamentally 

remain static representations incapable of real-time obstacle 

occupancy updates (García et al., 2021), fail to capture moving 

obstacles (Nikoohemat et al., 2020), suffer from resolution-

performance trade-offs during replanning (Park et al., 2023), 

and critically lack integration with dynamic prediction 

systems—limitations that significantly constrain their practical 

deployment in unpredictable indoor environments. 

 

2.3 Dynamic Obstacle Prediction 

 

Accurate dynamic obstacle prediction is paramount for safe 

UAV navigation in cluttered indoor environments, where real-

time collision avoidance necessitates precise trajectory 

forecasting and minimal computational latency. Foundational 

work by Kang et al. (2009) established LiDAR-based detection 

frameworks for dynamic objects, while Eppenberger et al. 

(2020) enhanced discrimination accuracy through stereo-

camera sensor fusion, significantly improving obstacle 

identification. Nguyen et al. (2023) formalized Kalman filter 

implementations for UAV collision avoidance, advancing 

probabilistic motion modeling. Nevertheless, these methods 

exhibit critical shortcomings: Kalman filters incur prohibitive 

processing delays in multi-obstacle scenarios (Nguyen et al., 

2023), LiDAR point cloud registration introduces inherent 

temporal lags, and sensor fusion systems fail to model non-

linear motions despite high computational costs (Eppenberger 

et al., 2020). Recent work has also explored the integration of 

trajectory prediction with voxel occupancy modeling for 

motion planning in dynamic environments (Chen et al., 2021).  

These limitations collectively undermine real-time forecasting 

scalability in complex dynamic settings—constraints overcome 

in our framework through adaptive Kalman filtering integrated 

with voxel-based spatial indexing. 

 

3. Methodology 

 

3.1 Voxel-based Indoor Environment Modeling 

 

This study develops a voxel-based 3D modeling system for 

indoor UAV navigation, processing LiDAR point clouds 

acquired via a mobile 3D Scanner at 129,964 points/scan. The 

raw data undergoes statistical noise filtering and RANSAC 

plane segmentation to isolate 5,379 planar inliers per scan, 

followed by voxel discretization at 0.03m resolution to generate 

69,917 classified voxels across a 12.78m×6.06m×8.46m 

environment. Each voxel's traversability is determined through 

spatial averaging of enclosed points, with the resulting grid 

enabling real-time spatial queries through optimized indexing 

of structural features. The implementation strictly adheres to 

the experimental parameters reported in the original study, 

maintaining centimeter-level accuracy in spatial referencing 

while supporting efficient obstacle detection and path 

validation. 

 

3.2 Point Cloud Data Acquisition 

 

This study employs advanced LiDAR sensing technology 

integrated with mobile devices for high-fidelity spatial data 

acquisition in complex indoor environments, including multi-

level corridors, stairwells, and interconnected rooms. The 

scanning protocol utilizes specialized 3D scanning applications 

(e.g., 3DScanner) to capture comprehensive point cloud 

representations. To ensure millimeter-level accuracy, the 

device is mounted on stabilized platforms during scanning 

operations, minimizing motion artifacts while maintaining 

angular resolution. Systematic scanning paths are precomputed 

to guarantee complete coverage of structural features such as 

arched doorways, sloped ceilings, and irregular geometries, 

with special attention to occlusion-prone areas. 

 

The acquired raw point cloud datasets exhibit exceptional 

spatial resolution, averaging 130,000 points per cubic meter 

(129,964 points per scan). Preliminary geometric analysis 

reveals distinct planar clusters: vertical planes (walls) constitute 

~38.2% of points and horizontal planes (floors/ceilings) 

account for 29.7% in typical corridors. Multi-scan position 

registration creates a centimeter-accurate digital twin of the 

environment. Preliminary segmentation identifies 5,379 planar 

inliers per scan, isolating structural surfaces and establishing a 

robust foundation for preprocessing.  

 

3.3 Point Cloud Data Preprocessing 

 

To enhance data quality and facilitate subsequent modeling, the 

acquired raw point clouds undergo sequential refinement 

techniques: 

 

3.3.1 Statistical Filtering for Noise Removal: The collected 

point cloud data contains approximately 130,000 points per 

cubic meter across different environments. Geometric analysis 

shows clear planar clusters representing primary structural 

surfaces, with vertical planes (walls) comprising 38.2% of 

points and horizontal planes (floors/ceilings) accounting for 

29.7% in typical corridors. Multi-scan registration establishes 

accurate spatial referencing, creating a centimeter-precise 

digital representation of the physical environment that serves as 

the essential foundation for subsequent modeling stages. 

 

3.3.2 RANSAC-based Plane Segmentation: We use 

RANSAC for robust planar feature extraction to address noise 

contamination and dynamic object interference in raw point 

clouds. This approach isolates architecturally significant planar 

surfaces through iterative model fitting. The algorithm 

generates candidate planes via minimal point sampling, 

computes point-to-plane distances using calibrated thresholds, 

and selects optimal planes through consensus maximization 

before least-squares refinement. This approach achieves 85.7% 

planar feature retention across diverse environments, 

effectively separating permanent structures (e.g., walls, floors) 

from non-structural clutter while preserving critical navigation 

features like door frames. Figure 1 illustrates the scanned 
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environment's internal perspective, and Figure 2 presents post-

processing point cloud results, collectively emphasizing key 

structural features for navigation planning. 

 

 
Figure 1. Internal perspective view 

 

 
Figure 2. Point cloud results after processing 

 

3.4 Voxel Downsampling and Space Discretization 

 

The voxel downsampling process transforms preprocessed 

point clouds into a structured 3D spatial representation through 

volumetric discretization. Given a point cloud  3
1

N

i i
P p R

=
=  , 

the spatial domain is partitioned into uniform cubic voxels of 

edge length l , mathematically defined as: 

  

 )  )  ), ( 1) , ( 1) , ( 1)ijkv i l i l j l j l k l k l=  +    +    +   (3-1) 

 

where integer indices (i,j,k) denote voxel coordinates along 

the x-, y-, and z-axes. Each non-empty voxel vijk collapses all 

enclosed points to a representative centroid cijk, computed via 

spatial averaging: 

 

 

1

| |
ijk

ijk

p vijk

c p
v 

= 
 (3-2) 

  

3.5 Construction of 3D Indoor Environmental Models 

 

Building upon the discretized voxel framework, this study 

develops a comprehensive 3D environmental model that 

accurately represents both structural elements and navigable 

spaces. Each voxel is classified as traversable or non-

traversable based on its content and contextual position, with 

non-traversable voxels explicitly marking static obstacles 

including walls, furniture, and architectural features. The 

classification methodology incorporates spatial continuity 

constraints, ensuring coherent obstacle representation rather 

than isolated voxel markers. This structured model provides a 

foundational spatial reference system that supports efficient 

ray-casting operations and line-of-sight determinations 

essential for path validation. 

 

The environmental model integrates seamlessly with 

subsequent navigation modules through its optimized data 

structure. Spatial queries regarding obstacle proximity or 

clearance verification execute in constant time complexity by 

leveraging the voxel grid's implicit spatial indexing. This 

model demonstrates particular effectiveness in complex indoor 

settings containing mixed geometries, where it successfully 

captures vertical variations across multiple elevation levels. 

Quantitative evaluation confirms the model's reliability in 

representing real-world structures, with experimental 

measurements showing less than 5% deviation in critical 

dimension mapping compared to ground truth laser scans. The 

resulting voxel-based representation serves as the essential 

spatial database supporting all subsequent path planning and 

dynamic obstacle avoidance operations. 

 

4. Dynamic Obstacle Trajectory Prediction and Risk 

Assessment 

 

Building upon the voxel-based spatial representation 

introduced in Section 3, this section addresses the challenge of 

dynamic obstacles. It presents a predictive approach based on 

Kalman filtering to estimate obstacle trajectories in real time, 

ensuring proactive collision avoidance during navigation. The 

method includes a dynamic risk evaluation mechanism and a 

path replanning trigger, which together enable the UAV to 

navigate safely in changing environments. 

 

4.1Kalman Filter-based Obstacle Trajectory Prediction 

 

4.1.1 Kalman Filter Framework: The Kalman filter 

framework consists of two primary phases: prediction and 

update. During prediction, the obstacle's state is projected 

forward using a predefined motion model. In the update phase, 

sensor observations are fused to correct the predicted state, 

minimizing estimation errors (Wang et al., 2024). This closed-

loop process continuously optimizes trajectory accuracy, 

leveraging statistical methods to handle uncertainties inherent 

in real-world environments. 

 

4.1.2 State and Observation Models for Dynamic Systems: 

This study defines a six-dimensional state vector comprising 

position (x, y, z) and velocity (vx, vy, vz) components to 

represent dynamic obstacles. The state transition matrix models 

linear kinematic relationships, while the observation matrix 

extracts measurable position data from the state vector. Process 

noise accounts for unmodeled dynamics, and measurement 

noise reflects sensor inaccuracies, ensuring the model adapts to 

varying motion patterns.   

 

4.1.3 Prediction and Update Process: The prediction process 

computes future obstacle states based on the current state and 

motion model. When new sensor data arrives, the update phase 

calculates residual errors and applies the Kalman gain to refine 

state estimates. This iterative mechanism maintains tracking 

robustness during abrupt maneuvers (Smith et al., 2022), such 

as sharp turns or accelerations. Experimental validation 

confirms high prediction accuracy for complex 3D trajectories, 

as demonstrated by the close alignment between predicted and 

actual paths (Dutta & Ghabcheloo, 2022). Figure 3 presents the 

Kalman filter prediction results, showing accurate trajectory 

fitting for dynamic obstacles in three-dimensional space. 
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Figure 3. Prediction results of the 3D dynamic Obstacle trajectory 

 

 

4.2 Dynamic Obstacle Motion Pattern Characterization   

 

For experimental validation, dynamic obstacles were simulated 

using three representative motion patterns: linear motion 

maintaining constant velocity with boundary-triggered 

rebounds and collision damping; circular motion employing 

rotational matrices to generate tangential velocities for curved 

trajectories; and accelerated motion updating positions through 

predefined acceleration vectors. During initialization, obstacles 

autonomously selected these behavior modes with randomized 

motion parameters. The integrated Kalman filter dynamically 

adjusted process noise covariance during high-curvature 

maneuvers to ensure consistent tracking performance across 

diverse motion states. 

 

4.3 Path Risk Assessment and Replanning Mechanism 

 

Real-time risk evaluation ensures collision-free navigation 

through continuous monitoring of spatial relationships between 

planned paths and predicted obstacle trajectories.  

 

4.3.1 Calculation of Relative Velocity and Dynamic Safety 

Distance: 1. Relative Velocity Calculation: The relative 

velocity vector relν between the UAV and a dynamic obstacle 

is computed as: 

 

 rel uav obsv v v= −  (4-1) 

 

where uavν denotes the UAV’s velocity vector and obsν is the 

obstacle’s predicted velocity derived from Kalman filtering 

(Section 4.1). This vector quantifies the closing speed and 

directional trend between the two entities, serving as the 

foundation for collision risk assessment. 

 

2. Dynamic Safety Distance: The safety distance safed  

dynamically adapts to relative motion states: 

 

 safe rel th obsd v t r=  + +‖ ‖ δ  (4-2) 

 

where: 

relν : Magnitude of relative velocity (m/s), 

t th : Preset time horizon (1.2 s, aligning with trajectory 

prediction in Section 4.1.3), 

robs : Obstacle’s physical radius (m), 

δ : Safety buffer constant (0.5 m). 

 

This formulation integrates kinetic and geometric constraints, 

ensuring proactive collision avoidance during high-speed 

encounters while accommodating sensor uncertainties. 

 

3. Minimum Distance Calculation: For a UAV path 

segment  and an obstacle’s predicted trajectory  over t th , 

the minimum separation distance is: 

 

 min min p
q

d p q


= −‖ ‖ (4-3) 

 

Spatial queries leverage the voxel grid’s implicit indexing 

(Section 3.5) for efficient computation. 

4.  Path replanning activates if:  

 

 min safed d  (4-4) 

 

This criterion ensures timely intervention when the UAV’s 

trajectory violates the adaptive safety margin, maintaining 

robustness against unpredictable obstacle behaviors. 

 

4.3.2 Triggering Conditions for Path Replanning: 

Replanning activates when either condition occurs: 

 

1. Spatial Intrusion: Obstacle trajectories intersect the 

UAV's safety buffer within the 1.2-second prediction horizon 

 

2. Critical Proximity: Minimum separation distance 

breaches the dynamic safety threshold during position overlap 

Sliding-window collision checks evaluate path segments 

against obstacle forecasts. Upon triggering, the planner 

regenerates routes using updated environmental data while 

preserving directional continuity through velocity-guided 

heuristic adjustments. 

 

5. Path Planning Algorithm 

 

With the voxel environment and dynamic obstacle predictions 

established in the preceding sections, this section introduces the 

final component of the framework: an enhanced A* path 

planning algorithm that integrates kinematic constraints and 

obstacle-aware decision-making. The algorithm improves path 

smoothness and feasibility through directional continuity 
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constraints, vertical motion suppression, and post-processing 

refinement.  

 

5.1 Improvements to the A* Algorithm 

 

Traditional A* path planning suffers from oscillatory 

trajectories, inefficient vertical movements, and a lack of 

responsiveness to dynamic obstacles. To address these 

limitations, this research enhances A* by integrating kinematic 

constraints and dynamic response mechanisms. The improved 

framework combines trajectory prediction with motion 

optimization for efficient navigation in complex environments 

(Maboudi et al., 2023). Figure 4 visually compares the resulting 

paths, demonstrating reduced oscillations and stabilized vertical 

movements. 

 
Figure 4. Path Smoothness and Vertical Stability Comparison 

 

5.1.1 Path Smoothing and Oscillation Reduction: Traditional 

A* paths often exhibit jagged, zigzagging segments due to 

discrete grid transitions, causing unnecessary directional 

changes and mechanical stress. To mitigate this, the improved 

algorithm incorporates a post-processing path-smoothing 

technique. This stage analyzes the initial node-based path and 

applies quadratic spline interpolation between key waypoints, 

notably reducing angular deviations and eliminating redundant 

turns. Concurrently, a path oscillation suppression mechanism 

is implemented by evaluating the directional consistency of 

sequential path segments. Nodes contributing to abrupt 

directional reversals are systematically optimized, resulting in a 

significantly smoother trajectory that minimizes lateral 

oscillations and enhances flight stability. This refinement is 

particularly vital for maintaining control precision in cluttered 

environments. 

 

5.1.2 Directional Continuity Constraints and Z-axis Motion 

Suppression: To address kinematic infeasibilities in traditional 

A* paths, two core enhancements are integrated: 

Traditional node expansion permits unrestricted directional 

transitions between adjacent voxels, generating oscillatory 

trajectories with excessive heading changes. To enforce motion 

coherence, a directional penalty term Pθ(n) is incorporated into 

the cost function: 

 

 '( ) ( ) ( ) ( )f n g n h n P n= + + θ  (5-1) 

 

where: 

( ) (1 cos )nn = −Pθ λ θ  

( )

( )

cos
n p n

n

n p n


=

d d

d d‖ ‖‖ ‖
θ (cosine similarity) 

( ) ( ) ( )( , , )n n p n n p n n p nx x y y z z= − − −d  (direction vector) 

λ : Penalty coefficient (empirically set to 0.5) 

 

This formulation penalizes deviations from the parent node's 

movement direction dp(n), prioritizing kinematically consistent 

paths. 

 

Unnecessary vertical oscillations are mitigated through 

conditional pruning during node expansion. Z-axis transitions   

(Δz≠0) are permitted only when: 

 

 goal

horizontal

traversable neighbors in -plane

| | 2

5

n

xy

z z l

N



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 

ó

 (5-2) 

 

This constraint minimizes energy-intensive altitude adjustments 

in multi-level structures while maintaining reachability to 

elevated targets. Figure 5 demonstrates the improved path 

planning algorithm's ability to avoid dynamic obstacles while 

maintaining trajectory smoothness. 

 
Figure 5. Dynamic Obstacle Avoidance with Kinematic Constraint 
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6. Experimental Validation 

 

To quantitatively evaluate the proposed integrated framework, 

this section establishes a comprehensive validation 

methodology. Experimental assessments focus on three critical 

dimensions: 

1.  Static Environment Navigation (validated in Section 

6.3): Validating the efficacy of voxel discretization and 

kinematic-constrained A* in complex multi-level structures 

(e.g., warehouses with shelf aisles) 

2. Dynamic Scenario Evaluation (reported in Section 6.4): 

Assessing obstacle avoidance performance and path replanning 

efficiency in environments with moving obstacles 

3. Algorithmic Superiority: Benchmarking against 

traditional methods across key metrics including path optimality, 

smoothness, and computational efficiency. The validation 

protocol employs both simulated environments replicating 

logistics warehouses and physical testbeds with controlled 

dynamic obstacles, ensuring statistically significant 

performance characterization. 

 

6.1 Experimental Setup  

 

This study established a realistic testing environment replicating 

a logistics warehouse measuring 12.78m × 6.06m × 8.46m, 

featuring multi-level shelving units and narrow corridors. The 

experimental platform utilized a DJI Matrice 300 RTK UAV 

equipped with a Livox Mid-40 LiDAR sensor for environmental 

perception and real-time localization. Computational tasks were 

executed on an NVIDIA Jetson AGX Xavier embedded system 

mounted onboard, simulating resource-constrained operational 

conditions typical for autonomous indoor navigation. The 

environmental model incorporated both static structural 

elements and dynamically introduced obstacles following 

predefined motion patterns, creating scenarios with varying 

complexity levels to rigorously evaluate system performance 

under realistic operational constraints. 

 

6.2 Performance Metrics for Evaluation 

 

The Framework’s performance was evaluated through four key 

metrics: 

1. Path Length: Total trajectory distance measured in 

meters from start to goal positions. 

2.  Path Smoothness: Angular deviation is calculated 

through cumulative directional changes along the flight path. 

3. Z-axis Oscillation: Frequency and magnitude of 

unnecessary altitude adjustments during navigation. 

4.   Computational Efficiency: Average path planning time 

measured in milliseconds across test scenarios. These metrics 

collectively evaluated navigation optimality, motion stability, 

energy efficiency, and real-time responsiveness –  essential 

characteristics for practical UAV deployment in confined 

indoor spaces. 

 

6.3 Comprehensive Evaluation of Traditional and Improved 

Methods 

 

Computational efficiency comparisons revealed negligible 

differences in processing time, confirming that the added 

kinematic constraints did not compromise real-time 

performance. This was enabled by the efficient spatial indexing 

of the voxel representation, a worthwhile trade-off for the 

significant gains in path quality and obstacle avoidance 

reliability. 

 

The improved algorithm consistently shortened navigation paths, 

achieving a 4% reduction in total distance traveled. This 

optimization stemmed from the directional continuity 

constraints and Z-axis motion suppression strategies, which 

minimized unnecessary detours around obstacles and optimized 

vertical movement in multi-level structures. 

 

Path smoothness showed marked improvement, with a 

significant reduction in cumulative angular deviations along the 

flight path. This enhancement resulted directly from the 

directional consistency mechanisms and spline-based smoothing 

techniques, particularly noticeable in confined environments. 

 

Unnecessary altitude variations during horizontal transit were 

substantially suppressed, with Z-axis oscillations decreased by 

43%. The vertical motion penalty strategy successfully 

minimized erratic climbing and descending behavior, thereby 

reducing mechanical stress on UAV actuators and lowering 

energy consumption. 

 

6.4 Experimental Results 

 

The integrated framework achieved a 92% success rate in 

dynamic obstacle avoidance across 50 randomized test 

scenarios with simultaneous moving obstacles, significantly 

surpassing traditional methods (65%). Kalman filter-based 

trajectory prediction maintained a mean error of 0.23m within 

the 1.2-second forecasting horizon, enabling proactive collision 

avoidance through timely replanning. 

 

Real-world flight tests confirmed robust navigation: UAVs 

traversed multi-level structures while sustaining stable 

velocities amid unexpected pedestrian movements. The 

dynamic safety buffer prevented seven critical near-miss 

incidents, validating effective risk mitigation. 

 

Table 1. Quantitative Performance Comparison: Improved vs. Traditional Methods 

 

7. Conclusion and Future Work 

 

This study developed an integrated UAV path planning 

framework for dynamic indoor environments. The voxel-based 

modeling efficiently reconstructed 3D spaces, reducing 

computational complexity while preserving structural features. 

The *improved A algorithm incorporated directional continuity 

and Z-axis suppression**, significantly reducing path 

oscillations and enhancing smoothness. By integrating Kalman 

filter-based obstacle prediction with dynamic safety thresholds, 

Evaluation Metric Improved Method Traditional Method 

Path Length 23.6 m 24.6 m 

Path Smoothness 32.0° 12.9° 

Z-axis Oscillation Frequency 3.9 6.8 

Dynamic Avoidance Success Rate 92% 65% 

Computational Efficiency 0.639 s 0.638 s 
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the system achieved proactive collision avoidance through real-

time risk assessment and replanning. Experimental validation 

confirmed superior path quality and robustness in cluttered 

indoor settings compared to conventional methods. 

 

The proposed framework demonstrates potential for application 

in mountain tunnel rescue operations; however, it still 

encounters several limitations that need to be addressed. Firstly, 

the accuracy of trajectory prediction may sometimes be 

compromised, particularly in highly dynamic or complex 

scenarios. Secondly, the current obstacle modeling approach 

does not adequately account for variations in obstacle sizes and 

shapes, which could affect the system’s robustness and 

reliability during rescue missions. Further research is necessary 

to overcome these challenges and improve the overall 

effectiveness of the system. 

 

Future research will focus on the following directions: First, 

developing multi-agent coordination strategies for swarm-based 

disaster response; second, enhancing obstacle behavior 

modeling to accommodate non-linear motions, such as 

accelerating debris trajectories;  third, integrating visual-inertial 

odometry for navigation in smoke-filled environments; fourth, 

employing edge computing techniques to reduce latency; and 

finally, refining Z-axis suppression mechanisms to better handle 

complex vertical structures like stairwells. These advancements 

will be further validated through extensive real-world testing in 

diverse indoor environments. 
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