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Abstract 

 

MVS (Multi-View Stereo) establishes dense correspondences among multiple calibrated images to generate 3D point clouds, which 

has broad applications in fields such as 3D modeling, robot navigation, and autonomous driving. In street view MVS, the distant, 

weakly-textured sky pixels in images significantly degrade the quality of the generated point cloud, manifesting as pronounced edge 

noise at building boundaries, and the completeness of the point cloud requires further improvement. Therefore, we design an Edge-

enhanced Sky Masking Module to free street view MVS from sky interference, reducing edge noise by approximately 40%. In 

addition, we propose a Fusion Module based on Local Planarity Features, which integrates the strengths of both traditional and 

learning-based algorithms to generate superior dense point clouds, outperforming current mainstream methods in terms of 

completeness and F1 score. 

 

 

1. Introduction 

Multi-View Stereo (MVS) represents a core research area of 

computer vision, aimed at reconstructing dense geometric 

representations of real-world scenes from multiple overlapping 

photographs (Su and Tao, 2025). This capability demonstrates 

significant value with diverse applications across various fields, 

including autonomous driving, robotic navigation, augmented 

reality and virtual reality (AR/VR), cultural heritage 

reconstruction, and 3D modelling, among others. (Cao et al., 

2021; Gao, 2024; Ning et al., 2025; Shao et al., 2025; Song et 

al., 2022) 

 

In open street-view reconstruction, distant, weakly-textured sky 

regions present substantial challenges, causing inaccurate depth 

estimations at building-sky boundaries and generating 

pronounced edge noise (Rich et al., 2025) in reconstructed 

dense point clouds. Consequently, effective reconstruction of 

complex street-view scenes remains a critical research objective. 

 

Following decades of advancement, MVS methodology has 

matured, incorporating key processes including camera 

calibration, feature extraction/matching, Structure from Motion 

(SfM) (Schonberger and Frahm, 2016), stereo matching. 

Traditional MVS relies on accurate feature matching, but 

exhibits limitations in large-scale scenes and areas with 

repetitive or weak textures (Yao et al., 2020). With the rapid 

development of deep learning, learning-based MVS methods 

have received growing attention (Wang et al., 2025). These 

methods, leveraging Convolutional Neural Networks (CNNs) 

and other deep learning modules, have significantly improved 

the accuracy and efficiency of depth information extraction 

from images, but still face challenges in complex scenes. 

 

Empirical observations indicate that traditional MVS algorithms 

are more robust in recovering scene structural information, 

while learning-based MVS algorithms can better recover 

weakly-textured areas in scenes. Therefore, we propose a novel 

street view MVS pipeline that frees the noise components in the 

sky area and leverages the advantages of both traditional and 

learning-based methods. The specific contributions include: 

1. An Edge-enhanced Sky Masking Module to eliminate 

weakly-textured interference from sky while preserving 

objects of interest, effectively reducing edge noise at 

buildings and constructing cleaner dense point clouds;  

2. A Fusion Module based on Local Planarity Features, 

which fuses the advantageous structures of traditional and 

learning-based methods to generate more complete dense 

point clouds. 

 

2. Related Work 

Traditional MVS algorithms are broadly classified into three 

types: volumetric (Ulusoy et al., 2017), point cloud (Furukawa 

and Ponce, 2010), and depth map (Kar et al., 2017). Of these, 

depth map-based methods estimate depth maps for individual 

images through patch matching with photometric consistency, 

and then fuse these depth maps into dense 3D representations. 

This pipeline decomposes the reconstruction problem into depth 

estimation per viewpoint and depth maps fusion, significantly 

enhancing flexibility and scalability. Gipuma (Galliani et al., 

2015), building upon the PatchMatch algorithm (Bleyer et al., 

2011), aggregates image similarity across multiple views to 

obtain more accurate depth maps, while incorporating 

enhancements to the propagation scheme to enable large-scale 

parallelization on common GPUs. Colmap (Schönberger et al., 

2016) is a representative work with contributions in multiple 

aspects, including the joint estimation of depth and normal 
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information, pixelwise view selection using photometric and 

geometric priors, reliable depth/normal filtering and fusion, etc. 

Recent work by Xu et al. has significantly advanced such 

algorithms. ACMH (Xu and Tao, 2019) employs Adaptive 

Checkerboard sampling and Multi-Hypothesis joint view 

selection infer the aggregation view subset at each pixel, 

combined with multi-scale geometric consistency guidance to 

enhance achieve depth estimation. ACMP (Xu and Tao, 2020) 

incorporates utilize a probabilistic graphical model to embed 

planar models into PatchMatch MVS, and proposes a multi-

view aggregation matching cost that considers both photometric 

consistency and planar compatibility to obtain more complete 

dense point clouds. ACMMP (Xu et al., 2022) further designs a 

MVS guided by multi-scale geometric consistency and assisted 

by planar priors, enhancing the distinction of blurred areas and 

improving the algorithm's depth perception capabilities based 

on previous work. 

 

Learning-based MVS methods have achieved substantial 

progress in recent years (Wang et al., 2024), which can be 

categorized as voxel-based methods (Sun et al., 2021), depth 

map-based methods (Li et al., 2024), NeRF-based methods (P. 

Wang et al., 2021), and 3DGS-based methods (Guédon and 

Lepetit, 2024). Notably, depth map-based methods inherit the 

advantages of traditional methods, decomposing 3D 

reconstruction into depth estimation and dense fusion. MVSNet 

(Yao et al., 2018) proposes an end-to-end deep learning 

architecture that extracts deep visual features from images using 

CNNs and then performs joint cost optimization for multi-view 

to achieve fast dense point cloud generation. MVDepthNet 

(Wang and Shen, 2018) encodes multi-view observations into a 

cost volume, combines it with the reference image, and uses an 

encoder-decoder network to estimate depth maps. It is an online 

method that can continuously estimate depth for a single 

moving camera. PatchmatchNet (F. Wang et al., 2021) first 

introduces iterative multi-scale PatchMatch in an end-to-end 

trainable architecture, proposing a novel, learnable adaptive 

propagation and evaluation scheme to achieve efficient MVS. 

Iter-MVS (Wang et al., 2022) proposes a new GRU-based 

estimator that encodes the per-pixel probability distribution of 

depth in its hidden state. TransMVSNet (Ding et al., 2022) 

attempts to apply Transformers to the MVS task, proposing a 

Feature Matching Transformer that uses intra-image (self) and 

inter-image (cross) attention to aggregate long-range contextual 

information within and across images. Wang et al. (Wang et al., 

2023) innovatively transplant the deformable convolution idea 

from deep learning into the traditional PatchMatch-based 

method, adaptively deforming patches centered on unreliable 

pixels to expand the receptive field until enough relevant 

reliable pixels are covered as anchors. 

 

In summary, traditional MVS methods still have advantages in 

specific scenarios but remain challenged by low-texture regions. 

Learning-based MVS methods, incorporating novel network 

architectures and training strategies, have significantly 

improved performance and generalization capabilities, but still 

require further optimization to handle complex environments 

(Luo et al., 2024). We combine the strengths of traditional and 

learning-based MVS algorithms, obtaining more complete 

dense point clouds via plane extraction and fusion. Additionally, 

masking sky pixels from street view images reduces non-target 

element interference, substantially reducing the proportion of 

edge noise. 

 

3. Methodology 

To mitigate the impact of sky pixels on outdoor scenes and 

enhance the completeness of dense point clouds, we introduce a 

novel MVS framework leveraging cross algorithm data fusion, 

as illustrated in Figure 1. 

 

Firstly, the Edge-enhanced Sky Masking Module is applied to 

identify and mask sky pixels from the input images. Specifically, 

following edge detection, extraction, and enhancement, edge 

maps are obtained. These edge maps are then directly overlaid 

onto the input images and undergo semantic segmentation to 

obtain sky masks. The masked images are then fed into the 

Fusion Module based on Local Planarity Features. Within this 

module, the masked images are used for both learning-based 

and traditional MVS. Planar points are extracted from the 

learning-based MVS point cloud based on their planarity. These 

planar points are then fused with the denoised traditional MVS 

point cloud based on distance, yielding the final dense point 

cloud. 

 

 

Figure 1. The proposed MVS pipeline. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-17-2025 | © Author(s) 2025. CC BY 4.0 License.

 
18



 

3.1 Edge-enhanced Sky Masking Module 

In outdoor MVS tasks, the sky pixels in the image represent 

significant long-range, weakly-textured interference, which can 

degrade the quality of the generated point cloud. To address this 

issue, we develop an edge-enhanced semantic segmentation 

module that effectively mask sky pixels while preserving the 

integrity of objects of interest. 

 

Semantic segmentation is an important branch of image 

processing and computer vision, designed to interpret image 

content precisely. It involves classifying pixels and grouping 

them into the same category. After years of research, image 

semantic segmentation has advanced significantly and can 

effectively classify pixels in images. We utilize SegFormer (Xie 

et al., 2021) for image semantic segmentation, which is capable 

of distinguishing various types of objects in images, such as 

buildings, roads, vehicles, pedestrians, sky, vegetation, traffic 

signs, and signal lights. 

 

During semantic segmentation, pixels of objects adjacent to the 

sky are prone to being erroneously classified as sky, which can 

adversely affect subsequent multi-view geometric consistency. 

To address this problem, we introduce a preprocessing stage 

that involves edge detection and enhancement to preserve 

boundary integrity while effectively masking sky pixels. 

Specifically, the Canny algorithm is employed to detect edges in 

input images . The Canny algorithm utilizes a high 

threshold  and a low threshold  to identify strong and weak 

edges: 

 

 

 
(1) 

 

where  is the gradient magnitude: 

 

 
(2) 

 

where  and  are the convolution results of the image 

with the Sobel operator in the horizontal and vertical directions, 

respectively: 

 

,  (3) 

 

After edge detection, a set of grayscale images  containing 

edge information is obtained. To enhance the visibility of edges, 

we apply the dilation operation in mathematical morphology to 

thicken the edge information in , thereby generating Edge 

Maps. Edges within the edge maps, represented by black pixels, 

are superimposed on  to produce an edge-enhanced image 

set . 

 

Finally, semantic segmentation is performed on , and 

based on the segmentation results, the sky pixels in  are 

masked to generate a masked image set  for subsequent 

steps. 

 

3.2 Fusion Module based on Local Planarity Features 

SfM is initially applied on , followed by MVS. Two 

dense point clouds,  and , are generated using 

traditional and learning-based MVS algorithms, respectively. 

 

Learning-based MVS generally achieves better recovery in 

weakly-textured areas, such as walls and windows. Therefore, 

 

Figure 2. (a) Mobile mapping vehicle, (b) LiDAR point cloud of experimental area, (c) Partial image data. 
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local planar features for  are calculated first. Specifically, for 

each point in , a local neighbourhood is defined, and all 3D 

points within this neighbourhood are denoted as the set 

, where n is the number of points in the 

set, and the coordinate of  is . Then, the mean 

coordinates of all points in  are calculated in the , , and  

directions: 

 

 

(4) 

 

Based on the mean coordinates calculated above, the covariance 

matrix  is constructed, as shown in equation 5. 

 

Eigenvalue decomposition of the covariance matrix  yields 

three eigenvalues , satisfying . 

The planarity is then calculated as: 

 

 
(6) 

 

For a planar feature,  should be significantly smaller than the 

other two eigenvalues. Therefore, a larger  indicates higher 

planarity of the point. Given a threshold , points in  with 

 are identified as planar points, which collectively form 

the planar point cloud . 

 

During the fusion process, noise points can significantly affect 

the distance calculation between two point clouds. Therefore, 

we first apply denoising to  by removing outliers that are 

distant from surrounding points. Given a distance threshold  

and an inlier number threshold , for each point in , if 

fewer than  points are within distance , the point is 

considered an outlier and is removed. The resulting denoised 

point cloud is denoted as . 

 

Finally, the distance from each point in  to the nearest 

point in  is calculated. If the distance exceeds the 

threshold , the point is retained; otherwise, it is removed. 

Generally, a more complete fusion result can be obtained when 

. The retained planar points are subsequently 

integrated with  to produce the final dense point cloud. 

 

4. Experiments and Analysis 

4.1 Dataset 

The experimental data were collected using well-calibrated 

LiDAR and multi-view camera equipment mounted atop a 

mobile mapping vehicle, as shown in Figure 2(a). The 

experimental area is a typical urban campus scene, covering an 

area of approximately 700 meters in length and width. The 

LiDAR point cloud data are presented in Figure 2(b), and 

approximately 1500 images were captured, as shown in Figure 

2(c). 

4.2 Results of Sky Masking 

The results of directly masking the sky via semantic 

segmentation and using the edge-enhanced sky masking module 

described in Section 3.1 are shown in Figure 3. Qualitative 

analysis reveals that conventional image semantic segmentation 

algorithms produce less precise separation results at the edges, 

leading to noticeable jagged errors. In contrast, by enhancing 

edges prior before semantic segmentation, our method 

effectively improves the accuracy of edge separation and 

ensures that sky masking does not degrade the quality of other 

image elements. 

 

 

Figure 3. Comparison results of directly sky masking (green 

rectangle) and edge-enhanced sky masking (red rectangle). 

 

 Scene1 Scene2 Scene3 Avg 

Colmap 
(Schönberger et al., 2016) 

16.45 36.26 30.38 27.70 

ACMMP 
(Xu et al., 2022) 

86.36 65.89 31.46 61.24 

TransMVS 
(Ding et al., 2022) 

29.90 39.17 23.99 31.02 

Avg 44.24 47.11 28.61 39.99 

Table 1. The proportion (%) of reduced edge noise before and 

after sky masking. 

 

Three main regions (black dashed rectangles in Figure 2(b)) 

were captured from the experimental area, and three different 

algorithms were used for MVS of the images before and after 

sky masking. The reduction ratio of the number of edge noise 

outside the building contour was compared, as shown in Table 1. 

From the table, it can be seen that after preprocessing the 

images with the proposed edge-enhanced sky masking module, 

the proportion of edge noise in the generated dense point clouds 

 

(5) 
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is reduced by 39.99% on average, especially for the ACMMP 

method, where the average reduction in edge noise is as high as 

61.24%. These findings confirm that masking the sky from the 

images effectively reduces the number of edge noise points and 

improves the cleanliness of the reconstruction results. 

 

4.3 Results of MVS 

Six representative blocks (red rectangles in Figure 2(b)) were 

selected, and the experimental results were evaluated using the 

evaluation protocol defined in (Schops et al., 2017), including 

accuracy, completeness, and F1 score at two distance metrics 

(5cm and 15cm), as shown in Table 2. The visualization result 

of Block1 is shown in Figure 4. Here, ACMMP and TransMVS 

were used to generate  and , respectively. Our method 

is not limited to specific algorithm, and theoretically, any 

traditional and learning-based algorithm can be integrated into 

our pipeline. 

 

 Method 5cm 15cm 

Block1 

Colmap 89.00/19.86/32.47 97.32/46.62/63.05 

ACMMP 98.75/69.04/81.26 99.97/84.95/91.85 

TransMVS 83.68/61.71/71.03 99.16/85.41/91.77 

Ours 91.11/86.30/88.64 99.56/98.67/99.11 

Block2 

Colmap 89.47/21.25/34.34 99.35/63.45/77.44 

ACMMP 97.92/58.59/73.31 99.99/86.27/92.63 

TransMVS 95.15/89.22/92.09 99.93/98.56/99.24 

Ours 95.66/93.29/94.46 99.95/99.84/99.90 

Block3 

Colmap 83.58/38.96/53.14 97.28/80.21/87.92 

ACMMP 96.67/87.77/92.00 99.88/96.49/98.16 

TransMVS 75.59/59.24/66.42 98.00/88.71/93.13 

Ours 89.46/92.73/91.07 99.24/98.56/98.90 

Block4 

Colmap 92.95/47.96/63.28 99.74/74.41/85.23 

ACMMP 98.85/89.55/93.97 99.99/96.37/98.15 

TransMVS 89.54/76.97/82.78 99.88/88.14/93.65 

Ours 94.37/94.33/94.35 99.94/98.51/99.22 

Block5 

Colmap 61.56/23.66/34.18 88.46/75.43/81.43 

ACMMP 83.66/46.68/59.93 99.18/93.50/96.25 

TransMVS 59.59/74.16/66.08 93.80/96.92/95.34 

Ours 79.52/59.73/68.22 98.51/97.94/98.23 

Block6 

Colmap 40.31/4.84/8.64 85.76/13.47/23.29 

ACMMP 52.72/30.90/38.96 94.61/62.61/75.36 

TransMVS 39.30/20.28/26.75 91.39/49.05/63.84 

Ours 51.80/37.98/43.83 95.36/70.75/81.23 

Table 2. Accuracy, completeness, and F1 score (%) of dense 

point clouds under different metrics (5cm and 15cm). We 

highlight the best and second-best ones in each category. 

 

Quantitative results in Table 2 demonstrate that the accuracy, 

completeness, and F1 score of our method are consistently 

achieve top-two performance across all blocks and metrics. The 

proposed method demonstrates superior performance in terms 

of completeness and F1 score compared to the other methods, 

indicating that the proposed method generates more structurally 

complete dense point clouds while maintaining high accuracy. 

This is also visually evident from Figure 4, where the dense 

point cloud generated by our method is more complete than 

those of the comparison algorithms. 

 

 

Figure 4. Comparison of dense point clouds of block 1. 

 

The cumulative distribution function (CDF) uniquely 

characterizes the probability distribution of a random variable. 

Figure 5 statistically compares the CDFs of accuracy and 

completeness metrics across all evaluated blocks. Analysis 

reveals that the ACMMP algorithm typically achieves the best 

results in accuracy, indicating that the generated point clouds 

contain less noise. In the contrast, our method outperform all 

other algorithms in the completeness diagram, confirming its 

capability to generate more complete dense point clouds once 

again. Overall, our method achieves comprehensive F1 scores 

of 86.85% and 97.90% for all blocks under the 5cm and 15cm 

metrics, respectively, both of which are better than ACMMP's 

83.56% and 95.38%, indicating that the dense point clouds 

generated by our method have superior overall quality. 
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Figure 5. Distribution diagram of (a) accuracy and (b) 

completeness. 

 

5. Conclusions 

Empirical findings demonstrate that traditional MVS methods 

excel in reconstructing texture-rich structural areas, while 

learning-based MVS methods excel in reconstructing weakly-

textured areas, demonstrating complementary characteristics. 

Therefore, a fusion method was developed to integrate the 

strengths of both algorithms by combining the planar parts of 

learning-based MVS point clouds with traditional MVS point 

clouds through planarity assessment, resulting in more complete 

dense point clouds. Additionally, to eliminate sky interference 

in open street scenes, an edge-enhanced sky masking module 

was designed to effectively mask sky pixels while preserving 

regions of interest. Experimental evaluations confirm that our 

framework generates higher-fidelity dense point clouds against 

existing mainstream algorithms. In the future, we will explore 

deeper integration of traditional and learning-based MVS 

advantages while preserving accuracy, to further improve the 

quality of street-view dense point clouds. 

 

Acknowledgements 

The completion of this work was supported by the National Key 

Research and Development Program of China under Grant 

2022YFB3904105. Thanks for the support of Academic 

Specialty Group for Urban Sensing in Chinese Society of Urban 

Planing. 

 

References 

Bleyer, M., Rhemann, C., Rother, C., 2011. PatchMatch Stereo 

- Stereo Matching with Slanted Support Windows, in: 

Procedings of the British Machine Vision Conference 2011, 

https://doi.org/10.5244/C.25.14. 

Cao, M., Zheng, L., Jia, W., Lu, H., Liu, X., 2021. Accurate 3-

D Reconstruction Under IoT Environments and Its Applications 

to Augmented Reality. IEEE Trans. Ind. Inf, 17, 2090–2100. 

https://doi.org/10.1109/TII.2020.3016393. 

Ding, Y., Yuan, W., Zhu, Q., Zhang, H., Liu, Xiangyue, Wang, 

Y., Liu, Xiao, 2022. TransMVSNet: Global Context-aware 

Multi-view Stereo Network with Transformers, in: 2022 

IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), pp. 8575–8584. 

https://doi.org/10.1109/CVPR52688.2022.00839. 

Furukawa, Y., Ponce, J., 2010. Accurate, Dense, and Robust 

Multiview Stereopsis. IEEE Trans. Pattern Anal. Mach. Intell., 

32, 1362–1376. https://doi.org/10.1109/TPAMI.2009.161. 

Galliani, S., Lasinger, K., Schindler, K., 2015. Massively 

Parallel Multiview Stereopsis by Surface Normal Diffusion, in: 

2015 IEEE International Conference on Computer Vision 

(ICCV), pp. 873–881. https://doi.org/10.1109/ICCV.2015.106. 

Gao, M., 2024. Research on Cultural Relic Restoration and 

Digital Presentation Based on 3D Reconstruction MVS 

Algorithm: A Case Study of Mogao Grottoes’ Cave 285, in: 

Proceedings of the 2024 2nd International Conference on 

Image, Algorithms and Artificial Intelligence (ICIAAI 2024), pp. 

744–754. https://doi.org/10.2991/978-94-6463-540-9_76. 

Guédon, A., Lepetit, V., 2024. SuGaR: Surface-Aligned 

Gaussian Splatting for Efficient 3D Mesh Reconstruction and 

High-Quality Mesh Rendering, in: Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, pp. 5354-5363. 

Kar, A., Häne, C., Malik, J., 2017. Learning a Multi-View 

Stereo Machine. Advances in neural information processing 

systems, 30. 

Li, H., Guo, Y., Zheng, X., Xiong, H., 2024. Learning 

Deformable Hypothesis Sampling for Accurate PatchMatch 

Multi-View Stereo. in: Proceedings of the AAAI conference on 

artificial intelligence, Vol. 38, No. 4, pp. 3082-3090, 

https://doi.org/10.1609/aaai.v38i4.28091. 

Luo, H., Zhang, J., Liu, X., Zhang, L., Liu, J., 2024. Large-

Scale 3D Reconstruction from Multi-View Imagery: A 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-17-2025 | © Author(s) 2025. CC BY 4.0 License.

 
22



 

Comprehensive Review. Remote Sensing, 16, 773. 

https://doi.org/10.3390/rs16050773. 

Ning, M., Khajepour, A., Hashemi, E., Sun, C., 2025. A Novel 

Motion Planning for Autonomous Vehicles Using Point Cloud 

Based Potential Field. IEEE Trans. Veh. Technol, 74, 3780–

3792. https://doi.org/10.1109/TVT.2024.3485511. 

Rich, A., Stier, N., Sen, P., Höllerer, T., 2025. Smoothness, 

Synthesis, and Sampling: Re-thinking Unsupervised Multi-view 

Stereo with DIV Loss, in: European Conference on Computer 

Vision (ECCV), pp. 380–397. https://doi.org/10.1007/978-3-

031-73036-8_22. 

Schonberger, J.L., Frahm, J.-M., 2016. Structure-from-Motion 

Revisited, in: 2016 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), pp. 4104–4113. 

 https://doi.org/10.1109/CVPR.2016.445. 

Schönberger, J.L., Zheng, E., Frahm, J.-M., Pollefeys, M., 2016. 

Pixelwise View Selection for Unstructured Multi-View Stereo, 

in: European Conference on Computer Vision (ECCV), pp. 

501–518. https://doi.org/10.1007/978-3-319-46487-9_31. 

Schops, T., Schonberger, J.L., Galliani, S., Sattler, T., Schindler, 

K., Pollefeys, M., Geiger, A., 2017. A Multi-view Stereo 

Benchmark with High-Resolution Images and Multi-camera 

Videos, in: 2017 IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), pp. 2538–2547.  

https://doi.org/10.1109/CVPR.2017.272. 

Shao, Y., Wang, Q., Sun, H., Ding, X., 2025. Irregular seeds 

DEM parameters prediction based on 3D point cloud and GA-

BP-GA optimization. Scientific Reports, 15, 304. 

https://doi.org/10.1038/s41598-024-84375-3. 

Song, S., Kim, D., Choi, S., 2022. View Path Planning via 

Online Multiview Stereo for 3-D Modeling of Large-Scale 

Structures. IEEE Trans. Robot, 38, 372–390. 

https://doi.org/10.1109/TRO.2021.3083197. 

Su, W., Tao, W., 2025. Context-Aware Multi-view Stereo 

Network for Efficient Edge-Preserving Depth Estimation. Int J 

Comput Vis, https://doi.org/10.1007/s11263-024-02337-8. 

Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H., 2021. 

NeuralRecon: Real-Time Coherent 3D Reconstruction from 

Monocular Video, in: 2021 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR), pp. 15593–

15602. https://doi.org/10.1109/CVPR46437.2021.01534. 

Ulusoy, A.O., Black, M.J., Geiger, A., 2017. Semantic Multi-

view Stereo: Jointly Estimating Objects and Voxels, in: 2017 

IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), pp. 4531–4540.  

https://doi.org/10.1109/CVPR.2017.482. 

Wang, F., Galliani, S., Vogel, C., Pollefeys, M., 2022. IterMVS: 

Iterative Probability Estimation for Efficient Multi-View Stereo, 

in: 2022 IEEE/CVF Conference on Computer Vision and 

Pattern Recognition (CVPR), pp. 8596–8605.  

https://doi.org/10.1109/CVPR52688.2022.00841. 

Wang, F., Galliani, S., Vogel, C., Speciale, P., Pollefeys, M., 

2021. PatchmatchNet: Learned Multi-View Patchmatch Stereo, 

in: 2021 IEEE/CVF Conference on Computer Vision and 

Pattern Recognition (CVPR), pp. 14189–14198. 

https://doi.org/10.1109/CVPR46437.2021.01397. 

Wang, F., Zhu, Q., Chang, D., Gao, Q., Han, J., Zhang, T., 

Hartley, R., Pollefeys, M., 2024. Learning-based Multi-View 

Stereo: A Survey. arXiv preprint, arXiv:2408.15235. 

https://doi.org/10.48550/arXiv.2408.15235. 

Wang, K., Shen, S., 2018. MVDepthNet: Real-time Multiview 

Depth Estimation Neural Network. in: 2018 International 

conference on 3d vision (3DV), pp. 248-257. 

Wang, L., She, J., Qiang, Z., Wen, X., Guan, Y., 2025. 

Transformer-guided Feature Pyramid Network for Multi-View 

Stereo. Neurocomputing, 617, 129066.  

https://doi.org/10.1016/j.neucom.2024.129066. 

Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W., 

2021. NeuS: Learning Neural Implicit Surfaces by Volume 

Rendering for Multi-view Reconstruction. arXiv preprint, 

arXiv:2106.10689, 

https://doi.org/10.48550/ARXIV.2106.10689. 

Wang, Y., Zeng, Z., Guan, T., Yang, W., Chen, Z., Liu, W., Xu, 

L., Luo, Y., 2023. Adaptive Patch Deformation for Textureless-

Resilient Multi-View Stereo, in: 2023 IEEE/CVF Conference 

on Computer Vision and Pattern Recognition (CVPR), pp. 

1621–1630. https://doi.org/10.1109/CVPR52729.2023.00162. 

Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, 

P., 2021. SegFormer: Simple and Efficient Design for Semantic 

Segmentation with Transformers. Advances in neural 

information processing systems, 34, 12077-12090, 

https://doi.org/10.48550/arXiv.2105.15203. 

Xu, Q., Kong, W., Tao, W., Pollefeys, M., 2022. Multi-Scale 

Geometric Consistency Guided and Planar Prior Assisted Multi-

View Stereo. IEEE Trans. Pattern Anal. Mach. Intell., 1–18. 

https://doi.org/10.1109/TPAMI.2022.3200074. 

Xu, Q., Tao, W., 2019. Multi-Scale Geometric Consistency 

Guided Multi-View Stereo, in: 2019 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR), pp. 5478–

5487. https://doi.org/10.1109/CVPR.2019.00563. 

Xu, Q., Tao, W., 2020. Planar Prior Assisted PatchMatch 

Multi-View Stereo. in: Proceedings of the AAAI conference on 

artificial intelligence, Vol. 34, No. 07, pp. 12516-12523. 

Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L., 2018. MVSNet: 

Depth Inference for Unstructured Multi-view Stereo, in: 

Proceedings of the European conference on computer vision 

(ECCV), pp. 767-783. https://doi.org/10.1007/978-3-030-

01237-3_47. 

Yao, Y., Luo, Z., Li, S., Zhang, J., Ren, Y., Zhou, L., Fang, T., 

Quan, L., 2020. BlendedMVS: A Large-Scale Dataset for 

Generalized Multi-View Stereo Networks, in: 2020 IEEE/CVF 

Conference on Computer Vision and Pattern Recognition 

(CVPR), pp. 1787–1796.  

https://doi.org/10.1109/CVPR42600.2020.00186. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-17-2025 | © Author(s) 2025. CC BY 4.0 License.

 
23




