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Abstract

With the rapid development of digital technology and urbanization, indoor 3D reconstruction plays a crucial role in the construction
of smart cities. This paper proposes a multi-level point cloud modeling method for complex indoor scenes based on spatial analysis
and semantic enhancement. Firstly, room-level semantic segmentation is achieved by combining legal vectors and density features;
Then, the a-Shape algorithm is adopted to extract the room contour, and the corner points are identified based on the local geometric
features to refine the room boundary and wall structure; Next, the wall point cloud is classified and its attributes are determined
through buffer analysis and surface-plane fitting to distinguish between planar walls and curved walls. Finally, the wall line structure
is optimized by using the geometric regularization strategy, and each room is integrated into a complete indoor structure model with

the help of spatial topological relations.

The experimental results show that this method significantly improves the modeling accuracy and robustness in non-Manhattan
structural environments, and can accurately reconstruct the geometric and semantic information of complex indoor Spaces. This
provides a solid data foundation for indoor 3D reconstruction and intelligent building applications.

1. Introduction

With the rapid development of digital technology and the
continuous acceleration of urbanization, the construction of
smart cities has become the core direction of current urban
development. In the process of building smart cities, the three-
dimensional reconstruction technology of indoor space plays a
key role. It not only provides high-precision data support for
urban planning, architectural design and operation and
maintenance management, but also creates a more intelligent,
convenient and personalized living environment for residents.
Point cloud data, as a form of data with three-dimensional
spatial coordinates, rich attribute information and irregular
distribution characteristics, can accurately depict the complex
environment in the real world and has become the most direct
form of three-dimensional spatial data representation at present
(Maalek et al, 2019). With its advantages in spatial perception
and geometric modeling, point cloud data has received
extensive attention in academic research and industrial
applications, especially showing great potential in the field of
indoor environment modeling.

However, in the process of constructing indoor models, the
handling of complex scenes still faces many challenges (Cui et
al, 2019). Its complexity is mainly reflected in the following
aspects: Firstly, there are various types of indoor objects, and
non-structural elements (such as tables, chairs, cabinets, etc.)
increase the difficulty of reconstruction; Secondly, there are a
large number of components with complex shapes and
structures, such as curved walls and irregular beams and
columns, etc. In addition, the diverse functions and significant
material differences of the indoor space also make the modeling
task more challenging.

Traditional 3D reconstruction methods usually take point cloud
data as input and construct polygonal meshes in explicit or

implicit ways to express the surface morphology of objects (Wei
et al, 2023). However, this type of method has the following
limitations when dealing with complex indoor scenes: On the
one hand, the point cloud data of structural elements such as
walls often deviate from the real structure due to noise, sparse
sampling, occlusion and sensor errors, affecting the modeling
accuracy; On the other hand, traditional methods mainly focus
on the geometric level, lack understanding at the semantic level,
cannot accurately obtain key parameters such as the thickness of
the wall (Abadi and EI-Sheimy, 2022). Furthermore, most
methods rely on the Manhattan world assumption (that is, the
assumption that the walls are perpendicular or parallel to each
other), and have poor adaptability to the environment of non-
Manhattan structures, seriously limiting their universality and
application scope.

In response to the above problems, this paper proposes a point
cloud modeling method for complex indoor scenes. This
method first realizes the point cloud segmentation at the room
level by using spatial analysis and clustering algorithms (Zou,
2023). Then, for the point cloud data within a single room, the
contour extraction and feature recognition methods are adopted
to accurately obtain the segmented wall information (Shen et al,
2008). On this basis, combined with geometric attributes and
semantic information, the global correlation among indoor
structural elements is established, and then a complete three-
dimensional indoor model containing semantic labels is
generated (Truong-Hong and Lindenbergh, 2022). The method
proposed in this paper introduces a semantic-enhanced
geometric reconstruction mechanism, which not only breaks the
limitations of the traditional Manhattan hypothesis (Ning et al,
2023) and effectively adapted to the non-orthogonal structural
environment, but also significantly improves the robustness of
the model to noise and occlusion, thereby achieving high-
precision and high-stability indoor 3D reconstruction.
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2. Room Data Semantic Segmentation

This paper proposes an indoor modeling strategy that proceeds
from the whole to the part and then builds the whole from the
part. Specifically, the original point cloud is first divided into
multiple independent indoor space units, and the wall lines are
extracted based on the characteristic information of the point
cloud of each room. Then, they are connected according to the
spatial topological relationship between the rooms, thereby
reconstructing the complete indoor structure model.

This section focuses on introducing the room semantic

segmentation method of point clouds (Kolodiazhnyi et al, 2023).

By using the ceiling point clouds classified by semantics for
room point cloud segmentation, the aim is to achieve a
reasonable division from the whole to the part, so as to reduce
the influence of cross-room interference on the modeling
accuracy and effectively reduce the complexity of overall point
cloud processing. The specific methods include: First,
extracting the ceiling point cloud through the normal vector
analysis combined with the pixel density segmentation method;
Then apply the clustering algorithm to identify the clustering
areas of each room; Finally, the precise segmentation of the
room boundaries is further completed through contour
extraction.

2.1 Voxel Density Segmentation Based on Normal Direction
Judgment

In the process of indoor 3D reconstruction, room segmentation
is a key prerequisite step. Its main purpose is to reduce the
mutual interference between point clouds of different rooms,
thereby improving the accuracy of the overall modeling and
achieving the modeling strategy from the whole to the part. This
paper proposes a point cloud slicing method combining the
vector and the Z-axis density gradient for accurately separating
the ceiling point cloud. Firstly, based on the histogram of point
cloud density in the Z-axis direction, identify the point cloud
area with prominent density located above the scene, which
usually corresponds to the ceiling surface. Considering that the
ceiling is usually one of the largest and smoothest horizontal
planes in the indoor space, it has a relatively high point cloud
density distribution in the Z-axis direction. To further eliminate
the wvertical structural elements such as walls and columns
mixed in the upper point cloud, this paper introduces the normal
vector feature for auxiliary judgment. Let the Z-axis component
of the point cloud normal vector be N: and the voxel density
gradient be D. Perform voxel division on the Z-axis in units of
0.3m. On this basis, a judgment threshold is set: When N2>0.9
and D>0.25, it is determined that this point belongs to the
ceiling area. By combining the geometric directionality and
density distribution information, this method can effectively
identify the ceiling point cloud and simultaneously eliminate the
vertical structure interference points, thereby providing an
accurate data basis for subsequent room clustering and
modeling. The segmentation effect is shown in Figure 1 below.
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Figure 1. Point cloud semantic segmentation result.

2.2 Point Cloud Clustering Based on Adaptive Density
Estimation

In complex indoor scenes, rooms are often interconnected
through structures such as doors, Windows, and corridors.
Spatial clustering of the original point cloud directly is prone to
misclustering due to these connecting structures. To improve
the accuracy and robustness of room division, this paper
proposes a point cloud clustering method based on adaptive
density estimation. This method is Based on the DBSCAN
(density-based Spatial Clustering of Applications with Noise)
algorithm accelerated by Kd-Tree and introduces a local
Density adaptive mechanism. Enhance the adaptability to non-
uniform density and scale variations.

In this study, an efficient neighborhood search structure is
constructed, and the neighborhood point distribution of each
point under different radii is statistically analyzed to estimate
the local density level (Mo et al, 2024). Based on the density
gradient change and the prior of the wall structure (such as a
wall thickness of approximately 8-12 cm), dynamically adjust
the neighborhood search radius of each point to 8 cm and the
minimum number of neighborhood points to 25 to avoid overly
rough clustering boundaries or misjudgment caused by fixed
parameter Settings. The neighborhood judgment is as follows:
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where  Nt(pi) = Point neighborhood
P = Point aggregation
Ipi- pill = Euclidean distance between points

r = Neighborhood radius parameter

The clustering process adopts a bottom-up density expansion
strategy: Starting from the seed point, if its local density
exceeds the threshold, it expands into a new clustering cluster
and recursively expands the density reachable points within its
neighborhood. Finally, the ceiling point cloud is divided into
multiple room point cloud clusters with interconnected spatial
densities and adaptively adjusted boundaries.

Furthermore, to further enhance the geometric consistency of
the clustering results, this paper introduces spatial regularity
constraints and geometric consistency optimization mechanisms
on the basis of the initial clustering to ensure that the final room
clustering has clear spatial boundaries and topological
independence.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIIl-4-W14-2025-181-2025 | © Author(s) 2025. CC BY 4.0 License. 182



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W14-2025
9th International Workshop on Dynamic and Multi-dimensional GIS (DMGIS 2025), 22—24 August 2025, Beijing, China

Bl Room 1 Ml Room 2 [l Room 3 [l Room 4 [l Room 5 [l Room 6
Il Room 7 [l Room 8 [ Room 9 [l Room 10 [ Room 11 [l Room 12

Figure 2. Ceiling point cloud clustering.

Different from the traditional DBSCAN algorithm, the method
proposed in this paper significantly enhances the perception
ability of point cloud density changes, can effectively adapt to
structural changes such as wall connection areas and door
openings, and improves the purity and stability of spatial
division.

2.3 Voxel Density Segmentation Based on Normal Direction
Judgment

To achieve further precise division of the indoor spatial
structure from the ceiling clustering results, this paper performs
contour extraction operations on each clustering unit (room
ceiling point cloud) to obtain the boundary information of the
room and complete the spatial division of the original point
cloud accordingly.

Considering the complexity of the indoor space structure, actual
rooms often have irregular geometric features such as local
depressions and protrusions, and the traditional convex hull
method is difficult to accurately depict their true boundaries
(Wang et al, 2024). To this end, in this paper, the a-Shape
algorithm based on triangulation is adopted to extract the two-
dimensional boundary contour of the ceiling point cloud. This
algorithm can achieve adjustable geometric approximation
ability between the convex hull and the fine boundary, and can
better reveal the detailed features such as the concave corners
and turns of the wall, thereby generating a contour description
that is more in line with the actual room structure, as follows
specifically:

S={s;=(x, %)} C,=0K,(S) ®)
where  SER2 = The two-dimensional point set formed by
point cloud projection

K. (S)= o - complex constructed based on o radius
0K, = Boundary of the o - complex

The point cloud of each ceiling cluster is projected onto the xy
plane to construct a two-dimensional point set. Subsequently,
the contour of the projected point set is extracted through the o-
Shape algorithm to obtain the two-dimensional boundary
polygon of each room. The contours extracted from each room
are shown in Figure 3 below. (Room 13 has missing point
clouds and ceiling point clouds in the original point cloud.

Therefore, Room 13 is intervened by using layering processing
to extract the contours from the layering point clouds.)
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Figure 3. Room outline.

3. Room Structure Construction and Topology

Based on the results of room segmentation, this section extracts
the information of wall lines and combines the spatial
topological relationship to construct an overall indoor model,
achieving the modeling goal from the local to the whole.
Method: First, identify the corner points of the room contour,
divide it by wall sections, and determine the wall type in
combination with the corresponding wall point cloud to
distinguish between flat walls and curved walls, and at the same
time, the body wall section information; Subsequently, the wall
lines are regularized according to the wall section information,
and based on the topological connection relationship between
rooms, they are integrated into a complete indoor structural
model.

3.1 Contour Corner Point Extraction Based on Local
Geometric Features

In indoor Spaces with complex or irregular shapes, directly
extracting wall lines from wall point clouds often faces
interferences such as structural discontinuity and furniture
occlusion. To enhance the robustness of structural recognition,
this paper starts from the extracted room contour points and
realizes the structured expression of the room contour through
corner point recognition (Lu et al, 2014). Taking the single
contour point as the center, its local neighborhood is
constructed. The covariance matrix is calculated based on the
neighborhood points, and feature analysis is conducted on it to
determine the characteristic attributes corresponding to its
primary and secondary directions. If the eigenvalues in the main
direction are significantly greater than those in the secondary
direction, it indicates that the point cloud distribution shows a
linear extension trend, and this point is determined as a non-
corner point. If the two are similar, it indicates that there are
turning or scattered features in the local structure, and this point
is marked as a corner point, as follows:

1 _ —
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where  Ni = Neighborhood set of point P;
Pi = Centroid within the neighborhood

Ci = Point P of covariance matrix
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This method can effectively identify structural change points
such as folding angles and bends in the contour, thereby
reasonably segmenting the contour curve and extracting wall
sections that are structurally independent and continuous.
Compared with the strategies based only on global curvature or
Angle changes, this method has stronger robustness when
dealing with actual interior contours with noise or slight bends,
providing a geometric basis for subsequent wall type
recognition and structural modeling.
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Figure 4. Corner point recognition.

3.2 Buffer Zone Analysis and Fitting Discrimination

To extract the wall point clouds corresponding to each wall
segment and identify their attributes, this paper first constructs a
buffer based on the contour line segments. The specific
approach is: Extend a fixed width along the contour of each
wall section to both sides in the normal direction (equivalent to
the thickness of the wall) to form a local buffer zone. Then,
combined with the point cloud data in the room, the point
clouds falling in the buffer zone are screened out as the
candidate wall point clouds for this wall section. This operation
effectively eliminates the interference of non-structural elements
such as columns and furniture near the wall on the modeling,
and improves the purity of wall extraction.

After extracting the point cloud of the wall section, it is
necessary to further identify its geometric attributes to
determine the type of the wall (Geng et al, 2024). To this end,
this paper constructs a structural classification framework based
on contour-point  cloud  collaborative  discrimination,
comprehensively considering the geometric fitting residuals and
curvature evolution characteristics. Firstly, for each section of
the wall contour line, least squares quadratic curve fitting is
carried out to extract the high-order coefficient A, which is used
to preliminarily determine whether the wall has a nonlinear
trend. Subsequently, the point clouds of the corresponding wall
sections were respectively fitted into planar and arc-shaped
models, and the support rates of the point clouds under their
respective fitting residuals were calculated. Through linear
analysis and model comparison, the categories of each section
of the wall were finally classified to obtain the corresponding
wall point clouds, as shown in Figure 5 below:

(a)Room point cloud

(b)Buffer extraction (c)Wall point cloud

Figure 5. Wall buffer zone treatment.

Subsequently, the point cloud of the wall is processed and its
structural attributes, fitting parameters and other information are
recorded, which are used as the structural input for subsequent
structural regularization and topological construction.

3.3 Wall Regularity and Spatial Topology Construction

During the process of extracting wall segments, limited by
factors such as point cloud occlusion, absence or buffer overlap,
the extracted wall lines often have geometric inconsistency
problems such as position offset and length error. To improve
the modeling accuracy, this paper introduces the geometric
regularization strategy to optimize and adjust the initial wall
line segments. Specifically, it includes: imposing parallelism
constraints on the direction of the wall lines, performing
boundary pruning on the length, and alignment correction on
the endpoints, so as to make the extraction results more in line
with the actual spatial structure. The specific effect is shown in
the following figure 6:
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Figure 6. Regularized correction.

After obtaining the regularized wall lines of each room, the
spatial topological relationships between rooms are further
established. Specifically, this study analyzes the geometric
alignment, spatial overlap ratio, and normal vector consistency
between adjacent room walls to identify whether the wall
segments  exhibit one-to-one or one-to-many sharing
relationships. The topological effect is shown in the following
figure 7.

(b)Topological room

(a)Room without topology

Figure 7. Wall topology.
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Based on these relationships, a global wall mapping table is
constructed to generate a comprehensive topological graph of
the indoor space, enabling the integration of individual room
models into a unified structural model. This topological
structure not only enhances the consistency and completeness of
multi-room modeling but also provides a precise and high-
quality geometric foundation for advanced applications such as
indoor scene reconstruction and BIM modeling.

4. Experimental Process
4.1 Experimental Data

In this study, three datasets are used for experiments. Dataset a
is the publicly available S1 dataset, which includes an L-shaped
corridor and three rooms, with a total of 442,506 points.
Datasets b and ¢ are both sourced from the public benchmark
datasets provided by ISPRS. Point cloud dataset b was captured
by sensors in Building B of the Faculty of Engineering at the
University of Melbourne, Australia. It contains a long corridor,
six rooms, and walls of varying thicknesses, comprising
414,821 points. Dataset ¢ corresponds to the Granger Museum,
containing 13 rooms with varying wall thicknesses and a total
of 45,176,594 points. The experimental data is illustrated in the
figure 8 below.

Elevation
View

=3

Experimental data b

Experimental data ¢

Experimental data a

Figure 8. Original point cloud data.

4.2 Buffer Zone Analysis and Fitting Discrimination

Figure 9 illustrates the reconstruction results of the proposed
method across three different datasets. The results demonstrate
that the proposed algorithm can accurately identify the spatial
extent of wall segments, extract wall thickness, and perform
component-based 3D modeling of walls. It effectively
distinguishes between typical structures such as corridors and
rooms, as well as non-Manhattan elements like oblique and
curved walls.

Elevation
View

Top
View

Experimental Experimental Experimental
data a data b data ¢

Figure 9. Model result.

The reconstructed room models not only reflect realistic wall
thickness, but also assign default values for walls with missing
thickness information. The method shows strong adaptability in
recognizing non-axis-aligned structures (e.g., slanted or curved
walls). Furthermore, the proposed approach exhibits robustness
when processing noisy and cluttered point cloud data, enabling
stable and precise structural extraction and modeling.

4.3 Experimental Analysis

The volumetric modeling algorithm proposed in this study
offers distinct advantages over existing methods through a
"global-to-local and local-to-global" strategy. The algorithm
begins by analyzing the global room structure and then focuses
on the geometric and topological details of local wall segments.
Through processes such as contour extraction and wall attribute
recognition, high-precision modeling is achieved. Subsequently,
the spatial topological relationships between rooms are
constructed while preserving local structural details. This
approach ensures both the accuracy of local room components
and the coherence of the overall spatial structure.

Moreover, the proposed algorithm does not rely on the
Manhattan-world assumption, making it well-suited for indoor
point clouds containing non-orthogonal structures such as
oblique and curved walls. By incorporating multiple
constraints—including spatial topology, geometric consistency,
and feature awareness—the method demonstrates strong
robustness and generalization ability. It can effectively
reconstruct complex indoor environments, yielding semantically
structured 3D models with wall thickness and geometric
attributes.

To evaluate the accuracy and effectiveness of the algorithm, a
reference model R and a source model S are constructed. Based
on previous studies, three commonly used evaluation metrics—
completeness, correctness, and accuracy—are adopted for
comprehensive assessment (Tran et al, 2019). The calculation
formulas for these metrics are given as follows:

iLmJ(c(S‘)mb(R"))‘
M gomp (S, R, D) = 21— : (5)
>R

i
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The precision effect is shown in the following table 1:

Data number Mcomp Mcoor Mace/cm
a 0.95 0.93 2.458
b 0.91 0.89 3.521
c 0.82 0.78 9.673

Table 1. Accuracy Sandard

Although the proposed modeling method demonstrates
promising performance in recognizing both global and local
indoor structures, certain limitations remain during the actual
reconstruction process, as illustrated in Figure 10. First, in areas
with severe point cloud incompleteness, the extracted contour
points may deviate significantly from the true wall boundaries,
leading to inaccuracies in corner detection and wall fitting. This
ultimately affects the overall reconstruction quality of the model,
as shown in Figure 10(b). Moreover, when dealing with large-
scale indoor point clouds, concave or geometrically complex
corner regions may be overlooked or oversimplified during
regularization or surface fitting, as shown in Figure 10(c),
resulting in geometric discrepancies between the reconstructed
model and the real scene. These issues reduce the accuracy of
the model in representing fine-scale structural details.

(b)Lack of point cloud

(a) Data point cloud b 3 (c)Local feature

Figure 10. Local problem.

To further improve the precision and robustness of the model,
future work will focus on refining the algorithm. On one hand,
more robust feature extraction and fitting techniques will be
introduced to enhance the recognition of local structures. On the
other hand, the integration of semantic information and multi-

scale geometric constraints will be explored to achieve more
accurate boundary recovery and component-level detail
modeling, thereby improving the overall reconstruction quality
and adaptability of the approach.

5. Conclusion

This paper presents a robust volumetric modeling method for
tackling the challenges of wall structure recognition and
reconstruction in complex indoor environments. The proposed
approach encompasses key stages including room segmentation,
contour extraction, wall identification, and spatial topology
construction. By integrating local geometric feature analysis,
curvature evolution assessment, and topological consistency
constraints, the method operates independently of the
Manhattan world assumption and effectively handles non-
orthogonal indoor structures such as slanted and curved walls. It
enables component-level wall modeling with realistic thickness
attributes. Experimental validation on multiple public and real-
world datasets demonstrates the method’s strong adaptability
and robustness in room segmentation, wall type recognition,
and accurate 3D reconstruction. Nonetheless, the method may
face limitations in cases of sparse point clouds, significant
structural occlusions, or fine-scale complex elements,
potentially affecting modeling completeness and precision.
Future work will focus on enhancing the recognition and fitting
of structural details by incorporating multi-source semantic
information and time-series point clouds. Furthermore, the
framework will be extended with multi-scale geometric
constraints to support high-precision modeling in dynamic
environments and facilitate integration with BIM systems,
thereby providing a more reliable foundation for applications
such as digital twins, indoor navigation, and spatial intelligence
analysis.
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