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Abstract

In recent years, hurricane disasters have occurred frequently, causing significant losses to human society. UAV technology, with its
advantages of high mobility and low cost, has been widely applied in post-disaster loss assessment. However, existing UAV image
assessment methods still exhibit deficiencies in model accuracy and the rapid analysis of spatial distribution of disaster events. To
address these issues, this study proposes a semantic segmentation model, H4DNet, which combines the global feature extraction
capability of SegFormer and the information reconstruction capability of U-Net, aiming to efficiently extract information about
damaged objects from UAV images. Experimental results show that H4DNet achieved a 93.71% average accuracy, 87.80% mean
accuracy, and 78.01% mean Intersection over Union (mloU) on the RescueNet dataset, outperforming other comparative models.
Furthermore, this paper introduces the Disaster Damage Index (DDI), which generates a spatial distribution map of disaster events
by calculating the area proportion of damaged objects and using an Adjusted Inverse Distance Weighting (AIDW) spatial
interpolation algorithm. The results indicate that DDI can accurately reflect the severity of disaster-affected areas. The study also
verified the energy attenuation process after hurricane landfall through the spatial distribution of objects affected by different disaster

levels, providing valuable insights for disaster assessment and emergency response.

1. Introduction

In recent years, the frequency and severity of natural disasters
have been increasing, causing significant impacts on both
human society and the natural environment (Markhvida et al.
2020; Opper, Park and Husted 2023). Over the past few decades,
various types of natural disasters have resulted in approximately
40,000 to 50,000 deaths annually and displaced millions of
people (Ritchie et al., 2022). Among these, hurricanes are
particularly destructive due to their wide-ranging impacts and
potential to trigger secondary disasters such as floods and debris
flows, making them one of the most devastating natural hazards.
In the aftermath of such events, the rapid acquisition of detailed
information about the affected areas is crucial for formulating
effective emergency response strategies and post-disaster
recovery plans (Fan et al., 2017). However, traditional ground-
based survey methods are often time-consuming, costly, and
pose safety risks to field personnel due to the complex and
hazardous conditions in disaster-stricken areas.

From a bibliometric perspective, researchers have proposed two
emerging approaches to obtain post-disaster information on
building damage, road blockages, and the status of critical
infrastructure, while ensuring personnel safety. The first is the
social media-based approach, which establishes functional
relationships between the volume and frequency of social media
posts and the extent of disaster damage (Guan and Chen, 2014),
or employs natural language processing and computer vision
techniques to extract useful disaster-related information from
text and images (Christidou et al., 2022). However, the
completeness and accuracy of social media data can be
unreliable. The second is the satellite remote sensing approach,
which leverages the monitoring capabilities of remote sensing
satellites to acquire real-time imagery of affected areas
(Robinson et al., 2023). Advanced image processing techniques

such as object detection and semantic segmentation are then
applied to accurately identify and assess damage to buildings
and roads. Nevertheless, the effectiveness of disaster assessment
using this method is often constrained by weather conditions
and the spatial resolution of the imagery (Holail et al., 2024).

Unmanned Aerial Vehicles (UAVs), as a near-ground remote
sensing technology, have been increasingly applied in disaster
assessment and emergency response due to their high mobility,
low cost, and operational flexibility (Cheng et al., 2024; Jozi et
al., 2024). In the field of post-disaster damage assessment,
UAVs retain the rapid response advantage of social media and
the efficiency of satellite remote sensing, while offering greater
flexibility and significantly higher spatial resolution. These
characteristics substantially enhance the speed and quality of
post-disaster response efforts (Cheng et al, 2024). By
employing semantic segmentation models, UAVs can
automatically analyze and process imagery from disaster-
affected areas, segmenting objects such as buildings, roads, and
vegetation, and further assessing their levels of damage (Mai et
al., 2024). The segmentation results can be used to evaluate
road accessibility (Chowdhury et al., 2020) and locate potential
survivors (Raja et al., 2024), enabling timely deployment of
rescue resources. This is crucial for tracking rescue progress and
adjusting emergency response strategies accordingly. In
addition, UAVs can conduct frequent flights shortly after a
disaster, capturing continuous image data to support real-time
monitoring of changes within the affected area (Schaefer et al.,
2020).

However, current semantic segmentation models still face
several limitations when applied to UAV imagery in post-
disaster scenarios. First, the accuracy of these models requires
further improvement. Post-disaster images often contain rich
information on damage and hazard distribution, which is critical
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for emergency rescue. Damaged buildings and fallen trees, for
instance, exhibit less geometric regularity compared to objects
in UAV imagery under normal conditions, posing significant
challenges for model-based recognition. Moreover, the practical
applications of segmented imagery remain underdeveloped.
Traditional photogrammetric 3D reconstruction methods are
time-consuming and cannot meet the time-sensitive demands of
emergency response. Therefore, efficiently obtaining the spatial
distribution of objects with varying levels of damage is a
fundamental requirement for post-disaster assessment and
subsequent recovery efforts.

To address these two challenges, this study proposes a novel
model named H4DNet (Hurricane Disaster Damage Detection
from Drones), which integrates the U-Net architecture
(Ronneberger et al., 2015) with SegFormer (Xie et al., 2021) for
semantic segmentation of post-hurricane disaster scenes.
H4DNet utilizes a Mix Transformer structure for progressive
downsampling, effectively capturing global contextual
information and modeling long-range dependencies. The model
leverages a hierarchical design to fully exploit multi-scale
features, while spatial details are preserved through upsampling
and skip connections, ensuring high segmentation accuracy at
fine-grained levels. Furthermore, based on the proportion of
areas occupied by buildings and roads with different levels of
damage in UAV imagery, we introduce a Disaster Damage
Index (DDI) to quantitatively describe the severity of the
disaster. By mapping the DDI values of each image to their
corresponding geographic locations and applying the Adjusted
Inverse Distance Weighting (AIDW) method (Zhengquan et al.,
2018) for spatial interpolation, the model enables rapid
identification of severely affected regions.

2. Methods
2.1 H4DNet: A Novel Semantic Segmentation Model

2.1.1  Architecture of H4DNet: The overall architecture of
the H4DNet (Natural Hurricane Disaster Damage Detection
from Drones) model is illustrated in the diagram and can be
divided into an encoder section and a decoder section,
functioning in a top-down and bottom-up manner, respectively.
The encoder section is designed based on the SegFormer
framework, featuring a hierarchical Mix Transformer for feature
extraction. This design enables the model to capture global
context through continuous downsampling (Xie et al., 2021).
The application of Transformer modules allows the model to
effectively handle long-range dependencies while the
hierarchical design ensures that features at various scales are
fully utilized. The decoder section employs an expansion path
similar to U-Net, using upsampling and skip connections to
restore spatial information, thereby ensuring detail accuracy
(Ronneberger et al., 2015).

Assuming the input is a UAV image of size WxHx3, where H is
the height, W is the width, and 3 represents the RGB color
channels, the image is first processed through Patch Partition,
which divides the image into smaller patches to retain local
features and reduce the input data dimensions. The Linear
Embedding then converts each image patch into a
representation vector suitable for subsequent self-attention
mechanisms. A convolutional layer with a stride of 2 is then
applied for downsampling, reducing the image size to
H/2xW/2xC0, where CO is the current custom channel number.
The data then follows two branches: one branch transfers spatial
information to the Decoder via a skip connection, while the

other undergoes 2x2 max pooling, reducing the size to
H/4xW/4xC1 before entering the first Transformer module.

The Transformer module does not alter the feature size, so its
output remains H/4xW/4xCl. After passing through a 3x3
convolution, the data flow splits into two branches again,
repeating the process of skip connections and downsampling
three more times. The encoder section thus generates a series of
features at different resolutions. These multi-scale feature maps
are then fused together through upsampling and concatenation
operations to form a higher-dimensional feature representation.
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Figure 1. Structure of the H4DNet model.

In the decoder section, the deepest features from the encoder are
first upsampled to restore spatial resolution. A key feature of U-
Net is its skip connections, which concatenate upsampled
feature maps with the corresponding encoder layers. This
approach preserves more detailed information. Additionally, the
Multiscale Feature Integration Module, Residual Block, and
Semantic Filtering Fusion Module are employed to integrate
multi-scale features, learn deep features, and refine semantic
information, enhancing the model’s performance and accuracy.
As the decoder progresses, the feature maps gradually restore to
the original input size of WxHxN_Classes (where N_Classes
represents the number of classes). Each layer involves
upsampling and feature concatenation until the original image
size is achieved.

2.1.2  Transformer Block Design: Unlike ViT, the encoder
of H4DNet can generate multi-scale features, enhancing
semantic segmentation performance. Specifically, given an
input image of size WxHX3, it produces a series of features at
different resolutions:

%x%xq, ie{l, 2,3 4 and C,>C, (1)

As illustrated in Figure 2, the key component of the encoder is a
series of Mix Transformer encoders (MiT) modules. This
module primarily consists of Efficient Self-Attention, Mix-FFN,
and Overlap Patch Merging.

The Efficient Self-Attention module is an improved self-
attention mechanism designed to reduce computational
complexity and memory usage while maintaining the model's
representational power. The input feature map is linearly
transformed into three distinct matrices: Query (Q), Key (K),
and Value (V).
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Q, K, and V all have the same dimensions of NxC, where
N=WxH. To reduce computational complexity, the length of the
features (i.e., N) is reduced through Reshape + Linear layers.
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Figure 2. Structure of the Transformer block.

K= Reshape(%, CxR)(K) 3)
K = Linear(Cx R, C)(K)

Position-Encoding (PE) is commonly used in Transformer
structures. In ViT, PE's resolution is fixed, meaning that when
the image resolution changes, PE must also adjust, leading to
decreased accuracy. The Mix-FFN addresses this by combining
3x3 convolution with MLP, effectively replacing PE.

X,,, = MLP(GELU(Conv, ,(MLP(x,)))) + x,, )

Overlap Patch Merging is an image processing technique that
merges overlapping image patches into a complete image. In
image processing, dividing an image into smaller patches can
reduce computational complexity and improve processing
efficiency. However, when patches overlap, they must be
merged to restore the image's integrity. The Overlap Patch
Merging module retains the width and height of the input
feature map while increasing the number of channels to capture
contextual information. This helps the model capture context
across different scales, thus improving its performance.

2.2 Disaster Damage Index (DDI): A New Metric for
Disaster Severity

2.2.1 Definition and Weight Calculation of DDI: To
objectively and accurately describe the disaster situation in
different regions, we have designed a new metric called the
Disaster Damage Index (DDI). The traditional method used by
RescueNet for manual disaster classification lacks standardized
norms and is limited by only three levels, which fail to cover the
full range of disaster scenarios. To address this, DDI combines
the proportion of damaged area of buildings and roads to
provide a more reasonable disaster assessment approach. For
each semantic-segmented UAV image, DDI is defined as
follows:

DD1=¢)><§,M (5)
=W x H

where k is a scaling factor used to adjust the value range of DDI,
set to @ =10 in this study; R represents the area of the i-th

class of objects on the image; €; denotes the importance

weight of the i-th class of objects; W and H represent the width
and height of the image, respectively.

The area of each class can be represented by the number of
pixels, and the importance weights are calculated using the
Analytic Hierarchy Process (AHP). AHP is an excellent semi-
quantitative multi-criteria decision-making method used for
structuring and making decisions on complex problems
involving multiple criteria. It allows for the allocation of
weights to different influencing factors. This method
decomposes a complex overall ranking into multiple pairwise
comparisons, generating a higher-order judgment matrix.
Personal preferences of decision-makers are incorporated into
the comparison process to quantify the importance of different
influencing factors. The quantification standards are shown in
Table 1.

Scale Meaning
1 Two elements are equally important
3 The first element is slightly more important than
the second
5 The first element is clearly more important than the
second
7 The first element is extremely more important than
the second
9 The first element is strongly more important than
the second
2,4, 6,8 | Intermediate values between adjacent judgments
1-9 Importance when swapping the order of two
reciprocal | elements

Table 1. Importance Quantification Scale.

Based on this table, a judgment matrix 4 is generated, ensuring
it meets the criteria for the characteristic root and eigenvector

conditions: 4Q=4,,Q . Here, the maximum eigenvalue of 4 is
Amax, and the corresponding normalized eigenvector is Q .

1 1/a, - 1/a,

a,, 1 1/a,

. ©)
1
AQ=1,Q @)

Once the weights Q are computed, consistency checking is
required. The main purpose of consistency checking is to ensure
there are no logical issues in the construction of the judgment
matrix. Pairwise comparisons in AHP can lead to logical
inconsistencies, especially when the number of elements is large.
For example, if the pairwise comparison results show A1>A2
and A2>A3, it should logically follow that A1>A3. If the
judgment matrix incorrectly indicates A1<A3, this constitutes a
logical issue. The consistency ratio (CR) is calculated using the
following formulas, where CR<0.1 indicates that the weights
are reasonable:

1=t (®)
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where n is the matrix order, and RI is the random consistency
index derived from 1000 simulation experiments.

2.2.2  Adjusted Inverse Distance Weighting (AIDW): After
calculating DDI for all images, we obtain a series of spatially
discrete points. To reflect the continuous variation in disaster
severity with location, we introduce the Adjusted Inverse
Distance Weighting (AIDW) method for spatial interpolation.
This method is an improvement over the traditional Inverse
Distance Weighting (IDW) technique and aims to address the
IDW's limitations when dealing with uneven sample
distributions. In IDW, samples located in one direction from the
interpolation point may overshadow samples in other directions,
reducing their influence. The AIDW method introduces an
orientation-modulated weight coefficient to account for both the
distance and directional relationships between samples and
interpolation points, thereby improving the interpolation's
accuracy.

Assuming that the result at any given point is influenced by the
nearest n sample points (in this study, »=10), the DDI for the
interpolation point is calculated as follows:

Lk
DDI =
Z (d)"

n k‘

opr,/ ,
o (d)

(10)

where k; is the orientation-modulated weight coefficient for the
i-th sample point, representing the combined effect of
d, denotes the

Euclidean distance between the interpolation point Po and the i-
th sample point; P is the power index reflecting the distance's

impact, generally set to p=2; and DDI, is the disaster damage

overshadowing by other sample points;

index for the i-th sample point.

Figure 3. Schematic diagram of interpolation calculation.

The orientation-modulated weight coefficient % is computed as
follows:

ke =4 =
T sin’e, =230 an

1 a{/>360°/n
(12)

»
2 o o
(I1-cos™6;)* a; <360°/n

where, 1< j<i-1, and the distance to the interpolation point is

similarly constrained by 4, <d;<d., . 6, represents the angle

(either acute or right) between the line connecting the two

sample points £P, and the line connecting the interpolation

point P, with the midpoint of FP; . @; is the angle formed

between the lines connecting the sample points i and j with the
interpolation point. The basic assumption of AIDW method

suggests that when @; =2360°/n  the sample point j does not

exert a shadowing effect on sample point i in the interpolation
process.

This approach ensures that when certain spatial relationships
between sample points and the interpolation point are met, the
influence of one point on another is minimized or excluded,
enhancing the accuracy of spatial interpolation.

3. Experiments and Results
3.1 Dataset and Evaluation Metrics

3.1.1 RescueNet: On October 10, 2018, Hurricane Michael
made landfall near Mexico Beach as a Category 4 hurricane,
becoming one of the strongest storms in the region's history.
With wind speeds reaching up to 250 kilometers per hour,
accompanied by powerful storm surges and torrential rainfall,
the hurricane caused widespread destruction. A large number of
houses were destroyed, critical infrastructure was severely
damaged, and both power and communication systems were
disrupted. The storm surge led to extensive coastal flooding,
while heavy rainfall inland triggered severe waterlogging,
further exacerbating the disaster's impact.

In the aftermath of the hurricane, the Center for Robot-Assisted
Search and Rescue (CRASAR) conducted 80 UAV flights
between October 11 and 14, 2018, capturing a large volume of
high-resolution post-disaster imagery. Based on these images,
Rahnemoonfar et al. manually annotated buildings, roads, and
other objects across various levels of damage, resulting in a new
dataset designed for computer vision applications—RescueNet
(Rahnemoonfar et al., 2023). The dataset includes a total of
3,595 training images, 449 validation images, and 450 test
images.

Building-Total-Destruction
Road-Clear

Figure 4. RescueNet dataset, including buildings and roads with
varying damage levels.

Building-Minor-Damage
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3.1.2 Evaluation Metrics and Comparative Models:
Common evaluation metrics for semantic segmentation models
include average accuracy (aAcc), mean accuracy (mAcc), and
mean Intersection over Union (mloU). The aAcc measures the
overall classification accuracy of the model, calculated as the
ratio of correctly classified pixels to the total number of pixels.
However, it does not account for class imbalance. In contrast,
mAcc averages the classification accuracy across all classes,
providing a better reflection of the model’s ability to handle
imbalanced categories. The mloU, a widely used metric for
assessing the overlap between predicted and ground truth
regions, evaluates the model's performance in spatial
localization and reveals its ability to accurately capture target
areas.

Under consistent training conditions, we compare the
performance of H4DNet on the RescueNet dataset with several
state-of-the-art semantic segmentation models, including
DANet (Fu et al, 2019), PSPNet (Zhao et al., 2017),
SegFormer (Xie et al., 2021), and UPerNet (Xiao et al., 2018).

3.2 Results

3.2.1 Performance Evaluation of H4DNet: The various
accuracy metrics for the multiple models involved in the
experiment are shown in Table 2.

aAcc/ % mAcc / % mloU / %
DANet 93.09 86.25 75.74
PSPNet 93.80 86.58 76.78
Ground Truth H4DNet

Original Image

PSPNet

Segformer 93.17 87.75 72.34
UPerNet 93.68 86.06 74.97
H4DNet 93.71 87.80 78.01

Table 2. Accuracy Comparison of Different Semantic
Segmentation Models.

H4DNet outperforms other models in key metrics, particularly
in mloU with 78.01%, demonstrating superior pixel-level
classification and spatial localization. Its high mloU suggests
better recognition of class boundaries, making it more effective
in practical applications. While PSPNet leads in aAcc at
93.80%, it lags in mAcc and mloU, scoring 86.58% and 76.78%,
respectively. This indicates that PSPNet excels in pixel
classification but struggles with imbalanced classes and spatial
accuracy compared to H4DNet. SegFormer performs best in
mAcc (87.75%), showing strength in class balance, but its
mloU of 72.34% reveals limitations in spatial localization,
particularly with complex shapes. UPerNet, with an aAcc of
93.68% and mloU of 74.97%, offers strong classification but
falls short in spatial localization, while DANet's performance is
more average, achieving an mloU of 75.74%, reflecting
difficulties in capturing boundaries and spatial relationships.
Overall, H4DNet demonstrates the most balanced performance,
excelling in critical spatial metrics.

Figure 5 presents partial results from the five models tested on
the dataset, along with the corresponding original images and
semantic segmentation masks. To facilitate observation, key
areas are highlighted with red rectangles.

UPerNet DANet SegFormer

Figure 5. Semantic segmentation results for different models.

In panel (a), the highlighted regions reflect the model’s
performance on imbalanced classes, providing an evaluation of
overall model performance. For example, the “vehicle” category,
which has a small area and high similarity to the background,
presents a significant challenge for differentiation. Among the
five models tested, UperNet classifies the highlighted small boat
completely as background; DANet and SegFormer identify only
a part of the boat; PSPNet’s segmentation is relatively better but

still lacks completeness compared to H4DNet. Additionally,
beyond the highlighted areas, H4DNet shows superior
segmentation of water bodies and buildings compared to the
other models. Thanks to its advantages in mAcc and mloU,
H4DNet handles various land cover categories more
comprehensively.
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Panels (b), (c), (d), and (e) focus on the models’ performance in
distinguishing buildings and roads with different levels of
damage, which is the core task of this study. In panels (b) and
(c), the highlighted buildings are minor damaged, but UperNet,
DANet, and SegFormer incorrectly classify them as major
damaged. PSPNet and H4DNet manage to segment the minor
damaged areas better, with H4DNet providing a more complete
segmentation result. In contrast, panel (d) shows buildings
initially classified as major damaged being mistakenly identified
as minor damaged by models other than PSPNet and H4DNet.
In panel (e), all five models struggle with distinguishing
between clear and blocked roads, with PSPNet, UperNet, and
DANet incorrectly classifying entire clear roads as blocked.
H4DNet and SegFormer perform the segmentation with the
highest accuracy. These results highlight the complexity of
distinguishing between varying damage levels and different
types of roads, with H4DNet showing the best adaptation to this
task due to its highest mloU.

In summary, H4DNet stands out for its balance and spatial
precision, with a significant improvement in mloU indicating its
suitability for complex scene classification tasks. While PSPNet
excels in average accuracy, it falls short in spatial precision.
SegFormer, though strong in handling class imbalance, shows
weaker spatial localization capabilities. UperNet and DANet
perform reasonably well but do not surpass H4DNet in key
metrics. Therefore, H4DNet demonstrates superior robustness
and adaptability, suggesting broader potential in practical
applications.

3.2.2  Analysis of DDI Spatial Distribution: In the
calculation, categories that do not effectively reflect disaster
conditions, such as “Building No Damage” and “Road-Clear,”
are assigned a weight of 0. For the categories of Building-
Minor-Damage,  Building-Major-Damage,  Building-Total-
Destruction, and Road-Blocked, we use the Analytic Hierarchy

Others | 0

Process (AHP) for weight calculation. The importance
judgment matrix we used is as follows:
Bulhldmg- Bullqlng- Building- Road-
Minor- Major- Total- Blocked
Damage Damage | Destruction
Building-
Minor- 1 1/5 1/9 1/3
Damage
Building-
Major- 5 1 /5 3
Damage
Building-
Total- 9 5 1 5
Destruction
Road-
Blocked 3 173 1/5 1

Table 3. The importance judgment matrix.

In evaluating importance, we considered Building-Minor-
Damage < Road-Blocked < Building-Major-Damage <
Building-Total-Destruction, leading to the above judgment
matrix. The calculated weights for each category are:

Class Weight
Building-Minor-Damage 0.047
Building-Major-Damage 0.213

Building-Total-Destruction 0.634
Road-Blocked 0.106

Table 4. The calculated weights for each category.

The calculated Consistency Ratio (CR) is 0.068, which is less
than 0.1, indicating that the weight setting is reasonable.

Based on this, the disaster situation spatial distribution obtained
through interpolation is as shown in Figure 6. The Disaster
Damage Index (DDI) exhibits a distinct spatial distribution
pattern, with DDI values increasing as one approaches the
coastline and gradually decreasing from northwest to southeast.
This unique distribution pattern is closely related to the
mechanism of Hurricane Michael. When Hurricane Michael
made landfall on the Florida coast, the immense energy was
initially released in the coastal areas, causing significant damage.
As the hurricane moved inland, buildings, vegetation, and other
terrain features along the way acted as buffers, weakening the
storm's strength, which resulted in lower DDI values in the
inland areas. Additionally, the topography within the study area
significantly influenced the spatial distribution of the DDI.
Notably, the elevation in the northwest of the study area is
generally higher than in the southeast, with an elevation
difference of nearly 20 meters. This elevation difference greatly
determines the variation in hurricane impact. In the higher-
elevation northwest region, the storm surge and flooding caused
by the hurricane are less likely to penetrate, resulting in lower
DDI values. Conversely, the lower-elevation southeast region is
more susceptible to storm surges and flooding, leading to higher
DDI values.

-85°25'

29°57'

29°56'
29°56'

. 0

0.39 0.77 1.54

-85°25'

Figure 6. DDI spatial distribution map.

We selected three typical points from the figure according to
DDI values, from highest to lowest, and displayed the
corresponding UAV images and semantic segmentation results.
First, the image at Location 1 shows numerous buildings that
are total destroyed and some major damaged buildings, thus
having the highest DDI value among the three points. Location
2 primarily contains minor damaged buildings, undamaged
buildings, clear roads, and numerous parked cars. Compared to
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Location 1, the disaster extent is significantly lighter, resulting
in a lower DDI value. Location 3’s image shows no damaged
buildings or blocked roads, resulting in a DDI value of 0.
Comparing these three sample points demonstrates that the
proposed DDI indicator effectively and accurately reflects the
overall disaster conditions in different areas, showcasing strong
practicality and reliability.

-85°26"

-85°25"

29°56'

29°56'

-85°26" -85°25'

-85°26"
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3.2.3 Spatial distribution of features with different
damage levels: The calculation of DDI primarily relies on four
categories of land cover: Building-Minor-Damage, Building-
Major-Damage, Building-Total-Destruction, and Road-Blocked.
Figure 7 illustrates the spatial relative density distribution of
these four categories, all computed using the AIDW algorithm
for spatial interpolation. The spatial distribution patterns of
these land cover types closely align with the final computed
DDI values. In particular, the buildings classified as Building-
Total-Destruction are densely concentrated in the northwest
coastal region, which is closely related to the maximum weight
assigned to this category in the DDI calculation.
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Figure 7. Spatial distribution of features with different levels of destruction.

Upon further examination of Figure 7, we observe an interesting
phenomenon: compared to the other three categories, the spatial
distribution of Building-Total-Destruction is more concentrated
and primarily close to the coastline. In the direction extending
from the coast inland within the study area, Building-Total-
Destruction is almost restricted to the first one-third of the range,
while the distribution of other categories is more widespread
but decreases in density with increasing distance inland.
Additionally, categories with lower damage levels have broader
distribution ranges.

We attribute this phenomenon to the energy dissipation process
of the hurricane after landfall. When a hurricane initially makes
landfall, its energy is at its peak, causing the most severe
damage, especially in coastal areas, where all categories of
damaged land cover are present. Coastal land cover, while being
destroyed, also absorbs some of the hurricane's energy.
Therefore, buildings near the coast often experience the most
severe destruction. As the hurricane progresses inland, its
energy gradually dissipates, resulting in less extensive damage
and a decrease in the number of total destroyed buildings.
Further inland, the hurricane's energy weakens even more,
reducing the extent of damage and altering land cover
distribution.

Based on this observation, we recommend that coastal cities,
when preparing for hurricane disasters, pay particular attention
to defensive measures in coastal areas. For example, buildings
should be reinforced with structures designed to withstand
hurricanes to mitigate significant damage during initial landfall.
Additionally, more disaster-resistant infrastructure, such as
wind barriers or buffer zones, should be considered near the
coastline to reduce the impact of hurricanes on inland buildings
and infrastructure.

4. Conclusions

This study proposes a rapid assessment method for natural
disaster damage based on drone imagery, addressing limitations
in model accuracy and spatial distribution analysis of existing
methods. By developing the H4DNet model, we achieved
significant ~ performance  improvements in  semantic
segmentation tasks, allowing precise extraction of damaged land
cover information from drone images. Additionally, we
introduced the Disaster Damage Index (DDI), which calculates
the area proportion of damaged land cover and uses the
Adjusted Inverse Distance Weighting (AIDW) method to
generate spatial distribution maps of disaster impact, accurately
reflecting the damage across different regions. Experimental
results demonstrate that H4DNet excels in various evaluation
metrics, and the DDI index effectively complements the analysis
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of disaster spatial distribution, providing valuable scientific
support for disaster assessment and mitigation efforts. This
research not only opens new avenues for the application of
drone imagery in disaster evaluation but also provides technical
support for future post-disaster emergency responses.
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