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Abstract

MVS (Multi-View Stereo) establishes dense correspondences among multiple calibrated images to generate 3D point clouds, which
has broad applications in fields such as 3D modeling, robot navigation, and autonomous driving. In street view MVS, the distant,
weakly-textured sky pixels in images significantly degrade the quality of the generated point cloud, manifesting as pronounced edge
noise at building boundaries, and the completeness of the point cloud requires further improvement. Therefore, we design an Edge-
enhanced Sky Masking Module to free street view MVS from sky interference, reducing edge noise by approximately 40%. In
addition, we propose a Fusion Module based on Local Planarity Features, which integrates the strengths of both traditional and
learning-based algorithms to generate superior dense point clouds, outperforming current mainstream methods in terms of

completeness and F1 score.

1. Introduction

Multi-View Stereo (MVS) represents a core research area of
computer vision, aimed at reconstructing dense geometric
representations of real-world scenes from multiple overlapping
photographs (Su and Tao, 2025). This capability demonstrates
significant value with diverse applications across various fields,
including autonomous driving, robotic navigation, augmented
reality and virtual reality (AR/VR), cultural heritage
reconstruction, and 3D modelling, among others. (Cao et al.,
2021; Gao, 2024; Ning et al., 2025; Shao et al., 2025; Song et
al., 2022)

In open street-view reconstruction, distant, weakly-textured sky
regions present substantial challenges, causing inaccurate depth
estimations at building-sky boundaries and generating
pronounced edge noise (Rich et al., 2025) in reconstructed
dense point clouds. Consequently, effective reconstruction of
complex street-view scenes remains a critical research objective.

Following decades of advancement, MVS methodology has
matured, incorporating key processes including camera
calibration, feature extraction/matching, Structure from Motion
(SfM) (Schonberger and Frahm, 2016), stereo matching.
Traditional MVS relies on accurate feature matching, but
exhibits limitations in large-scale scenes and areas with
repetitive or weak textures (Yao et al., 2020). With the rapid
development of deep learning, learning-based MVS methods
have received growing attention (Wang et al., 2025). These
methods, leveraging Convolutional Neural Networks (CNNs)
and other deep learning modules, have significantly improved
the accuracy and efficiency of depth information extraction
from images, but still face challenges in complex scenes.

Empirical observations indicate that traditional MVS algorithms
are more robust in recovering scene structural information,
while learning-based MVS algorithms can better recover
weakly-textured areas in scenes. Therefore, we propose a novel
street view MVS pipeline that frees the noise components in the
sky area and leverages the advantages of both traditional and
learning-based methods. The specific contributions include:
1. An Edge-enhanced Sky Masking Module to eliminate
weakly-textured interference from sky while preserving
objects of interest, effectively reducing edge noise at
buildings and constructing cleaner dense point clouds;
2. A Fusion Module based on Local Planarity Features,
which fuses the advantageous structures of traditional and
learning-based methods to generate more complete dense
point clouds.

2. Related Work

Traditional MVS algorithms are broadly classified into three
types: volumetric (Ulusoy et al., 2017), point cloud (Furukawa
and Ponce, 2010), and depth map (Kar et al., 2017). Of these,
depth map-based methods estimate depth maps for individual
images through patch matching with photometric consistency,
and then fuse these depth maps into dense 3D representations.
This pipeline decomposes the reconstruction problem into depth
estimation per viewpoint and depth maps fusion, significantly
enhancing flexibility and scalability. Gipuma (Galliani et al.,
2015), building upon the PatchMatch algorithm (Bleyer et al.,
2011), aggregates image similarity across multiple views to
obtain more accurate depth maps, while incorporating
enhancements to the propagation scheme to enable large-scale
parallelization on common GPUs. Colmap (Sch&nberger et al.,
2016) is a representative work with contributions in multiple
aspects, including the joint estimation of depth and normal
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information, pixelwise view selection using photometric and
geometric priors, reliable depth/normal filtering and fusion, etc.
Recent work by Xu et al. has significantly advanced such
algorithms. ACMH (Xu and Tao, 2019) employs Adaptive
Checkerboard sampling and Multi-Hypothesis joint view
selection infer the aggregation view subset at each pixel,
combined with multi-scale geometric consistency guidance to
enhance achieve depth estimation. ACMP (Xu and Tao, 2020)
incorporates utilize a probabilistic graphical model to embed
planar models into PatchMatch MVS, and proposes a multi-
view aggregation matching cost that considers both photometric
consistency and planar compatibility to obtain more complete
dense point clouds. ACMMP (Xu et al., 2022) further designs a
MVS guided by multi-scale geometric consistency and assisted
by planar priors, enhancing the distinction of blurred areas and
improving the algorithm's depth perception capabilities based
on previous work.

Learning-based MVS methods have achieved substantial
progress in recent years (Wang et al., 2024), which can be
categorized as voxel-based methods (Sun et al., 2021), depth
map-based methods (Li et al., 2024), NeRF-based methods (P.
Wang et al., 2021), and 3DGS-based methods (Gué&lon and
Lepetit, 2024). Notably, depth map-based methods inherit the
advantages of traditional methods, decomposing 3D
reconstruction into depth estimation and dense fusion. MV SNet
(Yao et al., 2018) proposes an end-to-end deep learning
architecture that extracts deep visual features from images using
CNNs and then performs joint cost optimization for multi-view
to achieve fast dense point cloud generation. MVDepthNet
(Wang and Shen, 2018) encodes multi-view observations into a
cost volume, combines it with the reference image, and uses an
encoder-decoder network to estimate depth maps. It is an online
method that can continuously estimate depth for a single
moving camera. PatchmatchNet (F. Wang et al., 2021) first
introduces iterative multi-scale PatchMatch in an end-to-end
trainable architecture, proposing a novel, learnable adaptive
propagation and evaluation scheme to achieve efficient MVS.
Iter-MVS (Wang et al., 2022) proposes a new GRU-based
estimator that encodes the per-pixel probability distribution of
depth in its hidden state. TransMVSNet (Ding et al., 2022)
attempts to apply Transformers to the MVS task, proposing a
Feature Matching Transformer that uses intra-image (self) and
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inter-image (cross) attention to aggregate long-range contextual
information within and across images. Wang et al. (Wang et al.,
2023) innovatively transplant the deformable convolution idea
from deep learning into the traditional PatchMatch-based
method, adaptively deforming patches centered on unreliable
pixels to expand the receptive field until enough relevant
reliable pixels are covered as anchors.

In summary, traditional MVS methods still have advantages in
specific scenarios but remain challenged by low-texture regions.
Learning-based MVS methods, incorporating novel network
architectures and training strategies, have significantly
improved performance and generalization capabilities, but still
require further optimization to handle complex environments
(Luo et al., 2024). We combine the strengths of traditional and
learning-based MVS algorithms, obtaining more complete
dense point clouds via plane extraction and fusion. Additionally,
masking sky pixels from street view images reduces non-target
element interference, substantially reducing the proportion of
edge noise.

3. Methodology

To mitigate the impact of sky pixels on outdoor scenes and
enhance the completeness of dense point clouds, we introduce a
novel MVS framework leveraging cross algorithm data fusion,
as illustrated in Figure 1.

Firstly, the Edge-enhanced Sky Masking Module is applied to
identify and mask sky pixels from the input images. Specifically,
following edge detection, extraction, and enhancement, edge
maps are obtained. These edge maps are then directly overlaid
onto the input images and undergo semantic segmentation to
obtain sky masks. The masked images are then fed into the
Fusion Module based on Local Planarity Features. Within this
module, the masked images are used for both learning-based
and traditional MVS. Planar points are extracted from the
learning-based MV'S point cloud based on their planarity. These
planar points are then fused with the denoised traditional MVS
point cloud based on distance, yielding the final dense point
cloud.

Fusion Module based on Local Planarity Features

Planar Points

Learning-based Planarity ‘ H' - ol
MVS Computation ‘ é.. e |
Traditional MVS Distance Fusion
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Figure 1. The proposed MVS pipeline.
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3.1 Edge-enhanced Sky Masking Module

In outdoor MVS tasks, the sky pixels in the image represent
significant long-range, weakly-textured interference, which can
degrade the quality of the generated point cloud. To address this
issue, we develop an edge-enhanced semantic segmentation
module that effectively mask sky pixels while preserving the
integrity of objects of interest.

Semantic segmentation is an important branch of image
processing and computer vision, designed to interpret image
content precisely. It involves classifying pixels and grouping
them into the same category. After years of research, image
semantic segmentation has advanced significantly and can
effectively classify pixels in images. We utilize SegFormer (Xie
et al., 2021) for image semantic segmentation, which is capable
of distinguishing various types of objects in images, such as
buildings, roads, vehicles, pedestrians, sky, vegetation, traffic
signs, and signal lights.

During semantic segmentation, pixels of objects adjacent to the
sky are prone to being erroneously classified as sky, which can
adversely affect subsequent multi-view geometric consistency.
To address this problem, we introduce a preprocessing stage
that involves edge detection and enhancement to preserve
boundary integrity while effectively masking sky pixels.
Specifically, the Canny algorithm is employed to detect edges in
input images I,y . The Canny algorithm utilizes a high
threshold T and a low threshold T; to identify strong and weak
edges:

strong edges = {pixels | M > Ty}

weak edges = {pixels | T, < M < Ty} @

where M is the gradient magnitude:

M= J(Gx #1)2 4 (G, *I)? @)

where G, = I and G,, = I are the convolution results of the image

with the Sobel operator in the horizontal and vertical directions,
respectively:

G, =

-1 0 1 -1 -2 -1
-2 0 2},63,[0 0 o} ©)
1 0 1 1 2 1

After edge detection, a set of grayscale images /.. containing
edge information is obtained. To enhance the visibility of edges,
we apply the dilation operation in mathematical morphology to
thicken the edge information in I,44,., thereby generating Edge
Maps. Edges within the edge maps, represented by black pixels,
are superimposed on I;,,,,,,¢ t0 produce an edge-enhanced image

set Ienhanced .

Finally, semantic segmentation is performed on I,,;anceqa, and
based on the segmentation results, the sky pixels in I, are
masked to generate a masked image set I,,,:xeq fOr subsequent
steps.

3.2 Fusion Module based on Local Planarity Features

StM is initially applied on I,,qseq. followed by MVS. Two
dense point clouds, C,,.q and Cg , are generated using
traditional and learning-based MVS algorithms, respectively.

Learning-based MVS generally achieves better recovery in
weakly-textured areas, such as walls and windows. Therefore,

: : (c)

Figure 2. (a) Mobile mapping vehicle, (b) LiDAR point cloud of experimental area, (c) Partial image data.
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local planar features for C,; are calculated first. Specifically, for
each point in C ,, a local neighbourhood is defined, and all 3D
points within this neighbourhood are denoted as the set
P =1{py, pa, ---» Pn}, Where n is the number of points in the
set, and the coordinate of p; is (x;, ¥;, z;). Then, the mean
coordinates of all points in P are calculated in the x, y, and z
directions:

n n

1 v 1
#xzazxi:#yzazynﬂz:;zzi (4)
=0

i=0 i=0

Based on the mean coordinates calculated above, the covariance
matrix Cov is constructed, as shown in equation 5.

Eigenvalue decomposition of the covariance matrix Cov yields
three eigenvalues 4;, 4,, 23 € R, satisfying 4; = 1, = A; = 0.
The planarity is then calculated as:

A — 4

p= o (6)

For a planar feature, A; should be significantly smaller than the
other two eigenvalues. Therefore, a larger P, indicates higher
planarity of the point. Given a threshold T, points in €y, with
P; = Tp are identified as planar points, which collectively form
the planar point cloud Cpanar-

During the fusion process, noise points can significantly affect
the distance calculation between two point clouds. Therefore,
we first apply denoising to C,,,4 by removing outliers that are
distant from surrounding points. Given a distance threshold Ty,
and an inlier number threshold T, for each point in Cy,q4, if
fewer than Ty points are within distance T, , the point is
considered an outlier and is removed. The resulting denoised
point cloud is denoted as Cyenoised-

Finally, the distance from each point in Cyjane, t0 the nearest
point in Cyeneisea 1S Calculated. If the distance exceeds the
threshold Ty,, the point is retained; otherwise, it is removed.
Generally, a more complete fusion result can be obtained when
Tpy < Tpy . The retained planar points are subsequently
integrated With Cy,,,0is04 10 produce the final dense point cloud.

4. Experiments and Analysis
4.1 Dataset

The experimental data were collected using well-calibrated
LIiDAR and multi-view camera equipment mounted atop a
mobile mapping vehicle, as shown in Figure 2(a). The
experimental area is a typical urban campus scene, covering an
area of approximately 700 meters in length and width. The
LiDAR point cloud data are presented in Figure 2(b), and
approximately 1500 images were captured, as shown in Figure
2(c).

n
1
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4.2 Results of Sky Masking

The results of directly masking the sky via semantic
segmentation and using the edge-enhanced sky masking module
described in Section 3.1 are shown in Figure 3. Qualitative
analysis reveals that conventional image semantic segmentation
algorithms produce less precise separation results at the edges,
leading to noticeable jagged errors. In contrast, by enhancing
edges prior before semantic segmentation, our method

effectively improves the accuracy of edge separation and
ensures that sky masking does not degrade the quality of other
image elements.

Figure 3. Comparison results of directly sky masking (green
rectangle) and edge-enhanced sky masking (red rectangle).

Scenel | Scene2 | Scene3 | Avg

(Schd‘bggmﬁgl_, so1) | 1645 | 3626 | 3038 | 27.70
x fe?gﬂ,'\ggza 86.36 | 65.80 | 3146 | 61.24
(DiI;aeqsa'}f\ggzz) 2090 | 39.17 | 23.99 | 31.02
Avg 4424 | 4711 | 2861 | 39.99

Table 1. The proportion (%) of reduced edge noise before and
after sky masking.

Three main regions (black dashed rectangles in Figure 2(b))
were captured from the experimental area, and three different
algorithms were used for MVS of the images before and after
sky masking. The reduction ratio of the number of edge noise
outside the building contour was compared, as shown in Table 1.
From the table, it can be seen that after preprocessing the
images with the proposed edge-enhanced sky masking module,
the proportion of edge noise in the generated dense point clouds
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is reduced by 39.99% on average, especially for the ACMMP
method, where the average reduction in edge noise is as high as
61.24%. These findings confirm that masking the sky from the
images effectively reduces the number of edge noise points and
improves the cleanliness of the reconstruction results.

4.3 Results of MVS

Six representative blocks (red rectangles in Figure 2(b)) were
selected, and the experimental results were evaluated using the
evaluation protocol defined in (Schops et al., 2017), including
accuracy, completeness, and F1 score at two distance metrics
(5cm and 15cm), as shown in Table 2. The visualization result
of Blockl is shown in Figure 4. Here, ACMMP and TransMV'S
were used to generate C,,,q and Cy;, respectively. Our method
is not limited to specific algorithm, and theoretically, any
traditional and learning-based algorithm can be integrated into
our pipeline.

Method 5cm 15cm
Colmap 89.00/19.86/32.47 | 97.32/46.62/63.05
Blockl ACMMP | 98.75/69.04/81.26 | 99.97/84.95/91.85
TransMVS | 83.68/61.71/71.03 | 99.16/85.41/91.77
Ours 91.11/86.30/88.64 | 99.56/98.67/99.11
Colmap 89.47/21.25/34.34 | 99.35/63.45/77.44
Block2 ACMMP | 97.92/58.59/73.31 | 99.99/86.27/92.63
TransMVS | 95.15/89.22/92.09 | 99.93/98.56/99.24
Ours 95.66/93.29/94.46 | 99.95/99.84/99.90
Colmap 83.58/38.96/53.14 | 97.28/80.21/87.92
Block3 ACMMP | 96.67/87.77/92.00 | 99.88/96.49/98.16
TransMVS | 75.59/59.24/66.42 | 98.00/88.71/93.13
Ours 89.46/92.73/91.07 | 99.24/98.56/98.90
Colmap 92.95/47.96/63.28 | 99.74/74.41/85.23
Blocka ACMMP | 98.85/89.55/93.97 | 99.99/96.37/98.15
TransMVS | 89.54/76.97/82.78 | 99.88/88.14/93.65
Ours 94.37/94.33/94.35 | 99.94/98.51/99.22
Colmap 61.56/23.66/34.18 | 88.46/75.43/81.43
Blocks ACMMP | 83.66/46.68/59.93 | 99.18/93.50/96.25
TransMVS | 59.59/74.16/66.08 | 93.80/96.92/95.34
Ours 79.52/59.73/68.22 | 98.51/97.94/98.23
Colmap 40.31/4.84/8.64 | 85.76/13.47/23.29
Block6 ACMMP 52.72/30.90/38.96 | 94.61/62.61/75.36
TransMVS | 39.30/20.28/26.75 | 91.39/49.05/63.84
Ours 51.80/37.98/43.83 | 95.36/70.75/81.23

Table 2. Accuracy, completeness, and F1 score (%) of dense
point clouds under different metrics (5cm and 15cm). We
highlight the best and second-best ones in each category.

Quantitative results in Table 2 demonstrate that the accuracy,
completeness, and F1 score of our method are consistently
achieve top-two performance across all blocks and metrics. The
proposed method demonstrates superior performance in terms
of completeness and F1 score compared to the other methods,
indicating that the proposed method generates more structurally
complete dense point clouds while maintaining high accuracy.
This is also visually evident from Figure 4, where the dense
point cloud generated by our method is more complete than
those of the comparison algorithms.

LT T

Figure 4. Comparison of dense point clouds of block 1.

The cumulative distribution function (CDF) uniquely
characterizes the probability distribution of a random variable.
Figure 5 statistically compares the CDFs of accuracy and
completeness metrics across all evaluated blocks. Analysis
reveals that the ACMMP algorithm typically achieves the best
results in accuracy, indicating that the generated point clouds
contain less noise. In the contrast, our method outperform all
other algorithms in the completeness diagram, confirming its
capability to generate more complete dense point clouds once
again. Overall, our method achieves comprehensive F1 scores
of 86.85% and 97.90% for all blocks under the 5¢cm and 15cm
metrics, respectively, both of which are better than ACMMP's
83.56% and 95.38%, indicating that the dense point clouds
generated by our method have superior overall quality.
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Figure 5. Distribution diagram of (a) accuracy and (b)
completeness.

5. Conclusions

Empirical findings demonstrate that traditional MVS methods
excel in reconstructing texture-rich structural areas, while
learning-based MVS methods excel in reconstructing weakly-
textured areas, demonstrating complementary characteristics.
Therefore, a fusion method was developed to integrate the
strengths of both algorithms by combining the planar parts of
learning-based MVS point clouds with traditional MVS point
clouds through planarity assessment, resulting in more complete
dense point clouds. Additionally, to eliminate sky interference
in open street scenes, an edge-enhanced sky masking module
was designed to effectively mask sky pixels while preserving
regions of interest. Experimental evaluations confirm that our
framework generates higher-fidelity dense point clouds against
existing mainstream algorithms. In the future, we will explore
deeper integration of traditional and learning-based MVS

advantages while preserving accuracy, to further improve the
quality of street-view dense point clouds.
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