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Abstract 
 
In recent years, hurricane disasters have occurred frequently, causing significant losses to human society. UAV technology, with its 
advantages of high mobility and low cost, has been widely applied in post-disaster loss assessment. However, existing UAV image 
assessment methods still exhibit deficiencies in model accuracy and the rapid analysis of spatial distribution of disaster events. To 
address these issues, this study proposes a semantic segmentation model, H4DNet, which combines the global feature extraction 
capability of SegFormer and the information reconstruction capability of U-Net, aiming to efficiently extract information about 
damaged objects from UAV images. Experimental results show that H4DNet achieved a 93.71% average accuracy, 87.80% mean 
accuracy, and 78.01% mean Intersection over Union (mIoU) on the RescueNet dataset, outperforming other comparative models. 
Furthermore, this paper introduces the Disaster Damage Index (DDI), which generates a spatial distribution map of disaster events 
by calculating the area proportion of damaged objects and using an Adjusted Inverse Distance Weighting (AIDW) spatial 
interpolation algorithm. The results indicate that DDI can accurately reflect the severity of disaster-affected areas. The study also 
verified the energy attenuation process after hurricane landfall through the spatial distribution of objects affected by different disaster 
levels, providing valuable insights for disaster assessment and emergency response. 
 
 

1. Introduction 

In recent years, the frequency and severity of natural disasters 
have been increasing, causing significant impacts on both 
human society and the natural environment (Markhvida et al. 
2020; Opper, Park and Husted 2023). Over the past few decades, 
various types of natural disasters have resulted in approximately 
40,000 to 50,000 deaths annually and displaced millions of 
people (Ritchie et al., 2022). Among these, hurricanes are 
particularly destructive due to their wide-ranging impacts and 
potential to trigger secondary disasters such as floods and debris 
flows, making them one of the most devastating natural hazards. 
In the aftermath of such events, the rapid acquisition of detailed 
information about the affected areas is crucial for formulating 
effective emergency response strategies and post-disaster 
recovery plans (Fan et al., 2017). However, traditional ground-
based survey methods are often time-consuming, costly, and 
pose safety risks to field personnel due to the complex and 
hazardous conditions in disaster-stricken areas. 
 
From a bibliometric perspective, researchers have proposed two 
emerging approaches to obtain post-disaster information on 
building damage, road blockages, and the status of critical 
infrastructure, while ensuring personnel safety. The first is the 
social media-based approach, which establishes functional 
relationships between the volume and frequency of social media 
posts and the extent of disaster damage (Guan and Chen, 2014), 
or employs natural language processing and computer vision 
techniques to extract useful disaster-related information from 
text and images (Christidou et al., 2022). However, the 
completeness and accuracy of social media data can be 
unreliable. The second is the satellite remote sensing approach, 
which leverages the monitoring capabilities of remote sensing 
satellites to acquire real-time imagery of affected areas 
(Robinson et al., 2023). Advanced image processing techniques 

such as object detection and semantic segmentation are then 
applied to accurately identify and assess damage to buildings 
and roads. Nevertheless, the effectiveness of disaster assessment 
using this method is often constrained by weather conditions 
and the spatial resolution of the imagery (Holail et al., 2024). 
 
Unmanned Aerial Vehicles (UAVs), as a near-ground remote 
sensing technology, have been increasingly applied in disaster 
assessment and emergency response due to their high mobility, 
low cost, and operational flexibility (Cheng et al., 2024; Jozi et 
al., 2024). In the field of post-disaster damage assessment, 
UAVs retain the rapid response advantage of social media and 
the efficiency of satellite remote sensing, while offering greater 
flexibility and significantly higher spatial resolution. These 
characteristics substantially enhance the speed and quality of 
post-disaster response efforts (Cheng et al., 2024). By 
employing semantic segmentation models, UAVs can 
automatically analyze and process imagery from disaster-
affected areas, segmenting objects such as buildings, roads, and 
vegetation, and further assessing their levels of damage (Mai et 
al., 2024). The segmentation results can be used to evaluate 
road accessibility (Chowdhury et al., 2020) and locate potential 
survivors (Raja et al., 2024), enabling timely deployment of 
rescue resources. This is crucial for tracking rescue progress and 
adjusting emergency response strategies accordingly. In 
addition, UAVs can conduct frequent flights shortly after a 
disaster, capturing continuous image data to support real-time 
monitoring of changes within the affected area (Schaefer et al., 
2020). 
 
However, current semantic segmentation models still face 
several limitations when applied to UAV imagery in post-
disaster scenarios. First, the accuracy of these models requires 
further improvement. Post-disaster images often contain rich 
information on damage and hazard distribution, which is critical 
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for emergency rescue. Damaged buildings and fallen trees, for 
instance, exhibit less geometric regularity compared to objects 
in UAV imagery under normal conditions, posing significant 
challenges for model-based recognition. Moreover, the practical 
applications of segmented imagery remain underdeveloped. 
Traditional photogrammetric 3D reconstruction methods are 
time-consuming and cannot meet the time-sensitive demands of 
emergency response. Therefore, efficiently obtaining the spatial 
distribution of objects with varying levels of damage is a 
fundamental requirement for post-disaster assessment and 
subsequent recovery efforts. 
 
To address these two challenges, this study proposes a novel 
model named H4DNet (Hurricane Disaster Damage Detection 
from Drones), which integrates the U-Net architecture 
(Ronneberger et al., 2015) with SegFormer (Xie et al., 2021) for 
semantic segmentation of post-hurricane disaster scenes. 
H4DNet utilizes a Mix Transformer structure for progressive 
downsampling, effectively capturing global contextual 
information and modeling long-range dependencies. The model 
leverages a hierarchical design to fully exploit multi-scale 
features, while spatial details are preserved through upsampling 
and skip connections, ensuring high segmentation accuracy at 
fine-grained levels. Furthermore, based on the proportion of 
areas occupied by buildings and roads with different levels of 
damage in UAV imagery, we introduce a Disaster Damage 
Index (DDI) to quantitatively describe the severity of the 
disaster. By mapping the DDI values of each image to their 
corresponding geographic locations and applying the Adjusted 
Inverse Distance Weighting (AIDW) method (Zhengquan et al., 
2018) for spatial interpolation, the model enables rapid 
identification of severely affected regions. 
 

2. Methods 

2.1 H4DNet: A Novel Semantic Segmentation Model 

2.1.1 Architecture of H4DNet: The overall architecture of 
the H4DNet (Natural Hurricane Disaster Damage Detection 
from Drones) model is illustrated in the diagram and can be 
divided into an encoder section and a decoder section, 
functioning in a top-down and bottom-up manner, respectively. 
The encoder section is designed based on the SegFormer 
framework, featuring a hierarchical Mix Transformer for feature 
extraction. This design enables the model to capture global 
context through continuous downsampling (Xie et al., 2021). 
The application of Transformer modules allows the model to 
effectively handle long-range dependencies while the 
hierarchical design ensures that features at various scales are 
fully utilized. The decoder section employs an expansion path 
similar to U-Net, using upsampling and skip connections to 
restore spatial information, thereby ensuring detail accuracy 
(Ronneberger et al., 2015). 
 
Assuming the input is a UAV image of size W×H×3, where H is 
the height, W is the width, and 3 represents the RGB color 
channels, the image is first processed through Patch Partition, 
which divides the image into smaller patches to retain local 
features and reduce the input data dimensions. The Linear 
Embedding then converts each image patch into a 
representation vector suitable for subsequent self-attention 
mechanisms. A convolutional layer with a stride of 2 is then 
applied for downsampling, reducing the image size to 
H/2×W/2×C0, where C0 is the current custom channel number. 
The data then follows two branches: one branch transfers spatial 
information to the Decoder via a skip connection, while the 

other undergoes 2×2 max pooling, reducing the size to 
H/4×W/4×C1 before entering the first Transformer module. 
 
The Transformer module does not alter the feature size, so its 
output remains H/4×W/4×C1. After passing through a 3×3 
convolution, the data flow splits into two branches again, 
repeating the process of skip connections and downsampling 
three more times. The encoder section thus generates a series of 
features at different resolutions. These multi-scale feature maps 
are then fused together through upsampling and concatenation 
operations to form a higher-dimensional feature representation. 

 

Figure 1. Structure of the H4DNet model. 

In the decoder section, the deepest features from the encoder are 
first upsampled to restore spatial resolution. A key feature of U-
Net is its skip connections, which concatenate upsampled 
feature maps with the corresponding encoder layers. This 
approach preserves more detailed information. Additionally, the 
Multiscale Feature Integration Module, Residual Block, and 
Semantic Filtering Fusion Module are employed to integrate 
multi-scale features, learn deep features, and refine semantic 
information, enhancing the model’s performance and accuracy. 
As the decoder progresses, the feature maps gradually restore to 
the original input size of W×H×N_Classes (where N_Classes 
represents the number of classes). Each layer involves 
upsampling and feature concatenation until the original image 
size is achieved. 
 
2.1.2 Transformer Block Design: Unlike ViT, the encoder 
of H4DNet can generate multi-scale features, enhancing 
semantic segmentation performance. Specifically, given an 
input image of size W×H×3, it produces a series of features at 
different resolutions:  
 

  11 1
, 1, 2, 3, 4

2 2 i i ii i

W H
C i and C C               (1) 

 
As illustrated in Figure 2, the key component of the encoder is a 
series of Mix Transformer encoders (MiT) modules. This 
module primarily consists of Efficient Self-Attention, Mix-FFN, 
and Overlap Patch Merging. 
 
The Efficient Self-Attention module is an improved self-
attention mechanism designed to reduce computational 
complexity and memory usage while maintaining the model's 
representational power. The input feature map is linearly 
transformed into three distinct matrices: Query (Q), Key (K), 
and Value (V). 
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Q, K, and V all have the same dimensions of N×C, where 
N=W×H. To reduce computational complexity, the length of the 
features (i.e., N) is reduced through Reshape + Linear layers. 

 

Figure 2. Structure of the Transformer block. 
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Position-Encoding (PE) is commonly used in Transformer 
structures. In ViT, PE's resolution is fixed, meaning that when 
the image resolution changes, PE must also adjust, leading to 
decreased accuracy. The Mix-FFN addresses this by combining 
3×3 convolution with MLP, effectively replacing PE. 
 

3 3( ( ( ( ))))out in inx MLP GELU Conv MLP x x               (4) 

 
Overlap Patch Merging is an image processing technique that 
merges overlapping image patches into a complete image. In 
image processing, dividing an image into smaller patches can 
reduce computational complexity and improve processing 
efficiency. However, when patches overlap, they must be 
merged to restore the image's integrity. The Overlap Patch 
Merging module retains the width and height of the input 
feature map while increasing the number of channels to capture 
contextual information. This helps the model capture context 
across different scales, thus improving its performance. 
 
2.2 Disaster Damage Index (DDI): A New Metric for 
Disaster Severity 

2.2.1 Definition and Weight Calculation of DDI: To 
objectively and accurately describe the disaster situation in 
different regions, we have designed a new metric called the 
Disaster Damage Index (DDI). The traditional method used by 
RescueNet for manual disaster classification lacks standardized 
norms and is limited by only three levels, which fail to cover the 
full range of disaster scenarios. To address this, DDI combines 
the proportion of damaged area of buildings and roads to 
provide a more reasonable disaster assessment approach. For 
each semantic-segmented UAV image, DDI is defined as 
follows: 
 

1

Ωn
i i

i

R
DDI
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
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
                                (5) 

 

where k is a scaling factor used to adjust the value range of DDI, 
set to 10   in this study; iR represents the area of the i-th 

class of objects on the image; Ωi  denotes the importance 

weight of the i-th class of objects; W and H represent the width 
and height of the image, respectively. 
 
The area of each class can be represented by the number of 
pixels, and the importance weights are calculated using the 
Analytic Hierarchy Process (AHP). AHP is an excellent semi-
quantitative multi-criteria decision-making method used for 
structuring and making decisions on complex problems 
involving multiple criteria. It allows for the allocation of 
weights to different influencing factors. This method 
decomposes a complex overall ranking into multiple pairwise 
comparisons, generating a higher-order judgment matrix. 
Personal preferences of decision-makers are incorporated into 
the comparison process to quantify the importance of different 
influencing factors. The quantification standards are shown in 
Table 1. 
 

Scale Meaning 
1 Two elements are equally important 

3 
The first element is slightly more important than 
the second 

5 
The first element is clearly more important than the 
second 

7 
The first element is extremely more important than 
the second 

9 
The first element is strongly more important than 
the second 

2, 4, 6, 8 Intermediate values between adjacent judgments 
1-9 

reciprocal 
Importance when swapping the order of two 
elements 

Table 1. Importance Quantification Scale. 
 

Based on this table, a judgment matrix A is generated, ensuring 
it meets the criteria for the characteristic root and eigenvector 
conditions: maxA     . Here, the maximum eigenvalue of A is 

λmax, and the corresponding normalized eigenvector is  .  
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                          (6) 

 

maxA                                       (7) 

 
Once the weights   are computed, consistency checking is 
required. The main purpose of consistency checking is to ensure 
there are no logical issues in the construction of the judgment 
matrix. Pairwise comparisons in AHP can lead to logical 
inconsistencies, especially when the number of elements is large. 
For example, if the pairwise comparison results show A1>A2 
and A2>A3, it should logically follow that A1>A3. If the 
judgment matrix incorrectly indicates A1<A3, this constitutes a 
logical issue. The consistency ratio (CR) is calculated using the 
following formulas, where CR<0.1 indicates that the weights 
are reasonable: 
 

max

1

n
CI

n

 



                                  (8) 
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CI
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RI
                                      (9) 

 
where n is the matrix order, and RI is the random consistency 
index derived from 1000 simulation experiments. 
 
2.2.2 Adjusted Inverse Distance Weighting (AIDW): After 
calculating DDI for all images, we obtain a series of spatially 
discrete points. To reflect the continuous variation in disaster 
severity with location, we introduce the Adjusted Inverse 
Distance Weighting (AIDW) method for spatial interpolation. 
This method is an improvement over the traditional Inverse 
Distance Weighting (IDW) technique and aims to address the 
IDW's limitations when dealing with uneven sample 
distributions. In IDW, samples located in one direction from the 
interpolation point may overshadow samples in other directions, 
reducing their influence. The AIDW method introduces an 
orientation-modulated weight coefficient to account for both the 
distance and directional relationships between samples and 
interpolation points, thereby improving the interpolation's 
accuracy. 
 
Assuming that the result at any given point is influenced by the 
nearest n sample points (in this study, 10n  ), the DDI for the 
interpolation point is calculated as follows:  
 

1 1( ) ( )
/

n n
i i

ip p
i ii i

k k
DDI DDI

d d 

                     (10) 

 
where ik  is the orientation-modulated weight coefficient for the 

i-th sample point, representing the combined effect of 
overshadowing by other sample points; id  denotes the 

Euclidean distance between the interpolation point Po and the i-
th sample point; p  is the power index reflecting the distance's 
impact, generally set to 2p  ; and iDDI   is the disaster damage 

index for the i-th sample point. 

 

Figure 3. Schematic diagram of interpolation calculation. 

The orientation-modulated weight coefficient ik  is computed as 

follows: 
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where, 1 1j i   , and the distance to the interpolation point is 

similarly constrained by 1 1j id d d   . ij  represents the angle 

(either acute or right) between the line connecting the two 

sample points i jPP   and the line connecting the interpolation 

point oP  with the midpoint of i jPP . ij  is the angle formed 

between the lines connecting the sample points i and j with the 
interpolation point. The basic assumption of AIDW method 

suggests that when 360 /ij n   , the sample point j does not 

exert a shadowing effect on sample point i in the interpolation 
process. 
 
This approach ensures that when certain spatial relationships 
between sample points and the interpolation point are met, the 
influence of one point on another is minimized or excluded, 
enhancing the accuracy of spatial interpolation. 
 

3. Experiments and Results 

3.1 Dataset and Evaluation Metrics 

3.1.1 RescueNet: On October 10, 2018, Hurricane Michael 
made landfall near Mexico Beach as a Category 4 hurricane, 
becoming one of the strongest storms in the region's history. 
With wind speeds reaching up to 250 kilometers per hour, 
accompanied by powerful storm surges and torrential rainfall, 
the hurricane caused widespread destruction. A large number of 
houses were destroyed, critical infrastructure was severely 
damaged, and both power and communication systems were 
disrupted. The storm surge led to extensive coastal flooding, 
while heavy rainfall inland triggered severe waterlogging, 
further exacerbating the disaster's impact. 
 
In the aftermath of the hurricane, the Center for Robot-Assisted 
Search and Rescue (CRASAR) conducted 80 UAV flights 
between October 11 and 14, 2018, capturing a large volume of 
high-resolution post-disaster imagery. Based on these images, 
Rahnemoonfar et al. manually annotated buildings, roads, and 
other objects across various levels of damage, resulting in a new 
dataset designed for computer vision applications—RescueNet 
(Rahnemoonfar et al., 2023). The dataset includes a total of 
3,595 training images, 449 validation images, and 450 test 
images. 
 

 

Figure 4. RescueNet dataset, including buildings and roads with 
varying damage levels. 
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3.1.2 Evaluation Metrics and Comparative Models: 
Common evaluation metrics for semantic segmentation models 
include average accuracy (aAcc), mean accuracy (mAcc), and 
mean Intersection over Union (mIoU). The aAcc measures the 
overall classification accuracy of the model, calculated as the 
ratio of correctly classified pixels to the total number of pixels. 
However, it does not account for class imbalance. In contrast, 
mAcc averages the classification accuracy across all classes, 
providing a better reflection of the model’s ability to handle 
imbalanced categories. The mIoU, a widely used metric for 
assessing the overlap between predicted and ground truth 
regions, evaluates the model's performance in spatial 
localization and reveals its ability to accurately capture target 
areas. 
 
Under consistent training conditions, we compare the 
performance of H4DNet on the RescueNet dataset with several 
state-of-the-art semantic segmentation models, including 
DANet (Fu et al., 2019), PSPNet (Zhao et al., 2017), 
SegFormer (Xie et al., 2021), and UPerNet (Xiao et al., 2018). 
 
3.2 Results 

3.2.1 Performance Evaluation of H4DNet: The various 
accuracy metrics for the multiple models involved in the 
experiment are shown in Table 2. 
 

 aAcc / % mAcc / % mIoU / % 
DANet 93.09 86.25 75.74 
PSPNet 93.80 86.58 76.78 

Segformer 93.17 87.75 72.34 
UPerNet 93.68 86.06 74.97 
H4DNet 93.71 87.80 78.01 

Table 2. Accuracy Comparison of Different Semantic 
Segmentation Models. 

 
H4DNet outperforms other models in key metrics, particularly 
in mIoU with 78.01%, demonstrating superior pixel-level 
classification and spatial localization. Its high mIoU suggests 
better recognition of class boundaries, making it more effective 
in practical applications. While PSPNet leads in aAcc at 
93.80%, it lags in mAcc and mIoU, scoring 86.58% and 76.78%, 
respectively. This indicates that PSPNet excels in pixel 
classification but struggles with imbalanced classes and spatial 
accuracy compared to H4DNet. SegFormer performs best in 
mAcc (87.75%), showing strength in class balance, but its 
mIoU of 72.34% reveals limitations in spatial localization, 
particularly with complex shapes. UPerNet, with an aAcc of 
93.68% and mIoU of 74.97%, offers strong classification but 
falls short in spatial localization, while DANet's performance is 
more average, achieving an mIoU of 75.74%, reflecting 
difficulties in capturing boundaries and spatial relationships. 
Overall, H4DNet demonstrates the most balanced performance, 
excelling in critical spatial metrics. 
 
Figure 5 presents partial results from the five models tested on 
the dataset, along with the corresponding original images and 
semantic segmentation masks. To facilitate observation, key 
areas are highlighted with red rectangles. 

 

Figure 5. Semantic segmentation results for different models.

In panel (a), the highlighted regions reflect the model’s 
performance on imbalanced classes, providing an evaluation of 
overall model performance. For example, the “vehicle” category, 
which has a small area and high similarity to the background, 
presents a significant challenge for differentiation. Among the 
five models tested, UperNet classifies the highlighted small boat 
completely as background; DANet and SegFormer identify only 
a part of the boat; PSPNet’s segmentation is relatively better but 

still lacks completeness compared to H4DNet. Additionally, 
beyond the highlighted areas, H4DNet shows superior 
segmentation of water bodies and buildings compared to the 
other models. Thanks to its advantages in mAcc and mIoU, 
H4DNet handles various land cover categories more 
comprehensively. 
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Panels (b), (c), (d), and (e) focus on the models’ performance in 
distinguishing buildings and roads with different levels of 
damage, which is the core task of this study. In panels (b) and 
(c), the highlighted buildings are minor damaged, but UperNet, 
DANet, and SegFormer incorrectly classify them as major 
damaged. PSPNet and H4DNet manage to segment the minor 
damaged areas better, with H4DNet providing a more complete 
segmentation result. In contrast, panel (d) shows buildings 
initially classified as major damaged being mistakenly identified 
as minor damaged by models other than PSPNet and H4DNet. 
In panel (e), all five models struggle with distinguishing 
between clear and blocked roads, with PSPNet, UperNet, and 
DANet incorrectly classifying entire clear roads as blocked. 
H4DNet and SegFormer perform the segmentation with the 
highest accuracy. These results highlight the complexity of 
distinguishing between varying damage levels and different 
types of roads, with H4DNet showing the best adaptation to this 
task due to its highest mIoU. 
 
In summary, H4DNet stands out for its balance and spatial 
precision, with a significant improvement in mIoU indicating its 
suitability for complex scene classification tasks. While PSPNet 
excels in average accuracy, it falls short in spatial precision. 
SegFormer, though strong in handling class imbalance, shows 
weaker spatial localization capabilities. UperNet and DANet 
perform reasonably well but do not surpass H4DNet in key 
metrics. Therefore, H4DNet demonstrates superior robustness 
and adaptability, suggesting broader potential in practical 
applications. 
 
3.2.2 Analysis of DDI Spatial Distribution: In the 
calculation, categories that do not effectively reflect disaster 
conditions, such as “Building_No_Damage” and “Road-Clear,” 
are assigned a weight of 0. For the categories of Building-
Minor-Damage, Building-Major-Damage, Building-Total-
Destruction, and Road-Blocked, we use the Analytic Hierarchy 
Process (AHP) for weight calculation. The importance 
judgment matrix we used is as follows: 
 

 
Building-

Minor-
Damage 

Building-
Major-

Damage 

Building-
Total-

Destruction 

Road-
Blocked 

Building-
Minor-
Damage 

1 1/5 1/9 1/3 

Building-
Major-

Damage 
5 1 1/5 3 

Building-
Total-

Destruction 
9 5 1 5 

Road-
Blocked 

3 1/3 1/5 1 

Table 3. The importance judgment matrix. 
 

In evaluating importance, we considered Building-Minor-
Damage < Road-Blocked < Building-Major-Damage < 
Building-Total-Destruction, leading to the above judgment 
matrix. The calculated weights for each category are: 
 

Class Weight 
Building-Minor-Damage 0.047 
Building-Major-Damage 0.213 

Building-Total-Destruction 0.634 
Road-Blocked 0.106 

Others 0 
Table 4. The calculated weights for each category. 

 
The calculated Consistency Ratio (CR) is 0.068, which is less 
than 0.1, indicating that the weight setting is reasonable. 
 
Based on this, the disaster situation spatial distribution obtained 
through interpolation is as shown in Figure 6. The Disaster 
Damage Index (DDI) exhibits a distinct spatial distribution 
pattern, with DDI values increasing as one approaches the 
coastline and gradually decreasing from northwest to southeast. 
This unique distribution pattern is closely related to the 
mechanism of Hurricane Michael. When Hurricane Michael 
made landfall on the Florida coast, the immense energy was 
initially released in the coastal areas, causing significant damage. 
As the hurricane moved inland, buildings, vegetation, and other 
terrain features along the way acted as buffers, weakening the 
storm's strength, which resulted in lower DDI values in the 
inland areas. Additionally, the topography within the study area 
significantly influenced the spatial distribution of the DDI. 
Notably, the elevation in the northwest of the study area is 
generally higher than in the southeast, with an elevation 
difference of nearly 20 meters. This elevation difference greatly 
determines the variation in hurricane impact. In the higher-
elevation northwest region, the storm surge and flooding caused 
by the hurricane are less likely to penetrate, resulting in lower 
DDI values. Conversely, the lower-elevation southeast region is 
more susceptible to storm surges and flooding, leading to higher 
DDI values. 

 

Figure 6. DDI spatial distribution map. 

We selected three typical points from the figure according to 
DDI values, from highest to lowest, and displayed the 
corresponding UAV images and semantic segmentation results. 
First, the image at Location 1 shows numerous buildings that 
are total destroyed and some major damaged buildings, thus 
having the highest DDI value among the three points. Location 
2 primarily contains minor damaged buildings, undamaged 
buildings, clear roads, and numerous parked cars. Compared to 
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Location 1, the disaster extent is significantly lighter, resulting 
in a lower DDI value. Location 3’s image shows no damaged 
buildings or blocked roads, resulting in a DDI value of 0. 
Comparing these three sample points demonstrates that the 
proposed DDI indicator effectively and accurately reflects the 
overall disaster conditions in different areas, showcasing strong 
practicality and reliability. 
 

3.2.3 Spatial distribution of features with different 
damage levels: The calculation of DDI primarily relies on four 
categories of land cover: Building-Minor-Damage, Building-
Major-Damage, Building-Total-Destruction, and Road-Blocked. 
Figure 7 illustrates the spatial relative density distribution of 
these four categories, all computed using the AIDW algorithm 
for spatial interpolation. The spatial distribution patterns of 
these land cover types closely align with the final computed 
DDI values. In particular, the buildings classified as Building-
Total-Destruction are densely concentrated in the northwest 
coastal region, which is closely related to the maximum weight 
assigned to this category in the DDI calculation. 

 

Figure 7. Spatial distribution of features with different levels of destruction. 

Upon further examination of Figure 7, we observe an interesting 
phenomenon: compared to the other three categories, the spatial 
distribution of Building-Total-Destruction is more concentrated 
and primarily close to the coastline. In the direction extending 
from the coast inland within the study area, Building-Total-
Destruction is almost restricted to the first one-third of the range, 
while the distribution of other categories is more widespread 
but decreases in density with increasing distance inland. 
Additionally, categories with lower damage levels have broader 
distribution ranges. 
 
We attribute this phenomenon to the energy dissipation process 
of the hurricane after landfall. When a hurricane initially makes 
landfall, its energy is at its peak, causing the most severe 
damage, especially in coastal areas, where all categories of 
damaged land cover are present. Coastal land cover, while being 
destroyed, also absorbs some of the hurricane's energy. 
Therefore, buildings near the coast often experience the most 
severe destruction. As the hurricane progresses inland, its 
energy gradually dissipates, resulting in less extensive damage 
and a decrease in the number of total destroyed buildings. 
Further inland, the hurricane's energy weakens even more, 
reducing the extent of damage and altering land cover 
distribution. 
 

Based on this observation, we recommend that coastal cities, 
when preparing for hurricane disasters, pay particular attention 
to defensive measures in coastal areas. For example, buildings 
should be reinforced with structures designed to withstand 
hurricanes to mitigate significant damage during initial landfall. 
Additionally, more disaster-resistant infrastructure, such as 
wind barriers or buffer zones, should be considered near the 
coastline to reduce the impact of hurricanes on inland buildings 
and infrastructure. 
 

4. Conclusions 

This study proposes a rapid assessment method for natural 
disaster damage based on drone imagery, addressing limitations 
in model accuracy and spatial distribution analysis of existing 
methods. By developing the H4DNet model, we achieved 
significant performance improvements in semantic 
segmentation tasks, allowing precise extraction of damaged land 
cover information from drone images. Additionally, we 
introduced the Disaster Damage Index (DDI), which calculates 
the area proportion of damaged land cover and uses the 
Adjusted Inverse Distance Weighting (AIDW) method to 
generate spatial distribution maps of disaster impact, accurately 
reflecting the damage across different regions. Experimental 
results demonstrate that H4DNet excels in various evaluation 
metrics, and the DDI index effectively complements the analysis 
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of disaster spatial distribution, providing valuable scientific 
support for disaster assessment and mitigation efforts. This 
research not only opens new avenues for the application of 
drone imagery in disaster evaluation but also provides technical 
support for future post-disaster emergency responses. 
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