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Abstract

The dynamic evolution of shoal-bar systems in fluvial geomorphology remains challenging to fully capture through conventional
observation methods. While multi-dimensional dynamic data enables qualitative analysis of riverine morphology, existing approaches
lack effective spatiotemporal topological analysis. This study proposes a novel spatiotemporal modelling framework based on the
topological invariance principles of three-dimensional perforated complexes. Focusing on the connectivity preservation in river
systems under rotational and scaling transformations, we develop a dual-cavity complex topology model to characterize the dynamic
transitions between shoals and sandbars. Compared with traditional single-cavity models, the proposed approach incorporates dynamic
cavity features that precisely quantify thalweg elevation changes while resolving the spatiotemporal coupling mechanisms of bar
morphology migration. Case study results demonstrate that this approach not only preserves spatial correlations among geomorphic
elements but also enables evolutionary trend inversion through topological relation analysis. The methodology provides new theoretical
foundations for developing digital twin watershed systems, offering enhanced capabilities for simulating complex fluvial processes.

1. Introduction

The development of shoals into sandbars in river channels
exemplifies the self-adjusting morphology of fluvial systems.
This morphological evolution alters flow pathways and sediment
distribution, critically impacting flood-control safety. Excessive
sandbar development may impede channel bifurcation flow,
elevating levee-breach risks. For navigation, shoal migration
induces abrupt variations in navigable channel depth,
jeopardizing vessel safety. Conversely, emerging sandbars
generate distinctive ecological habitats for fish spawning and
avian nesting (Wang et al., 2024). Consequently, investigating
the dynamics of shoal-bar systems enhances both flood control,
navigation safety and ecological resource utilization.

However, capturing the spatiotemporal evolution of shoal-bar
systems through conventional monitoring remains challenging.
Real-time acquisition of field bathymetric and topographic data
is operationally intensive and often infeasible. While prior
studies frequently utilized remote sensing imagery to quantify
sandbar area, this method exhibits limited versatility (Shu et al.,
2024).

Multidimensional dynamic spatial data models advance
understanding through three dimensions: 3D structure, temporal
dynamics, and multiscale processes (Chen et al., 2004). These
models not only visualize the spatial associations and distinctions
between shoals and sandbars but also delineate their
multitemporal evolution. Within this framework, topological
relations among geographic entities—representing intrinsic
connections between spatial objects invariant under geometric
deformation—provide critical qualitative descriptors of
geometric configurations in geospatial contexts (Liu et al., 2010).
Substantial scholarly work has been conducted on topological
relations, yielding several foundational models. Based on point-
set topology theory, Egenhofer introduced the 4-Intersection
Model (Egenhofer et al., 1991),determining spatial relations by
examining intersections of interiors and boundaries between two
objects — where a value of 1 denotes non-empty intersection and
0 indicates an empty set. This model was subsequently refined

into the 9-Intersection Model by incorporating the concept of
object exteriors, significantly enhancing its expressive capability
(Egenhofer et al., 1991). This framework catalysed subsequent
research, including Chen’s Voronoi-based 9-Intersection Model
(V9I) (Chen et al., 2001) and Randell's Region Connection
Calculus (RCC) model developed (Randell et al., 1992). The
RCC model employs mutually exclusive and complete relations
to describe all possible topological relations between spatial
regions. Cohn later extended this approach to characterize
topological relations among fuzzy objects. Building upon the
4IM and 9IM frameworks, Deng Min et al. proposed a 4-
Intersection Difference Model using intersections and
differences among object interiors, boundaries, and wholes
(Deng et al., 2005). These early models primarily addressed
topology between simple objects, whereas real-world geographic
features often exhibit complexity, such as lakes containing
islands, necessitating representations for holed regions. In 1994,
Egenhofer formalized topological relations between holed
objects A and B through four components: relations between the
wholes of A and B, the whole of A and each hole of B, each hole
of A and the whole of B, and each hole of A and each hole of B
(Egenhofer et al., 1994). Subsequent research expanded this to
include relations between holed regions and simple regions
(Deng et al., 2008; Li et al., 2012), dual-holed regions and simple
regions (Li et al., 2012), and concave regions and holed regions
(Li et al., 2013). Ouyang Jihong et al. further developed an
extended 9-Intersection Model for holed regions (Ouyang et al.,
2009). Shen Jingwei et al. advanced the 25-Intersection Model,
decomposing holed polygonal objects into five elements: interior,
inner boundary, interior within inner boundary, outer boundary,
and exterior beyond outer boundary (Shen et al., 2016). For
multi-holed regions, Leng Liang et al. established a generalized
9-Intersection Model where intersection values between multiple
holes are represented as binary sequences converted to decimal
notation — significantly surpassing prior models in discriminative
power (Leng et al., 2022).

While these methods demonstrate progressive refinement for
holed regions, their application remains constrained to two-
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dimensional contexts. For instance, lakes with central islands can
be visualized in 2D, whereas submerged shoals within river
channels—which do not breach the water surface—cannot be
adequately represented. Moreover, accurately representing the
morpho dynamic process from shoal to sandbar fundamentally
demands three-dimensional volumetric characterization. This
intrinsic  limitation conclusively highlights the essential
requirement for 3D topological relations—particularly critical
when modelling dynamic interactions between discrete
volumetric entities. Shen Jingwei et al. addressed this gap using
a dimensionally extended 9-Intersection Model, delineating eight
meaningful topological relations between volumetric entities:
disjoint, touches, overlaps, covers, contains, equal, coveredBy,
and within (Shen et al, 2012). Zhang Jun et al. segmented three-
dimensional holed objects into five subcomponents, revealing a
conceptual parallel to the 25-Intersection Model for holed
polygons (Zhang et al., 2008). Di Shuang advanced the
framework through a 3D 9+-Intersection Model, investigating
relations between single-holed complex objects and simple solids,
between two single-holed complex objects, and between multi-
holed complex objects and simple solids (Di, 2015). Although
these studies represent progress in volumetric topology,
significant limitations persist—specifically the absence of
frameworks for modeling relations between two multi-holed
complex objects, along with prior analyses being restricted to
cotemporal yet distinct entities.

The uniqueness of shoal-bar systems lies in their representation
of dynamic variations across temporal states within the same
fluvial entity, characterized by three-dimensional complex
objects containing multiple voids. Existing frameworks,
including the classical 9-Intersection Model and its derivatives,
fail to comprehensively characterize such configurations,
exhibiting limited discriminative capability. Building upon prior
inferences of 3D complex object topology and inspired by 2D
multi-holed regional relations, this study proposes a three-
dimensional double-holed complex body topology model
specifically for riverine shoal-bar system. This model abstracts
the two river states in different times and spaces into two
complex entities with double holes. By exploring the topological
relation between them, it can determine the evolution of the
shole-bar system in the river, and also verifies the completeness
of the model by comparing with other methods.

The main contributions of this research can be summarized as
follows: (1) A double-hole complex body model for the dynamic
evolution of the shole-bar system in rivers is proposed; (2) A
method for determining the topological relation between objects
based on the model is introduced, and some typical topological
relation scenarios are described; (3) The topological relation
inference of the classic scenarios of shole-bar using the above
two points is realized.

2. Methodology

Implementing the double-holed complex body model to diagnose
shoal-bar system dynamics involves two critical phases:
Construct geometric topological models of real-world problems
and determine the topological relation between complex bodies
at two different moments.

2.1 Construct a geometric topological model

In order to abstract the river and its internal shoals and sandbars
into a geometric model that is conducive to the determination of
topological relations, the following principles need to be
followed: (1) The characteristics and properties of the shole-bar

system should remain unchanged, so that the model has strong
representativeness; (2) The representation form should be simple
and intuitive, facilitating understanding.

Based on these principles, in this study, the river is represented
by a cube with holes, and the shoals and sandbars are represented
by elliptical cylinders within the cube. To facilitate the extension
to the case of several holes, this study defines a cube with holes
containing two holes, that is, two elliptical cylinders, and regards
these two elliptical cylinders as shoals or sandbars separated by
a certain distance, even if the sediment continuously accumulates
causing the shoals and sandbars to continuously develop, they
will not come into contact. Therefore, the two elliptical cylinders
do not intersect. Considering the real situation, the sholes are
formed by the suspended load (sand, gravel, etc.) of the riverbed
continuously accumulating underwater, and their surface
elevation is always lower than the normal water level of the river.
Even in the dry season, there is no exposure manifestation. The
sandbars are the patchy accumulations that protrude above the
water surface when the volume of the sediment exceeds the
accommodation threshold of the river channel. They maintain a
stable surface exposure state during the flood season. Therefore,
the bottoms of the shoals and sandbars are all connected to the
riverbed, but they will not touch the riverbank. The shoals do not
touch the water surface, while the sandbars will contact the water
surface. Thus, the bottom of the cube representing the river
indicates the riverbed, the top indicates the water surface, the side
surfaces indicate the riverbanks on both sides and the distant
rivers that do not contact the shole-bar system, and the interior of
the cube indicates the flowing water. The top surface of the
elliptical cylinder representing the sandbar indicates the part in
contact with the water surface, but to facilitate the determination
of topological relations, the part of the sandbar exceeding the
water surface will not be represented. As long as the top surface
coincides with the top surface of the cube, it indicates that this
must be the sandbar. And the elliptical cylinder with a top surface
not coinciding with the top surface of the cube must represent the
shoals below the water surface. Whether it is the shoals or the
sandbars, the bottom of the elliptical cylinder is always in contact
with the bottom of the cube, and the side surfaces do not contact
the side surfaces of the cube.

Furthermore, the topological relation between the cube and the
two elliptical-cylindrical cavities is defined as Covers, the outer
boundaries are connected, and the intersection of the elliptical
cylinder and the cube is the entire elliptical cylinder.

The state of the shoal-bar system is divided into two moments, t1
and t2. By analysing the topological relation of two complex
bodies with double holes, the dynamic changes of the shoal-
sandbar system can be determined. The two complex bodies are
named A and B, representing the initial and final states of the
river and shoal-sandbar system. The elliptical cylinders inside are
called "holes", and since the two different holes within the same
cube have unique meanings, holel and hole2 are used to
distinguish them. Based on the 9-Intersection Model and 25-
Intersection Model, this study expands and defines the elements
of the complex bodies. Taking cube A as an example, the first
hole is A", the second hole is AL, the boundary of the first hole
is 9A", the boundary of the second hole is dA%, the interior of
cube A is A°, the outer boundary of A is 9,4, and the exterior
of A is A~. When representing the content of the hole or the
content of the cube, the set is an open set, such as AF, A}, A°;
when representing the boundary of the hole or the outer boundary
of the cube, the set is a closed set, such as aA?, 0outA; when
representing the region of the external topological space, the set
is also an open set, such as A~.
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The double-holed complex body model defined in this context
can formally be abbreviated as the DH Model. Topological
relations between complex bodies A and B are determined by
evaluating intersections across their seven constituent elements.
This process yields a 7x7 matrix representing two double-holed
complex body topology, formalized in Equation (1), where each
matrix element encodes binary intersection states: 0 denotes
empty intersection, while 1 indicates non-empty overlap.

2.2 Topological relations of complex bodies

Given the intricate nature of topological relations between

double-holed complex bodies, we adopt a hierarchical approach:
First, simplify bodies A and B as solid volumes without holes,
considering only their interior, boundary, and exterior
components. This allows preliminary classification using the
eight fundamental topological relations for simple bodies:

Disjoint, Touches, Overlaps, Covers, Contains, Equal,

CoveredBy, and Within. We then refine this classification by
incorporating interactions between their holes. For systematic
analysis, the cylindrical holes in initial-state body A are
designated h; and h,, while terminal-state body B's holes are
labeled hj and hj — all modelled as closed sets.

When the topological relation between A and B is Disjoint, the
two holes h; and h, of A and the two holes h; and hj; of B
must be in a Disjoint relation. As shown in Figure 1.
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Figure 1. Disjoint topological relation between A and B.

Its matrix can be expressed as Equation (2).
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When the topological relation between A and B is Touches, there
are two cases of contact. The first is that the side surfaces of A
and B are in contact. At this time, the two holes h;, h, of A and
the two holes hi, hj of B must be in a Disjoint relation. The
second is that the top and bottom surfaces of A and B are in
contact. It is possible that A is above B or B is above A. Whether
the two holes hy, h, of A and the two holes hj, hj of B are
in a Touches relation depends on whether the elliptical cylinders
within the complex body below touch the top surface. If none of
the elliptical cylinders within the complex body below touch the
top surface, which represents that they are all shoals rather than

sandbars, then the holes of the upper cube and the holes of the
lower cube must not be in touch; if there is an elliptical cylinder
touching the top surface, then hy, h, and hj, h}, may be in
touch, and the specific situation can be detailedly counted
according to the mathematical permutation and combination
method.

This article selects a typical case to illustrate. As shown in Figure
2, the bottom surface of A is connected to the top surface of B,
while h; and h, Disjoint from h] but all touch hj.

Figure 2. An example of Touches topological relation between
A and B.

Its matrix can be expressed as Equation (3).
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When the topological relation between complex bodies A and B
is Overlaps, it indicates that their interiors intersect but the
intersection area differs from either spatial object individually.
Numerous topological scenarios become possible between these
complex bodies. Broadly two classifications exist: First, while A
and B intersect, their constituent holes (hy, h, in A and hj, hj
in B) maintain mutually Disjoint relations, allowing diverse
relations to form between bodies and cross-body holes - for
instance, A might relate to hi{ and hj through Disjoint,
Touches, Overlaps, Covers, or Contains relations. Second, at
least one hole pair establishes non-Disjoint relations, meaning
not only do the bodies intersect, but their holes physically interact
through potential connections like Disjoint, Touches, Overlaps,
Covers, Contains, Equal, CoveredBy or Within. This
significantly increases complexity - we might observe h,
Touching hj while Overlapping hj, concurrently with h,
being CoveredBy h; but remaining Disjoint from h) .
Countless permutations emerge though not all can be enumerated.
Crucially, since holes within the same cube must remain Disjoint,
these interactions become constrained rather than arbitrary.
Specifically, the relation of hy; with hj directly limits its
possible relations with h’, as summarized in Table 1, when h4
and h; are Disjoint, its connection with h} becomes
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unrestricted and may adopt any of the eight fundamental body-
to-body topological relations.

hy with hj h, with R}
Disjoint, Touches,
Touches Overlaps, Covers,
Contains
Disjoint, Touches,
Overlaps Overlaps, Covers,
Contains
Disjoint, Touches,
Covers Overlaps, Covers,
Contains
Disjoint, Touches,
Contains Overlaps, Covers,
Contains
Equal,
CoveredBy, Disjoint
Within

Table 1. Topological relation correspondence between h; vs.
hi and hy vs. hj.

It can be proved by contradiction that when the relation between
hy and hj is Touches, Overlaps, Covers and Contains, then h,
and h; must be in contact. If the relation between h; and hj
is equal, Then hj is also in contact with hj, which violates the
property that two holes cannot intersect in our definition; If the
relation between h; and hj is coveredby or within, then h,
must be in the interior of hj, which also violates the property
that h; and h) must be separated from each other. However,
when the relation between h; and h; is Equal, CoveredBy,
Within, h, is either equal to hj or within hj, it can only be
separated from hj}.Similarly, the relation between h; and hj
and h} will also affect the relation between h, and hj and
hj. Table 2 shows the corresponding relation between h, and
hi when h, is related to hj. When hi becomes hj, it is the
same as in Table 2.

h, with hj h, with hj
Disjoint, Touches,
Touches Overlaps, CoveredBy,
Within
Disjoint, Touches,
Overlaps Overlaps, CoveredBy,
Within
Covers, Disjoint

Contains, Equal

Disjoint, Touches,

CoveredBy Overlaps, CoveredBy,
Within
Disjoint, Touches,
Within Overlaps, CoveredBy,

Within
Table 2. Topological relation correspondence between
hi and h, vs. hj.

hy vs.

Based on the above correspondence, there are too many cases of
complex A and B overlapping, so this article selects a typical case
to illustrate. As shown in Figure 3, h; maintains a Touches
connection with hj while remaining Disjoint from hj.
Concurrently, h, establishes Overlaps relations with both hj

and hj. and the outer boundary of B intersects hq, and the outer
boundary of A is tangent to hj.

hy htli\ b,

Rl ans =N —
[ e s ll=: -

Figure 3. An example of Overlaps topological relation between
A and B.

Its matrix can be expressed as Equation (4).

0000 11 1
1 11110 0f
[0 o1 0 1 1 1|
RA4B)=l1 111 1 1 ol 4)
1 1111 1 1}
[0011111J
0000111

When the topological relation between complex bodies A and B
is defined as Covers, it signifies that the interior of spatial object
A contains the interior of spatial object B, while their boundaries
intersect, and A is not equivalent to B. This configuration
positions B within A's interior, where B exhibits smaller
volumetric extent than A. Under these conditions, the topological
relations between h,;, h, and hi,h;, may manifest in diverse
configurations, potentially encompassing any of the eight
fundamental topological relations, though constrained by the
limitations previously documented in Tables 1 and 2. To
concretely illustrate this complexity, Figure 4 depicts a
representative scenario where B is positioned within A with its
upper and rear surfaces contacting A's external boundary, while
simultaneously h; maintains Overlaps relations with both hj
and hj, and h, remains Disjoint from h] yet exhibits an
Overlaps interaction with hj.

Figure 4. An example of Covers topological relation between A
and B.

Its matrix can be expressed as Equation (5).

111111
01 01 1 1 1f
111111 1]

RAB =0 1 01 1 1 1 5)
11111 1 1]
[0000011J
00000001

When the topological relation between complex bodies A and B
is Contains, it signifies that A completely encloses B without
boundary intersection, differing from the Covers relation solely
in the absence of boundary contact. To demonstrate this
configuration, Figure 5 illustrates a representative case where B
resides entirely within A's interior with no boundary contact
between the two bodies. And h; maintains an Overlaps relation
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with hi while remaining Disjoint from hj, h, establishes a
Touches connection with hj and a Contains relation with hj.

Figure 5. An example of Contains topological relation between
A and B.

Its matrix can be expressed as Equation (6).

o101 11
(01011 1 1)

[t o1 01 1 1]
RA4B)=lo0 0 1 0 1 1 1| (6)
[1 1111 1 1]
[0000001J
0000O0TO0 1

When the topological relation between A and B is Equal, the
topological relations of hy, h, and hj;, h}, remain diverse.
One of the most special cases is that h; and hj are equal, and
h, and h) are also equal. Only then are the two complex bodies
truly equal. This study illustrates a representative scenario as
Figure 6, h; Overlaps h; but is Disjoint from hj, while h,
remains Disjoint from h; and is CoveredBy hj}.

e B

hy

"

Figure 6. An example of Equal topological relation between A
and B.

Its matrix can be expressed as Equation (7).

[Lo1010 0

(0010000 of

[t 0101 1 o
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l0011010J

000000 1

When considering the topological relations CoveredBy and
Within between complex bodies A and B, these configurations
fundamentally mirror the spatial interactions observed in Covers
and Contains relations respectively. The core distinction lies
solely in reversing the volumetric hierarchy — specifically,
designating which entity functions as the volumetrically
dominant enclosing body. Consequently, We omit detailed
explanation of CoveredBy/Within cases since their logic mirrors
the established Covers/Contains principles.

3. Experiment and Discussion

As described earlier, the double-holed complex body model
employs matrices to represent topological relationships between
two objects each containing two holes. To validate model
completeness, comparative experiments with prior approaches

are essential to reveal their respective strengths and weaknesses.
The 9-intersection and 25-intersection models remain the most
prevalent classical frameworks, with matrix expressions
formalized in Equations (8) and (9) respectively. Although later
studies proposed 3D topological relations for perforated bodies,
such models remain fundamentally restricted to single-hole cases
and thus essentially constitute 25-intersection variants; they
merely redefine the exterior beyond inner boundaries as hole
interiors — a distinction solely reflecting whether holes are treated
as independent entities — while matrix values remain unchanged.
Consequently, these derivative models are not separately
presented.

A°n B
Ropi(4,B) = |dA N B®
A~ nB°

dANdB O0ANB~ ®)

A°nadB A°n B*]
A"NdB A NnB~
[A°NB® A°naBy A°ndB;  A°ndB; A°NaB[
A NB° 9A;NdB; 0A;NdB, dAyNdB; 0A;NadB;
Rysm(4,B) = [0A; NB° 0A,ndB; 0A,NdB, dA,naB; A, naB; | (9)
lAgnB“ ApndBy AgndB, AzNnadBg AgnaB,*}
ATNB° AT NodBy A7nNdB, A7 NdB; A7 NaB;y

To benchmark against established methods, this study selects a
classic shoal-bar scenario demonstrating the matrix's
discriminative power; it examines two distinct fluvial cases
(Figure 7) where initial dual shoals evolve differently: Scenario
A shows vertical aggradation and displacement of both shoals
driven by riverbed uplift and positional migration, while Scenario
B features shoal accretion and shifting under stable riverbed
elevation with lateral channel shift, caused by bank widening,
water-level rise and overall channel movement compared to the
baseline.

12

tll 1

(b)

Figure 7. Example Illustration of Shoal-Bar System Dynamic
Evolution.

This scientific scenario transforms into a topological model
visualized in Figure 8, where example (a) demonstrates: hj
Overlaps h; while Touches h,, h) remains Disjoint from h,
yet Overlaps h,, with both h; and h, penetrating the surface
of body B, and both hi and h} penetrating the surface of
body A; conversely, example (b) exhibits: hi Overlaps hy
while Covers h,, h) maintains Disjoint status from h; and
h,, as h; penetrates B's surface while h) penetrates A's
surface, collectively manifesting differential hole-boundary
interactions across evolving fluvial states.

Evidently, both 9-intersection and 25-intersection models fail to
explicitly define individual holes within holed bodies,
fundamentally preventing discrimination between configurations
(a) and (b). Specifically, the 9-intersection model conflates all
boundaries—including  external  boundaries and  hole
boundaries—into a single boundary element, while the 25-
intersection model aggregates hole boundaries and interiors
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under generalized interior/exterior classifications, obscuring
critical distinctions.

Figure 8. Schematic diagram of the double-holed complex body
model for shoal-bar system dynamics.

In contrast, the proposed DH Model comprehensively encodes
each topological element, overcoming limitations in representing
nuanced intersection values. Applying these three matrix
representations to examples (a) and (b) in Figure 8 yields
comparative results (Table 3), clearly demonstrating that despite
substantial topological differences, both classical models employ
identical matrices whereas only the DH Model generates distinct
matrices to differentiate the scenarios.

The proposed matrix distinguishes these scenarios through
differential element values; for example, when the interior of h,
intersects that of h; while their boundaries also intersect, and
h, does not intersect the interior of body B, this configuration
represents h, being covered by hj. This model not only
exhibits strong discriminative capacity for diverse topological
relationships between complex bodies but also enables precise
determination of any entity's topological status through specific
element values, combining geometric-computational advantages
to concisely address scientific problems.

. 9-Intersection 25-Intersection

Objects Model Model DH Model
1 0 1 0 1 1 1
11111 0101111
Topological 1 11 [1 1 11 1] 1010111
relations in Figure [1 1 1] 11111 0111111
8(a) 1 11 lll 1 1 1 1J| 1111111
11111 1111111
11111 11
1 0 1. 0 1 1 1
11111 1 000 0 0O
Topological 111 11111 1 010111
relations in Figure [1 1 1] 11111 101 0 0 0O
8(b) 1 11 11111 1111111
11111 0111111
0 1 0 1 1 1 1

Table 3. Comparison of two topological relationships using three distinct topological model.

Even with altered matrix values, we can still determine the
topological relationship between complex bodies, thereby
revealing the initial-to-terminal dynamic evolution of shoal-bar
systems. Future extensions to bodies with m and n holes will
maintain this discriminative approach, though reducing
computational load becomes critical as matrix dimensions
increase indefinitely.

Consequently, the comparative analysis demonstrates that the
proposed matrix model enforces rigorous constraints; it
overcomes limitations of existing models confined to 2D porous
regions or 3D single-hole complex bodies, enabling precise
discrimination of topological relationships between double-holed
(and even multi-holed) complex bodies. Consequently, this
capability reveals intricate fluvial processes — including riverbed
aggradation/degradation, shoal accretion dynamics, and sandbar
migration patterns — throughout temporal evolutionary phases.

4. Conclusion

This research addresses the challenge of capturing dynamic
shoal-bar system evolution in fluvial geomorphology through
conventional methods by constructing a double-holed complex
body model that characterizes system evolution across
spatiotemporal states. The methodology abstracts river channels

as perforated cubes and shoal-bar systems as dual elliptical-
cylindrical holes within these cubic structures; it defines
intersection relations between interior, boundary, and exterior
components of complex bodies to establish a 7x7 topological
matrix, thereby enabling precise quantification of three-
dimensional dynamic processes including shoal vertical
accretion and channel migration. Compared to traditional 2D
multi-hole models and 3D simple-body topological approaches,
this model breaks dimensional and cavity-count constraints while
preserving the spatial integrity of geomorphic features; its
topological matrix enables dynamic process deduction including
shoal accretion and sandbar migration. Validation through classic
shoal evolution scenarios demonstrates superior discriminative
capability against 9-intersection and 25-intersection models
when handling complex topological configurations, confirming
method completeness. This provides novel theoretical
foundations for digital twin watershed development with
significant preventive value against channel blockages from
excessive sandbar growth and navigational hazards triggered by
sudden shoal migration.

Future research can be further developed. Firstly, the current two
holes can be expanded to a more general multi-hole scenario. By
extending the matrix system, the model can handle complex
bodies with any number of holes. Moreover, the number of
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complex bodies can be dynamically expanded through iterative
processes. By continuously comparing the latest state with a
certain historical moment, a dynamic evolution comparison chart
can be formed, which can visually display the process of how
shoals gradually become sandbars, and how sandbars migrate or
are weakened. Secondly, multi-source data fusion can be used to
achieve the generalization of the model. Currently, the model has
completed geometric abstraction. In the future, it can integrate
centimetre-level sandbar elevations obtained by unmanned aerial
vehicle laser radar, changes in sandbar boundaries captured by
satellite images, and underwater riverbed topography obtained by
sonar, to construct a three-dimensional topological entity that
conforms to real-world problems. Thus, it can realize the
deduction of complex landforms and real-time early warning for
dynamic monitoring.
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