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Abstract 

 

The dynamic evolution of shoal-bar systems in fluvial geomorphology remains challenging to fully capture through conventional 

observation methods. While multi-dimensional dynamic data enables qualitative analysis of riverine morphology, existing approaches 

lack effective spatiotemporal topological analysis. This study proposes a novel spatiotemporal modelling framework based on the 

topological invariance principles of three-dimensional perforated complexes. Focusing on the connectivity preservation in river 

systems under rotational and scaling transformations, we develop a dual-cavity complex topology model to characterize the dynamic 

transitions between shoals and sandbars. Compared with traditional single-cavity models, the proposed approach incorporates dynamic 

cavity features that precisely quantify thalweg elevation changes while resolving the spatiotemporal coupling mechanisms of bar 

morphology migration. Case study results demonstrate that this approach not only preserves spatial correlations among geomorphic 

elements but also enables evolutionary trend inversion through topological relation analysis. The methodology provides new theoretical 

foundations for developing digital twin watershed systems, offering enhanced capabilities for simulating complex fluvial processes. 

 

 

1. Introduction 

The development of shoals into sandbars in river channels 

exemplifies the self-adjusting morphology of fluvial systems. 

This morphological evolution alters flow pathways and sediment 

distribution, critically impacting flood-control safety. Excessive 

sandbar development may impede channel bifurcation flow, 

elevating levee-breach risks. For navigation, shoal migration 

induces abrupt variations in navigable channel depth, 

jeopardizing vessel safety. Conversely, emerging sandbars 

generate distinctive ecological habitats for fish spawning and 

avian nesting (Wang et al., 2024). Consequently, investigating 

the dynamics of shoal-bar systems enhances both flood control, 

navigation safety and ecological resource utilization. 

However, capturing the spatiotemporal evolution of shoal-bar 

systems through conventional monitoring remains challenging. 

Real-time acquisition of field bathymetric and topographic data 

is operationally intensive and often infeasible. While prior 

studies frequently utilized remote sensing imagery to quantify 

sandbar area, this method exhibits limited versatility (Shu et al., 

2024). 

 

Multidimensional dynamic spatial data models advance 

understanding through three dimensions: 3D structure, temporal 

dynamics, and multiscale processes (Chen et al., 2004). These 

models not only visualize the spatial associations and distinctions 

between shoals and sandbars but also delineate their 

multitemporal evolution. Within this framework, topological 

relations among geographic entities—representing intrinsic 

connections between spatial objects invariant under geometric 

deformation—provide critical qualitative descriptors of 

geometric configurations in geospatial contexts (Liu et al., 2010). 

Substantial scholarly work has been conducted on topological 

relations, yielding several foundational models. Based on point-

set topology theory, Egenhofer introduced the 4-Intersection 

Model (Egenhofer et al., 1991),determining spatial relations by 

examining intersections of interiors and boundaries between two 

objects – where a value of 1 denotes non-empty intersection and 

0 indicates an empty set. This model was subsequently refined 

into the 9-Intersection Model by incorporating the concept of 

object exteriors, significantly enhancing its expressive capability 

(Egenhofer et al., 1991). This framework catalysed subsequent 

research, including Chen’s Voronoi-based 9-Intersection Model 

(V9I) (Chen et al., 2001) and Randell's Region Connection 

Calculus (RCC) model developed (Randell et al., 1992). The 

RCC model employs mutually exclusive and complete relations 

to describe all possible topological relations between spatial 

regions. Cohn later extended this approach to characterize 

topological relations among fuzzy objects. Building upon the 

4IM and 9IM frameworks, Deng Min et al. proposed a 4-

Intersection Difference Model using intersections and 

differences among object interiors, boundaries, and wholes 

(Deng et al., 2005). These early models primarily addressed 

topology between simple objects, whereas real-world geographic 

features often exhibit complexity, such as lakes containing 

islands, necessitating representations for holed regions. In 1994, 

Egenhofer formalized topological relations between holed 

objects A and B through four components: relations between the 

wholes of A and B, the whole of A and each hole of B, each hole 

of A and the whole of B, and each hole of A and each hole of B 

(Egenhofer et al., 1994). Subsequent research expanded this to 

include relations between holed regions and simple regions 

(Deng et al., 2008; Li et al., 2012), dual-holed regions and simple 

regions (Li et al., 2012), and concave regions and holed regions 

(Li et al., 2013). Ouyang Jihong et al. further developed an 

extended 9-Intersection Model for holed regions (Ouyang et al., 

2009). Shen Jingwei et al. advanced the 25-Intersection Model, 

decomposing holed polygonal objects into five elements: interior, 

inner boundary, interior within inner boundary, outer boundary, 

and exterior beyond outer boundary (Shen et al., 2016). For 

multi-holed regions, Leng Liang et al. established a generalized 

9-Intersection Model where intersection values between multiple 

holes are represented as binary sequences converted to decimal 

notation – significantly surpassing prior models in discriminative 

power (Leng et al., 2022). 

 

While these methods demonstrate progressive refinement for 

holed regions, their application remains constrained to two-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-173-2025 | © Author(s) 2025. CC BY 4.0 License.

 
173

mailto:liujl24@mails.jlu.edu.cn
mailto:lengliang@jlu.edu.cn


 

dimensional contexts. For instance, lakes with central islands can 

be visualized in 2D, whereas submerged shoals within river 

channels—which do not breach the water surface—cannot be 

adequately represented. Moreover, accurately representing the 

morpho dynamic process from shoal to sandbar fundamentally 

demands three-dimensional volumetric characterization. This 

intrinsic limitation conclusively highlights the essential 

requirement for 3D topological relations—particularly critical 

when modelling dynamic interactions between discrete 

volumetric entities. Shen Jingwei et al. addressed this gap using 

a dimensionally extended 9-Intersection Model, delineating eight 

meaningful topological relations between volumetric entities: 

disjoint, touches, overlaps, covers, contains, equal, coveredBy, 

and within (Shen et al, 2012). Zhang Jun et al. segmented three-

dimensional holed objects into five subcomponents, revealing a 

conceptual parallel to the 25-Intersection Model for holed 

polygons (Zhang et al., 2008). Di Shuang advanced the 

framework through a 3D 9+-Intersection Model, investigating 

relations between single-holed complex objects and simple solids, 

between two single-holed complex objects, and between multi-

holed complex objects and simple solids (Di, 2015). Although 

these studies represent progress in volumetric topology, 

significant limitations persist—specifically the absence of 

frameworks for modeling relations between two multi-holed 

complex objects, along with prior analyses being restricted to 

cotemporal yet distinct entities. 

 

The uniqueness of shoal-bar systems lies in their representation 

of dynamic variations across temporal states within the same 

fluvial entity, characterized by three-dimensional complex 

objects containing multiple voids. Existing frameworks, 

including the classical 9-Intersection Model and its derivatives, 

fail to comprehensively characterize such configurations, 

exhibiting limited discriminative capability. Building upon prior 

inferences of 3D complex object topology and inspired by 2D 

multi-holed regional relations, this study proposes a three-

dimensional double-holed complex body topology model 

specifically for riverine shoal-bar system. This model abstracts 

the two river states in different times and spaces into two 

complex entities with double holes. By exploring the topological 

relation between them, it can determine the evolution of the 

shole-bar system in the river, and also verifies the completeness 

of the model by comparing with other methods. 

 

The main contributions of this research can be summarized as 

follows: (1) A double-hole complex body model for the dynamic 

evolution of the shole-bar system in rivers is proposed; (2) A 

method for determining the topological relation between objects 

based on the model is introduced, and some typical topological 

relation scenarios are described; (3) The topological relation 

inference of the classic scenarios of shole-bar using the above 

two points is realized. 

 

2. Methodology 

Implementing the double-holed complex body model to diagnose 

shoal-bar system dynamics involves two critical phases: 

Construct geometric topological models of real-world problems 

and determine the topological relation between complex bodies 

at two different moments. 

 

2.1 Construct a geometric topological model 

In order to abstract the river and its internal shoals and sandbars 

into a geometric model that is conducive to the determination of 

topological relations, the following principles need to be 

followed: (1) The characteristics and properties of the shole-bar 

system should remain unchanged, so that the model has strong 

representativeness; (2) The representation form should be simple 

and intuitive, facilitating understanding. 

 

Based on these principles, in this study, the river is represented 

by a cube with holes, and the shoals and sandbars are represented 

by elliptical cylinders within the cube. To facilitate the extension 

to the case of several holes, this study defines a cube with holes 

containing two holes, that is, two elliptical cylinders, and regards 

these two elliptical cylinders as shoals or sandbars separated by 

a certain distance, even if the sediment continuously accumulates 

causing the shoals and sandbars to continuously develop, they 

will not come into contact. Therefore, the two elliptical cylinders 

do not intersect. Considering the real situation, the sholes are 

formed by the suspended load (sand, gravel, etc.) of the riverbed 

continuously accumulating underwater, and their surface 

elevation is always lower than the normal water level of the river. 

Even in the dry season, there is no exposure manifestation. The 

sandbars are the patchy accumulations that protrude above the 

water surface when the volume of the sediment exceeds the 

accommodation threshold of the river channel. They maintain a 

stable surface exposure state during the flood season. Therefore, 

the bottoms of the shoals and sandbars are all connected to the 

riverbed, but they will not touch the riverbank. The shoals do not 

touch the water surface, while the sandbars will contact the water 

surface. Thus, the bottom of the cube representing the river 

indicates the riverbed, the top indicates the water surface, the side 

surfaces indicate the riverbanks on both sides and the distant 

rivers that do not contact the shole-bar system, and the interior of 

the cube indicates the flowing water. The top surface of the 

elliptical cylinder representing the sandbar indicates the part in 

contact with the water surface, but to facilitate the determination 

of topological relations, the part of the sandbar exceeding the 

water surface will not be represented. As long as the top surface 

coincides with the top surface of the cube, it indicates that this 

must be the sandbar. And the elliptical cylinder with a top surface 

not coinciding with the top surface of the cube must represent the 

shoals below the water surface. Whether it is the shoals or the 

sandbars, the bottom of the elliptical cylinder is always in contact 

with the bottom of the cube, and the side surfaces do not contact 

the side surfaces of the cube.  

 

Furthermore, the topological relation between the cube and the 

two elliptical-cylindrical cavities is defined as Covers, the outer 

boundaries are connected, and the intersection of the elliptical 

cylinder and the cube is the entire elliptical cylinder. 

The state of the shoal-bar system is divided into two moments, t1 

and t2. By analysing the topological relation of two complex 

bodies with double holes, the dynamic changes of the shoal-

sandbar system can be determined. The two complex bodies are 

named A and B, representing the initial and final states of the 

river and shoal-sandbar system. The elliptical cylinders inside are 

called "holes", and since the two different holes within the same 

cube have unique meanings, hole1 and hole2 are used to 

distinguish them. Based on the 9-Intersection Model and 25-

Intersection Model, this study expands and defines the elements 

of the complex bodies. Taking cube A as an example, the first 

hole is 𝐴1
ℎ, the second hole is 𝐴2

ℎ, the boundary of the first hole 

is 𝜕𝐴1
ℎ, the boundary of the second hole is 𝜕𝐴2

ℎ, the interior of 

cube A is 𝐴0, the outer boundary of A is 𝜕𝑜𝑢𝑡𝐴, and the exterior 

of A is 𝐴−. When representing the content of the hole or the 

content of the cube, the set is an open set, such as 𝐴1
ℎ, 𝐴2

ℎ, 𝐴0; 

when representing the boundary of the hole or the outer boundary 

of the cube, the set is a closed set, such as 𝜕𝐴1
ℎ, 𝜕𝑜𝑢𝑡𝐴; when 

representing the region of the external topological space, the set 

is also an open set, such as 𝐴−. 
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𝑅𝐷𝐻(𝐴, 𝐵) = 

[
 
 
 
 
 
 
 
 

𝐴1
ℎ ∩ 𝐵1

ℎ 𝐴1
ℎ ∩ 𝐵2

ℎ 𝐴1
ℎ ∩ 𝜕𝐵1

ℎ 𝐴1
ℎ ∩ 𝜕𝐵2

ℎ 𝐴1
ℎ ∩ 𝐵0 𝐴1

ℎ ∩ 𝜕out𝐵 𝐴1
ℎ ∩ 𝐵−

𝐴2
ℎ ∩ 𝐵1

ℎ 𝐴2
ℎ ∩ 𝐵2

ℎ 𝐴2
ℎ ∩ 𝜕𝐵1

ℎ 𝐴2
ℎ ∩ 𝜕𝐵2

ℎ 𝐴2
ℎ ∩ 𝐵0 𝐴2

ℎ ∩ 𝜕out𝐵 𝐴2
ℎ ∩ 𝐵−

𝜕𝐴1
ℎ ∩ 𝐵1

ℎ 𝜕𝐴1
ℎ ∩ 𝐵2

ℎ 𝜕𝐴1
ℎ ∩ 𝜕𝐵1

ℎ 𝜕𝐴1
ℎ ∩ 𝜕𝐵2

ℎ 𝜕𝐴1
ℎ ∩ 𝐵0 𝜕𝐴1

ℎ ∩ 𝜕out𝐵 𝜕𝐴1
ℎ ∩ 𝐵−

𝜕𝐴2
ℎ ∩ 𝐵1

ℎ 𝜕𝐴2
ℎ ∩ 𝐵2

ℎ 𝜕𝐴2
ℎ ∩ 𝜕𝐵1

ℎ 𝜕𝐴2
ℎ ∩ 𝜕𝐵2

ℎ 𝜕𝐴2
ℎ ∩ 𝐵0 𝜕𝐴2

ℎ ∩ 𝜕out𝐵 𝜕𝐴2
ℎ ∩ 𝐵−

𝐴0 ∩ 𝐵1
ℎ 𝐴0 ∩ 𝐵2

ℎ 𝐴0 ∩ 𝜕𝐵1
ℎ 𝐴0 ∩ 𝜕𝐵2

ℎ 𝐴0 ∩ 𝐵0 𝐴0 ∩ 𝜕out𝐵 𝐴0 ∩ 𝐵−

𝜕out𝐴 ∩ 𝐵1
ℎ 𝜕out𝐴 ∩ 𝐵2

ℎ 𝜕out𝐴 ∩ 𝜕𝐵1
ℎ 𝜕out𝐴 ∩ 𝜕𝐵2

ℎ 𝜕out𝐴 ∩ 𝐵0 𝜕out𝐴 ∩ 𝜕out𝐵 𝜕out𝐴 ∩ 𝐵−

𝐴− ∩ 𝐵1
ℎ 𝐴− ∩ 𝐵2

ℎ 𝐴− ∩ 𝜕𝐵1
ℎ 𝐴− ∩ 𝜕𝐵2

ℎ 𝐴− ∩ 𝐵0 𝐴− ∩ 𝜕out𝐵 𝐴− ∩ 𝐵− ]
 
 
 
 
 
 
 
 

     (1) 

 

The double-holed complex body model defined in this context 

can formally be abbreviated as the DH Model. Topological 

relations between complex bodies A and B are determined by 

evaluating intersections across their seven constituent elements. 

This process yields a 7×7 matrix representing two double-holed 

complex body topology, formalized in Equation (1), where each 

matrix element encodes binary intersection states: 0 denotes 

empty intersection, while 1 indicates non-empty overlap.  

 

2.2 Topological relations of complex bodies 

Given the intricate nature of topological relations between 

double-holed complex bodies, we adopt a hierarchical approach: 

First, simplify bodies A and B as solid volumes without holes, 

considering only their interior, boundary, and exterior 

components. This allows preliminary classification using the 

eight fundamental topological relations for simple bodies: 

Disjoint, Touches, Overlaps, Covers, Contains, Equal, 

CoveredBy, and Within. We then refine this classification by 

incorporating interactions between their holes. For systematic 

analysis, the cylindrical holes in initial-state body A are 

designated ℎ1 and ℎ2, while terminal-state body B's holes are 

labeled ℎ1
′  and ℎ2

′  – all modelled as closed sets. 

 

When the topological relation between A and B is Disjoint, the 

two holes ℎ1 and ℎ2 of A and the two holes ℎ1
′  and ℎ2

′  of B 

must be in a Disjoint relation. As shown in Figure 1. 

 

Figure 1. Disjoint topological relation between A and B. 

 

Its matrix can be expressed as Equation (2). 

 

𝑅(𝐴, 𝐵) =

[
 
 
 
 
 
 
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 1 1 1 1 1 1]

 
 
 
 
 
 

          (2) 

 

When the topological relation between A and B is Touches, there 

are two cases of contact. The first is that the side surfaces of A 

and B are in contact. At this time, the two holes ℎ1, ℎ2 of A and 

the two holes ℎ1
′ , ℎ2

′  of B must be in a Disjoint relation. The 

second is that the top and bottom surfaces of A and B are in 

contact. It is possible that A is above B or B is above A. Whether 

the two holes ℎ1, ℎ2 of A and the two holes ℎ1
′ , ℎ2

′  of B are 

in a Touches relation depends on whether the elliptical cylinders 

within the complex body below touch the top surface. If none of 

the elliptical cylinders within the complex body below touch the 

top surface, which represents that they are all shoals rather than 

sandbars, then the holes of the upper cube and the holes of the 

lower cube must not be in touch; if there is an elliptical cylinder 

touching the top surface, then ℎ1, ℎ2 and ℎ1
′ , ℎ2

′  may be in 

touch, and the specific situation can be detailedly counted 

according to the mathematical permutation and combination 

method. 

 

This article selects a typical case to illustrate. As shown in Figure 

2, the bottom surface of A is connected to the top surface of B, 

while ℎ1 and ℎ2 Disjoint from ℎ1
′  but all touch ℎ2

′ . 

 
Figure 2. An example of Touches topological relation between 

A and B. 

 

Its matrix can be expressed as Equation (3). 

 

𝑅(𝐴, 𝐵) =

[
 
 
 
 
 
 
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 1 0 1 1
0 0 0 1 0 1 1
0 0 0 0 0 0 1
0 0 0 1 0 1 1
1 1 1 1 1 1 1]

 
 
 
 
 
 

          (3) 

 

When the topological relation between complex bodies A and B 

is Overlaps, it indicates that their interiors intersect but the 

intersection area differs from either spatial object individually. 

Numerous topological scenarios become possible between these 

complex bodies. Broadly two classifications exist: First, while A 

and B intersect, their constituent holes (ℎ1, ℎ2 in A and ℎ1
′ , ℎ2

′  

in B) maintain mutually Disjoint relations, allowing diverse 

relations to form between bodies and cross-body holes - for 

instance, A might relate to ℎ1
′  and ℎ2

′  through Disjoint, 

Touches, Overlaps, Covers, or Contains relations. Second, at 

least one hole pair establishes non-Disjoint relations, meaning 

not only do the bodies intersect, but their holes physically interact 

through potential connections like Disjoint, Touches, Overlaps, 

Covers, Contains, Equal, CoveredBy or Within. This 

significantly increases complexity - we might observe ℎ1 

Touching ℎ1
′  while Overlapping ℎ2

′ , concurrently with ℎ2 

being CoveredBy ℎ1
′  but remaining Disjoint from ℎ2

′ . 

Countless permutations emerge though not all can be enumerated. 

Crucially, since holes within the same cube must remain Disjoint, 

these interactions become constrained rather than arbitrary. 

Specifically, the relation of ℎ1  with ℎ1
′  directly limits its 

possible relations with ℎ2
′  as summarized in Table 1, when ℎ1 

and ℎ1
′  are Disjoint, its connection with ℎ2

′  becomes 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025 
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22–24 August 2025, Beijing, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-4-W14-2025-173-2025 | © Author(s) 2025. CC BY 4.0 License.

 
175



 

unrestricted and may adopt any of the eight fundamental body-

to-body topological relations. 

 

ℎ1 with ℎ1
′  ℎ1 with ℎ2

′  

Touches 

Disjoint, Touches, 

Overlaps, Covers, 

Contains 

Overlaps 

Disjoint, Touches, 

Overlaps, Covers, 

Contains 

Covers 

Disjoint, Touches, 

Overlaps, Covers, 

Contains 

Contains 

Disjoint, Touches, 

Overlaps, Covers, 

Contains 

Equal, 

CoveredBy, 

Within 

Disjoint 

Table 1. Topological relation correspondence between ℎ1 vs. 

ℎ1
′  and ℎ1 vs. ℎ2

′ .  

 

It can be proved by contradiction that when the relation between 

ℎ1 and ℎ1
′  is Touches, Overlaps, Covers and Contains, then ℎ1 

and ℎ1
′  must be in contact. If the relation between ℎ1 and ℎ2

′  

is equal, Then ℎ2
′  is also in contact with ℎ1

′ , which violates the 

property that two holes cannot intersect in our definition; If the 

relation between ℎ1  and ℎ2
′  is coveredby or within, then ℎ1 

must be in the interior of ℎ2
′ , which also violates the property 

that ℎ1
′  and ℎ2

′  must be separated from each other. However, 

when the relation between ℎ1  and ℎ1
′  is Equal, CoveredBy, 

Within, ℎ1 is either equal to ℎ1
′  or within ℎ1

′ , it can only be 

separated from ℎ2
′ .Similarly, the relation between ℎ1  and ℎ1

′  

and ℎ2
′  will also affect the relation between ℎ2  and ℎ1

′  and 

ℎ2
′ . Table 2 shows the corresponding relation between ℎ2 and 

ℎ1
′  when ℎ1 is related to ℎ1

′ . When ℎ1
′  becomes ℎ2

′ , it is the 

same as in Table 2.  

 

ℎ1 with ℎ1
′  ℎ2 with ℎ1

′  

Touches 

Disjoint, Touches, 

Overlaps, CoveredBy, 

Within 

Overlaps 

Disjoint, Touches, 

Overlaps, CoveredBy, 

Within 

Covers, 

Contains, Equal 
Disjoint 

CoveredBy 

Disjoint, Touches, 

Overlaps, CoveredBy, 

Within 

Within 

Disjoint, Touches, 

Overlaps, CoveredBy, 

Within 

Table 2. Topological relation correspondence between  ℎ1 vs. 

ℎ1
′  and ℎ2 vs. ℎ1

′ . 

 

Based on the above correspondence, there are too many cases of 

complex A and B overlapping, so this article selects a typical case 

to illustrate. As shown in Figure 3, ℎ1 maintains a Touches 

connection with ℎ1
′  while remaining Disjoint from ℎ2

′ . 

Concurrently, ℎ2 establishes Overlaps relations with both ℎ1
′  

and ℎ2
′ . and the outer boundary of B intersects ℎ1, and the outer 

boundary of A is tangent to ℎ2
′ . 

 
Figure 3. An example of Overlaps topological relation between 

A and B. 

 

Its matrix can be expressed as Equation (4). 

 

𝑅(𝐴, 𝐵) =

[
 
 
 
 
 
 
0 0 0 0 1 1 1
1 1 1 1 1 0 0
0 0 1 0 1 1 1
1 1 1 1 1 1 0
1 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 0 1 1 1]

 
 
 
 
 
 

          (4) 

 

When the topological relation between complex bodies A and B 

is defined as Covers, it signifies that the interior of spatial object 

A contains the interior of spatial object B, while their boundaries 

intersect, and A is not equivalent to B. This configuration 

positions B within A's interior, where B exhibits smaller 

volumetric extent than A. Under these conditions, the topological 

relations between ℎ1, ℎ2 and ℎ1
′ ,ℎ2

′  may manifest in diverse 

configurations, potentially encompassing any of the eight 

fundamental topological relations, though constrained by the 

limitations previously documented in Tables 1 and 2. To 

concretely illustrate this complexity, Figure 4 depicts a 

representative scenario where B is positioned within A with its 

upper and rear surfaces contacting A's external boundary, while 

simultaneously ℎ1  maintains Overlaps relations with both ℎ1
′  

and ℎ2
′ , and ℎ2  remains Disjoint from ℎ1

′  yet exhibits an 

Overlaps interaction with ℎ2
′ . 

 
Figure 4. An example of Covers topological relation between A 

and B. 

 

Its matrix can be expressed as Equation (5). 

 

𝑅(𝐴, 𝐵) =

[
 
 
 
 
 
 
1 1 1 1 1 1 1
0 1 0 1 1 1 1
1 1 1 1 1 1 1
0 1 0 1 1 1 1
1 1 1 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1]

 
 
 
 
 
 

          (5) 

 

When the topological relation between complex bodies A and B 

is Contains, it signifies that A completely encloses B without 

boundary intersection, differing from the Covers relation solely 

in the absence of boundary contact. To demonstrate this 

configuration, Figure 5 illustrates a representative case where B 

resides entirely within A's interior with no boundary contact 

between the two bodies. And ℎ1 maintains an Overlaps relation 
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with ℎ1
′  while remaining Disjoint from ℎ2

′ , ℎ2 establishes a 

Touches connection with ℎ1
′  and a Contains relation with ℎ2

′ . 

 
Figure 5. An example of Contains topological relation between 

A and B. 

 

Its matrix can be expressed as Equation (6). 

 

𝑅(𝐴, 𝐵) =

[
 
 
 
 
 
 
1 0 1 0 1 1 1
0 1 0 1 1 1 1
1 0 1 0 1 1 1
0 0 1 0 1 1 1
1 1 1 1 1 1 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1]

 
 
 
 
 
 

          (6) 

 

When the topological relation between A and B is Equal, the 

topological relations of ℎ1 , ℎ2  and ℎ1
′ , ℎ2

′  remain diverse. 

One of the most special cases is that ℎ1 and ℎ1
′  are equal, and 

ℎ2 and ℎ2
′  are also equal. Only then are the two complex bodies 

truly equal. This study illustrates a representative scenario as 

Figure 6, ℎ1 Overlaps ℎ1
′  but is Disjoint from ℎ2

′ , while ℎ2 

remains Disjoint from ℎ1
′  and is CoveredBy ℎ2

′ . 

 
Figure 6. An example of Equal topological relation between A 

and B. 

 

Its matrix can be expressed as Equation (7). 

 

𝑅(𝐴, 𝐵) =

[
 
 
 
 
 
 
1 0 1 0 1 0 0
0 1 0 0 0 0 0
1 0 1 0 1 1 0
0 1 0 1 0 1 0
1 1 1 1 1 0 0
0 0 1 1 0 1 0
0 0 0 0 0 0 1]

 
 
 
 
 
 

          (7) 

 

When considering the topological relations CoveredBy and 

Within between complex bodies A and B, these configurations 

fundamentally mirror the spatial interactions observed in Covers 

and Contains relations respectively. The core distinction lies 

solely in reversing the volumetric hierarchy — specifically, 

designating which entity functions as the volumetrically 

dominant enclosing body. Consequently, We omit detailed 

explanation of CoveredBy/Within cases since their logic mirrors 

the established Covers/Contains principles. 

 

3. Experiment and Discussion 

As described earlier, the double-holed complex body model 

employs matrices to represent topological relationships between 

two objects each containing two holes. To validate model 

completeness, comparative experiments with prior approaches 

are essential to reveal their respective strengths and weaknesses. 

The 9-intersection and 25-intersection models remain the most 

prevalent classical frameworks, with matrix expressions 

formalized in Equations (8) and (9) respectively. Although later 

studies proposed 3D topological relations for perforated bodies, 

such models remain fundamentally restricted to single-hole cases 

and thus essentially constitute 25-intersection variants; they 

merely redefine the exterior beyond inner boundaries as hole 

interiors – a distinction solely reflecting whether holes are treated 

as independent entities – while matrix values remain unchanged. 

Consequently, these derivative models are not separately 

presented. 

 

𝑅9IM(𝐴,𝐵) = [
𝐴0 ∩ 𝐵0 𝐴0 ∩ 𝜕𝐵 𝐴0 ∩ 𝐵−

𝜕𝐴 ∩ 𝐵0 𝜕𝐴 ∩ 𝜕𝐵 𝜕𝐴 ∩ 𝐵−

𝐴− ∩ 𝐵0 𝐴− ∩ 𝜕𝐵 𝐴− ∩ 𝐵−

]         (8) 

 

𝑅25IM(𝐴, 𝐵) =

[
 
 
 
 
 
𝐴0 ∩ 𝐵0 𝐴0 ∩ 𝜕𝐵𝐸 𝐴0 ∩ 𝜕𝐵1 𝐴0 ∩ 𝜕𝐵𝐸

− 𝐴0 ∩ 𝜕𝐵𝐼
−

𝜕𝐴𝐸 ∩ 𝐵0 𝜕𝐴𝐸 ∩ 𝜕𝐵𝐸 𝜕𝐴𝐸 ∩ 𝜕𝐵1 𝜕𝐴𝐸 ∩ 𝜕𝐵𝐸
− 𝜕𝐴𝐸 ∩ 𝜕𝐵𝐼

−

𝜕𝐴1 ∩ 𝐵0 𝜕𝐴1 ∩ 𝜕𝐵𝐸 𝜕𝐴1 ∩ 𝜕𝐵1 𝜕𝐴1 ∩ 𝜕𝐵𝐸
− 𝜕𝐴1 ∩ 𝜕𝐵𝐼

−

𝐴𝐸
− ∩ 𝐵0 𝐴𝐸

− ∩ 𝜕𝐵𝐸 𝐴𝐸
− ∩ 𝜕𝐵1 𝐴𝐸

− ∩ 𝜕𝐵𝐸
− 𝐴𝐸

− ∩ 𝜕𝐵𝐼
−

𝐴1
− ∩ 𝐵0 𝐴1

− ∩ 𝜕𝐵𝐸 𝐴1
− ∩ 𝜕𝐵1 𝐴1

− ∩ 𝜕𝐵𝐸
− 𝐴1

− ∩ 𝜕𝐵𝐼
− ]

 
 
 
 
 

 (9) 

 

To benchmark against established methods, this study selects a 

classic shoal-bar scenario demonstrating the matrix's 

discriminative power; it examines two distinct fluvial cases 

(Figure 7) where initial dual shoals evolve differently: Scenario 

A shows vertical aggradation and displacement of both shoals 

driven by riverbed uplift and positional migration, while Scenario 

B features shoal accretion and shifting under stable riverbed 

elevation with lateral channel shift, caused by bank widening, 

water-level rise and overall channel movement compared to the 

baseline. 

 
Figure 7. Example Illustration of Shoal-Bar System Dynamic 

Evolution. 

 

This scientific scenario transforms into a topological model 

visualized in Figure 8, where example (a) demonstrates: ℎ1
′  

Overlaps ℎ1 while Touches ℎ2, ℎ2
′  remains Disjoint from ℎ1 

yet Overlaps ℎ2, with both ℎ1 and ℎ2 penetrating the surface 

of body B, and both ℎ1
′  and ℎ2

′   penetrating the surface of 

body A; conversely, example (b) exhibits: ℎ1
′  Overlaps ℎ1 

while Covers ℎ2, ℎ2
′  maintains Disjoint status from ℎ1 and 

ℎ2 , as ℎ1  penetrates B's surface while ℎ2
′  penetrates A's 

surface, collectively manifesting differential hole-boundary 

interactions across evolving fluvial states. 

 

Evidently, both 9-intersection and 25-intersection models fail to 

explicitly define individual holes within holed bodies, 

fundamentally preventing discrimination between configurations 

(a) and (b). Specifically, the 9-intersection model conflates all 

boundaries—including external boundaries and hole 

boundaries—into a single boundary element, while the 25-

intersection model aggregates hole boundaries and interiors 
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under generalized interior/exterior classifications, obscuring 

critical distinctions.  

 
Figure 8. Schematic diagram of the double-holed complex body 

model for shoal-bar system dynamics. 

In contrast, the proposed DH Model comprehensively encodes 

each topological element, overcoming limitations in representing 

nuanced intersection values. Applying these three matrix 

representations to examples (a) and (b) in Figure 8 yields 

comparative results (Table 3), clearly demonstrating that despite 

substantial topological differences, both classical models employ 

identical matrices whereas only the DH Model generates distinct 

matrices to differentiate the scenarios. 

 

The proposed matrix distinguishes these scenarios through 

differential element values; for example, when the interior of ℎ2 

intersects that of ℎ1
′  while their boundaries also intersect, and 

ℎ2 does not intersect the interior of body B, this configuration 

represents ℎ2  being covered by ℎ1
′ . This model not only 

exhibits strong discriminative capacity for diverse topological 

relationships between complex bodies but also enables precise 

determination of any entity's topological status through specific 

element values, combining geometric-computational advantages 

to concisely address scientific problems.  

 

Objects 
9-Intersection 

Model 

25-Intersection 

Model 
DH Model 

Topological 

relations in Figure 

8(a) 

[
1 1 1
1 1 1
1 1 1

] 

[
 
 
 
 
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1]

 
 
 
 

 

[
 
 
 
 
 
 
1 0 1 0 1 1 1
0 1 0 1 1 1 1
1 0 1 0 1 1 1
0 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1]

 
 
 
 
 
 

 

Topological 

relations in Figure 

8(b) 

[
1 1 1
1 1 1
1 1 1

] 

[
 
 
 
 
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1]

 
 
 
 

 

[
 
 
 
 
 
 
1 0 1 0 1 1 1
1 0 0 0 0 0 0
1 0 1 0 1 1 1
1 0 1 0 0 0 0
1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 0 1 1 1 1]

 
 
 
 
 
 

 

Table 3. Comparison of two topological relationships using three distinct topological model. 

 

Even with altered matrix values, we can still determine the 

topological relationship between complex bodies, thereby 

revealing the initial-to-terminal dynamic evolution of shoal-bar 

systems. Future extensions to bodies with m and n holes will 

maintain this discriminative approach, though reducing 

computational load becomes critical as matrix dimensions 

increase indefinitely. 

 

Consequently, the comparative analysis demonstrates that the 

proposed matrix model enforces rigorous constraints; it 

overcomes limitations of existing models confined to 2D porous 

regions or 3D single-hole complex bodies, enabling precise 

discrimination of topological relationships between double-holed 

(and even multi-holed) complex bodies. Consequently, this 

capability reveals intricate fluvial processes – including riverbed 

aggradation/degradation, shoal accretion dynamics, and sandbar 

migration patterns – throughout temporal evolutionary phases. 

 

4. Conclusion 

This research addresses the challenge of capturing dynamic 

shoal-bar system evolution in fluvial geomorphology through 

conventional methods by constructing a double-holed complex 

body model that characterizes system evolution across 

spatiotemporal states. The methodology abstracts river channels 

as perforated cubes and shoal-bar systems as dual elliptical-

cylindrical holes within these cubic structures; it defines 

intersection relations between interior, boundary, and exterior 

components of complex bodies to establish a 7×7 topological 

matrix, thereby enabling precise quantification of three-

dimensional dynamic processes including shoal vertical 

accretion and channel migration. Compared to traditional 2D 

multi-hole models and 3D simple-body topological approaches, 

this model breaks dimensional and cavity-count constraints while 

preserving the spatial integrity of geomorphic features; its 

topological matrix enables dynamic process deduction including 

shoal accretion and sandbar migration. Validation through classic 

shoal evolution scenarios demonstrates superior discriminative 

capability against 9-intersection and 25-intersection models 

when handling complex topological configurations, confirming 

method completeness. This provides novel theoretical 

foundations for digital twin watershed development with 

significant preventive value against channel blockages from 

excessive sandbar growth and navigational hazards triggered by 

sudden shoal migration. 

 

Future research can be further developed. Firstly, the current two 

holes can be expanded to a more general multi-hole scenario. By 

extending the matrix system, the model can handle complex 

bodies with any number of holes. Moreover, the number of 
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complex bodies can be dynamically expanded through iterative 

processes. By continuously comparing the latest state with a 

certain historical moment, a dynamic evolution comparison chart 

can be formed, which can visually display the process of how 

shoals gradually become sandbars, and how sandbars migrate or 

are weakened. Secondly, multi-source data fusion can be used to 

achieve the generalization of the model. Currently, the model has 

completed geometric abstraction. In the future, it can integrate 

centimetre-level sandbar elevations obtained by unmanned aerial 

vehicle laser radar, changes in sandbar boundaries captured by 

satellite images, and underwater riverbed topography obtained by 

sonar, to construct a three-dimensional topological entity that 

conforms to real-world problems. Thus, it can realize the 

deduction of complex landforms and real-time early warning for 

dynamic monitoring. 
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