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Abstract 

 

With the rapid development of digital technology and urbanization, indoor 3D reconstruction plays a crucial role in the construction 

of smart cities. This paper proposes a multi-level point cloud modeling method for complex indoor scenes based on spatial analysis 

and semantic enhancement. Firstly, room-level semantic segmentation is achieved by combining legal vectors and density features; 

Then, the α-Shape algorithm is adopted to extract the room contour, and the corner points are identified based on the local geometric 

features to refine the room boundary and wall structure; Next, the wall point cloud is classified and its attributes are determined 

through buffer analysis and surface-plane fitting to distinguish between planar walls and curved walls. Finally, the wall line structure 

is optimized by using the geometric regularization strategy, and each room is integrated into a complete indoor structure model with 

the help of spatial topological relations. 

The experimental results show that this method significantly improves the modeling accuracy and robustness in non-Manhattan 

structural environments, and can accurately reconstruct the geometric and semantic information of complex indoor Spaces. This 

provides a solid data foundation for indoor 3D reconstruction and intelligent building applications. 

 

 

1. Introduction 

With the rapid development of digital technology and the 

continuous acceleration of urbanization, the construction of 

smart cities has become the core direction of current urban 

development. In the process of building smart cities, the three-

dimensional reconstruction technology of indoor space plays a 

key role. It not only provides high-precision data support for 

urban planning, architectural design and operation and 

maintenance management, but also creates a more intelligent, 

convenient and personalized living environment for residents. 

Point cloud data, as a form of data with three-dimensional 

spatial coordinates, rich attribute information and irregular 

distribution characteristics, can accurately depict the complex 

environment in the real world and has become the most direct 

form of three-dimensional spatial data representation at present 

(Maalek et al, 2019). With its advantages in spatial perception 

and geometric modeling, point cloud data has received 

extensive attention in academic research and industrial 

applications, especially showing great potential in the field of 

indoor environment modeling. 

 

However, in the process of constructing indoor models, the 

handling of complex scenes still faces many challenges (Cui et 

al, 2019). Its complexity is mainly reflected in the following 

aspects: Firstly, there are various types of indoor objects, and 

non-structural elements (such as tables, chairs, cabinets, etc.) 

increase the difficulty of reconstruction; Secondly, there are a 

large number of components with complex shapes and 

structures, such as curved walls and irregular beams and 

columns, etc. In addition, the diverse functions and significant 

material differences of the indoor space also make the modeling 

task more challenging. 

 

Traditional 3D reconstruction methods usually take point cloud 

data as input and construct polygonal meshes in explicit or 

implicit ways to express the surface morphology of objects (Wei 

et al, 2023). However, this type of method has the following 

limitations when dealing with complex indoor scenes: On the 

one hand, the point cloud data of structural elements such as 

walls often deviate from the real structure due to noise, sparse 

sampling, occlusion and sensor errors, affecting the modeling 

accuracy; On the other hand, traditional methods mainly focus 

on the geometric level, lack understanding at the semantic level, 

cannot accurately obtain key parameters such as the thickness of 

the wall (Abadi and El-Sheimy, 2022). Furthermore, most 

methods rely on the Manhattan world assumption (that is, the 

assumption that the walls are perpendicular or parallel to each 

other), and have poor adaptability to the environment of non-

Manhattan structures, seriously limiting their universality and 

application scope. 

 

In response to the above problems, this paper proposes a point 

cloud modeling method for complex indoor scenes. This 

method first realizes the point cloud segmentation at the room 

level by using spatial analysis and clustering algorithms (Zou, 

2023). Then, for the point cloud data within a single room, the 

contour extraction and feature recognition methods are adopted 

to accurately obtain the segmented wall information (Shen et al, 

2008). On this basis, combined with geometric attributes and 

semantic information, the global correlation among indoor 

structural elements is established, and then a complete three-

dimensional indoor model containing semantic labels is 

generated (Truong-Hong and Lindenbergh, 2022). The method 

proposed in this paper introduces a semantic-enhanced 

geometric reconstruction mechanism, which not only breaks the 

limitations of the traditional Manhattan hypothesis (Ning et al, 

2023) and effectively adapted to the non-orthogonal structural 

environment, but also significantly improves the robustness of 

the model to noise and occlusion, thereby achieving high-

precision and high-stability indoor 3D reconstruction. 
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2. Room Data Semantic Segmentation 

This paper proposes an indoor modeling strategy that proceeds 

from the whole to the part and then builds the whole from the 

part. Specifically, the original point cloud is first divided into 

multiple independent indoor space units, and the wall lines are 

extracted based on the characteristic information of the point 

cloud of each room. Then, they are connected according to the 

spatial topological relationship between the rooms, thereby 

reconstructing the complete indoor structure model. 

 

This section focuses on introducing the room semantic 

segmentation method of point clouds (Kolodiazhnyi et al, 2023). 

By using the ceiling point clouds classified by semantics for 

room point cloud segmentation, the aim is to achieve a 

reasonable division from the whole to the part, so as to reduce 

the influence of cross-room interference on the modeling 

accuracy and effectively reduce the complexity of overall point 

cloud processing. The specific methods include: First, 

extracting the ceiling point cloud through the normal vector 

analysis combined with the pixel density segmentation method; 

Then apply the clustering algorithm to identify the clustering 

areas of each room; Finally, the precise segmentation of the 

room boundaries is further completed through contour 

extraction.  

 

2.1 Voxel Density Segmentation Based on Normal Direction 

Judgment 

In the process of indoor 3D reconstruction, room segmentation 

is a key prerequisite step. Its main purpose is to reduce the 

mutual interference between point clouds of different rooms, 

thereby improving the accuracy of the overall modeling and 

achieving the modeling strategy from the whole to the part. This 

paper proposes a point cloud slicing method combining the 

vector and the Z-axis density gradient for accurately separating 

the ceiling point cloud. Firstly, based on the histogram of point 

cloud density in the Z-axis direction, identify the point cloud 

area with prominent density located above the scene, which 

usually corresponds to the ceiling surface. Considering that the 

ceiling is usually one of the largest and smoothest horizontal 

planes in the indoor space, it has a relatively high point cloud 

density distribution in the Z-axis direction. To further eliminate 

the vertical structural elements such as walls and columns 

mixed in the upper point cloud, this paper introduces the normal 

vector feature for auxiliary judgment. Let the Z-axis component 

of the point cloud normal vector be Nz and the voxel density 

gradient be D. Perform voxel division on the Z-axis in units of 

0.3m. On this basis, a judgment threshold is set: When Nz>0.9 

and D>0.25, it is determined that this point belongs to the 

ceiling area. By combining the geometric directionality and 

density distribution information, this method can effectively 

identify the ceiling point cloud and simultaneously eliminate the 

vertical structure interference points, thereby providing an 

accurate data basis for subsequent room clustering and 

modeling. The segmentation effect is shown in Figure 1 below. 

 

 

Figure 1.  Point cloud semantic segmentation result. 

 

2.2 Point Cloud Clustering Based on Adaptive Density 

Estimation 

In complex indoor scenes, rooms are often interconnected 

through structures such as doors, Windows, and corridors. 

Spatial clustering of the original point cloud directly is prone to 

misclustering due to these connecting structures. To improve 

the accuracy and robustness of room division, this paper 

proposes a point cloud clustering method based on adaptive 

density estimation. This method is Based on the DBSCAN 

(density-based Spatial Clustering of Applications with Noise) 

algorithm accelerated by Kd-Tree and introduces a local 

Density adaptive mechanism. Enhance the adaptability to non-

uniform density and scale variations. 

 

In this study, an efficient neighborhood search structure is 

constructed, and the neighborhood point distribution of each 

point under different radii is statistically analyzed to estimate 

the local density level (Mo et al, 2024). Based on the density 

gradient change and the prior of the wall structure (such as a 

wall thickness of approximately 8-12 cm), dynamically adjust 

the neighborhood search radius of each point to 8 cm and the 

minimum number of neighborhood points to 25 to avoid overly 

rough clustering boundaries or misjudgment caused by fixed 

parameter Settings. The neighborhood judgment is as follows: 
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where  Nr(pi) = Point neighborhood 

 P = Point aggregation 

 ||pj- pi|| = Euclidean distance between points 

 r = Neighborhood radius parameter 

 

The clustering process adopts a bottom-up density expansion 

strategy: Starting from the seed point, if its local density 

exceeds the threshold, it expands into a new clustering cluster 

and recursively expands the density reachable points within its 

neighborhood. Finally, the ceiling point cloud is divided into 

multiple room point cloud clusters with interconnected spatial 

densities and adaptively adjusted boundaries. 

 

Furthermore, to further enhance the geometric consistency of 

the clustering results, this paper introduces spatial regularity 

constraints and geometric consistency optimization mechanisms 

on the basis of the initial clustering to ensure that the final room 

clustering has clear spatial boundaries and topological 

independence. 
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Figure 2. Ceiling point cloud clustering. 

 

Different from the traditional DBSCAN algorithm, the method 

proposed in this paper significantly enhances the perception 

ability of point cloud density changes, can effectively adapt to 

structural changes such as wall connection areas and door 

openings, and improves the purity and stability of spatial 

division. 

 

2.3 Voxel Density Segmentation Based on Normal Direction 

Judgment 

To achieve further precise division of the indoor spatial 

structure from the ceiling clustering results, this paper performs 

contour extraction operations on each clustering unit (room 

ceiling point cloud) to obtain the boundary information of the 

room and complete the spatial division of the original point 

cloud accordingly. 

 

Considering the complexity of the indoor space structure, actual 

rooms often have irregular geometric features such as local 

depressions and protrusions, and the traditional convex hull 

method is difficult to accurately depict their true boundaries 

(Wang et al, 2024). To this end, in this paper, the α-Shape 

algorithm based on triangulation is adopted to extract the two-

dimensional boundary contour of the ceiling point cloud. This 

algorithm can achieve adjustable geometric approximation 

ability between the convex hull and the fine boundary, and can 

better reveal the detailed features such as the concave corners 

and turns of the wall, thereby generating a contour description 

that is more in line with the actual room structure, as follows 

specifically: 

 

 1{ ( , )} , ( )N

i i i iS x y C K S == = = s  (3) 

 

where  S∈R2 = The two-dimensional point set formed by   

point cloud projection 

 Kα (S)= α - complex constructed based on α radius 

 ∂Kα  = Boundary of the α - complex 

 

The point cloud of each ceiling cluster is projected onto the xy 

plane to construct a two-dimensional point set. Subsequently, 

the contour of the projected point set is extracted through the α-

Shape algorithm to obtain the two-dimensional boundary 

polygon of each room. The contours extracted from each room 

are shown in Figure 3 below. (Room 13 has missing point 

clouds and ceiling point clouds in the original point cloud. 

Therefore, Room 13 is intervened by using layering processing 

to extract the contours from the layering point clouds.) 

 

 

Figure 3. Room outline. 

 

3. Room Structure Construction and Topology 

Based on the results of room segmentation, this section extracts 

the information of wall lines and combines the spatial 

topological relationship to construct an overall indoor model, 

achieving the modeling goal from the local to the whole. 

Method: First, identify the corner points of the room contour, 

divide it by wall sections, and determine the wall type in 

combination with the corresponding wall point cloud to 

distinguish between flat walls and curved walls, and at the same 

time, the body wall section information; Subsequently, the wall 

lines are regularized according to the wall section information, 

and based on the topological connection relationship between 

rooms, they are integrated into a complete indoor structural 

model. 

 

3.1 Contour Corner Point Extraction Based on Local 

Geometric Features 

In indoor Spaces with complex or irregular shapes, directly 

extracting wall lines from wall point clouds often faces 

interferences such as structural discontinuity and furniture 

occlusion. To enhance the robustness of structural recognition, 

this paper starts from the extracted room contour points and 

realizes the structured expression of the room contour through 

corner point recognition (Lu et al, 2014). Taking the single 

contour point as the center, its local neighborhood is 

constructed. The covariance matrix is calculated based on the 

neighborhood points, and feature analysis is conducted on it to 

determine the characteristic attributes corresponding to its 

primary and secondary directions. If the eigenvalues in the main 

direction are significantly greater than those in the secondary 

direction, it indicates that the point cloud distribution shows a 

linear extension trend, and this point is determined as a non-

corner point. If the two are similar, it indicates that there are 

turning or scattered features in the local structure, and this point 

is marked as a corner point, as follows: 
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where  Ni = Neighborhood set of point Pi 

 Pi = Centroid within the neighborhood 

 Ci = Point P of covariance matrix 
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This method can effectively identify structural change points 

such as folding angles and bends in the contour, thereby 

reasonably segmenting the contour curve and extracting wall 

sections that are structurally independent and continuous. 

Compared with the strategies based only on global curvature or 

Angle changes, this method has stronger robustness when 

dealing with actual interior contours with noise or slight bends, 

providing a geometric basis for subsequent wall type 

recognition and structural modeling. 

 

 

Figure 4. Corner point recognition. 

 

3.2 Buffer Zone Analysis and Fitting Discrimination 

To extract the wall point clouds corresponding to each wall 

segment and identify their attributes, this paper first constructs a 

buffer based on the contour line segments. The specific 

approach is: Extend a fixed width along the contour of each 

wall section to both sides in the normal direction (equivalent to 

the thickness of the wall) to form a local buffer zone. Then, 

combined with the point cloud data in the room, the point 

clouds falling in the buffer zone are screened out as the 

candidate wall point clouds for this wall section. This operation 

effectively eliminates the interference of non-structural elements 

such as columns and furniture near the wall on the modeling, 

and improves the purity of wall extraction. 

 

After extracting the point cloud of the wall section, it is 

necessary to further identify its geometric attributes to 

determine the type of the wall (Geng et al, 2024). To this end, 

this paper constructs a structural classification framework based 

on contour-point cloud collaborative discrimination, 

comprehensively considering the geometric fitting residuals and 

curvature evolution characteristics. Firstly, for each section of 

the wall contour line, least squares quadratic curve fitting is 

carried out to extract the high-order coefficient A, which is used 

to preliminarily determine whether the wall has a nonlinear 

trend. Subsequently, the point clouds of the corresponding wall 

sections were respectively fitted into planar and arc-shaped 

models, and the support rates of the point clouds under their 

respective fitting residuals were calculated. Through linear 

analysis and model comparison, the categories of each section 

of the wall were finally classified to obtain the corresponding 

wall point clouds, as shown in Figure 5 below: 

 

 

Figure 5. Wall buffer zone treatment. 

 

Subsequently, the point cloud of the wall is processed and its 

structural attributes, fitting parameters and other information are 

recorded, which are used as the structural input for subsequent 

structural regularization and topological construction. 

 

3.3 Wall Regularity and Spatial Topology Construction 

During the process of extracting wall segments, limited by 

factors such as point cloud occlusion, absence or buffer overlap, 

the extracted wall lines often have geometric inconsistency 

problems such as position offset and length error. To improve 

the modeling accuracy, this paper introduces the geometric 

regularization strategy to optimize and adjust the initial wall 

line segments. Specifically, it includes: imposing parallelism 

constraints on the direction of the wall lines, performing 

boundary pruning on the length, and alignment correction on 

the endpoints, so as to make the extraction results more in line 

with the actual spatial structure. The specific effect is shown in 

the following figure 6: 

 

 

Figure 6. Regularized correction. 

 

After obtaining the regularized wall lines of each room, the 

spatial topological relationships between rooms are further 

established. Specifically, this study analyzes the geometric 

alignment, spatial overlap ratio, and normal vector consistency 

between adjacent room walls to identify whether the wall 

segments exhibit one-to-one or one-to-many sharing 

relationships. The topological effect is shown in the following 

figure 7. 

 

 

Figure 7. Wall topology. 
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Based on these relationships, a global wall mapping table is 

constructed to generate a comprehensive topological graph of 

the indoor space, enabling the integration of individual room 

models into a unified structural model. This topological 

structure not only enhances the consistency and completeness of 

multi-room modeling but also provides a precise and high-

quality geometric foundation for advanced applications such as 

indoor scene reconstruction and BIM modeling. 

 

4. Experimental Process 

4.1 Experimental Data 

In this study, three datasets are used for experiments. Dataset a 

is the publicly available S1 dataset, which includes an L-shaped 

corridor and three rooms, with a total of 442,506 points. 

Datasets b and c are both sourced from the public benchmark 

datasets provided by ISPRS. Point cloud dataset b was captured 

by sensors in Building B of the Faculty of Engineering at the 

University of Melbourne, Australia. It contains a long corridor, 

six rooms, and walls of varying thicknesses, comprising 

414,821 points. Dataset c corresponds to the Granger Museum, 

containing 13 rooms with varying wall thicknesses and a total 

of 45,176,594 points. The experimental data is illustrated in the 

figure 8 below. 

 

 

Figure 8. Original point cloud data. 

 

4.2 Buffer Zone Analysis and Fitting Discrimination 

Figure 9 illustrates the reconstruction results of the proposed 

method across three different datasets. The results demonstrate 

that the proposed algorithm can accurately identify the spatial 

extent of wall segments, extract wall thickness, and perform 

component-based 3D modeling of walls. It effectively 

distinguishes between typical structures such as corridors and 

rooms, as well as non-Manhattan elements like oblique and 

curved walls. 

 

 

Figure 9. Model result. 

 

The reconstructed room models not only reflect realistic wall 

thickness, but also assign default values for walls with missing 

thickness information. The method shows strong adaptability in 

recognizing non-axis-aligned structures (e.g., slanted or curved 

walls). Furthermore, the proposed approach exhibits robustness 

when processing noisy and cluttered point cloud data, enabling 

stable and precise structural extraction and modeling. 

 

4.3 Experimental Analysis 

The volumetric modeling algorithm proposed in this study 

offers distinct advantages over existing methods through a 

"global-to-local and local-to-global" strategy. The algorithm 

begins by analyzing the global room structure and then focuses 

on the geometric and topological details of local wall segments. 

Through processes such as contour extraction and wall attribute 

recognition, high-precision modeling is achieved. Subsequently, 

the spatial topological relationships between rooms are 

constructed while preserving local structural details. This 

approach ensures both the accuracy of local room components 

and the coherence of the overall spatial structure.  

 

Moreover, the proposed algorithm does not rely on the 

Manhattan-world assumption, making it well-suited for indoor 

point clouds containing non-orthogonal structures such as 

oblique and curved walls. By incorporating multiple 

constraints—including spatial topology, geometric consistency, 

and feature awareness—the method demonstrates strong 

robustness and generalization ability. It can effectively 

reconstruct complex indoor environments, yielding semantically 

structured 3D models with wall thickness and geometric 

attributes. 

 

To evaluate the accuracy and effectiveness of the algorithm, a 

reference model R and a source model S are constructed. Based 

on previous studies, three commonly used evaluation metrics—

completeness, correctness, and accuracy—are adopted for 

comprehensive assessment (Tran et al, 2019). The calculation 

formulas for these metrics are given as follows: 
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The precision effect is shown in the following table 1: 

 

Data number MComp MCoor MAcc/cm 

a 0.95 0.93 2.458 

b 0.91 0.89 3.521 

c 0.82 0.78 9.673 

Table 1. Accuracy Sandard 

 

Although the proposed modeling method demonstrates 

promising performance in recognizing both global and local 

indoor structures, certain limitations remain during the actual 

reconstruction process, as illustrated in Figure 10. First, in areas 

with severe point cloud incompleteness, the extracted contour 

points may deviate significantly from the true wall boundaries, 

leading to inaccuracies in corner detection and wall fitting. This 

ultimately affects the overall reconstruction quality of the model, 

as shown in Figure 10(b). Moreover, when dealing with large-

scale indoor point clouds, concave or geometrically complex 

corner regions may be overlooked or oversimplified during 

regularization or surface fitting, as shown in Figure 10(c), 

resulting in geometric discrepancies between the reconstructed 

model and the real scene. These issues reduce the accuracy of 

the model in representing fine-scale structural details. 

 

  

Figure 10. Local problem. 

 

To further improve the precision and robustness of the model, 

future work will focus on refining the algorithm. On one hand, 

more robust feature extraction and fitting techniques will be 

introduced to enhance the recognition of local structures. On the 

other hand, the integration of semantic information and multi-

scale geometric constraints will be explored to achieve more 

accurate boundary recovery and component-level detail 

modeling, thereby improving the overall reconstruction quality 

and adaptability of the approach.  

 

5. Conclusion 

This paper presents a robust volumetric modeling method for 

tackling the challenges of wall structure recognition and 

reconstruction in complex indoor environments. The proposed 

approach encompasses key stages including room segmentation, 

contour extraction, wall identification, and spatial topology 

construction. By integrating local geometric feature analysis, 

curvature evolution assessment, and topological consistency 

constraints, the method operates independently of the 

Manhattan world assumption and effectively handles non-

orthogonal indoor structures such as slanted and curved walls. It 

enables component-level wall modeling with realistic thickness 

attributes. Experimental validation on multiple public and real-

world datasets demonstrates the method’s strong adaptability 

and robustness in room segmentation, wall type recognition, 

and accurate 3D reconstruction. Nonetheless, the method may 

face limitations in cases of sparse point clouds, significant 

structural occlusions, or fine-scale complex elements, 

potentially affecting modeling completeness and precision. 

Future work will focus on enhancing the recognition and fitting 

of structural details by incorporating multi-source semantic 

information and time-series point clouds. Furthermore, the 

framework will be extended with multi-scale geometric 

constraints to support high-precision modeling in dynamic 

environments and facilitate integration with BIM systems, 

thereby providing a more reliable foundation for applications 

such as digital twins, indoor navigation, and spatial intelligence 

analysis. 
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